A Mechanico-Physiological Theory of Organic Evolution - Carl Nägeli

A Mechanico-Physiological Theory of Organic Evolution

Mr. V. A. Clark, as a student in horticulture in the University of Vermont, first undertook a critical examination of Nägeli's Mechanico-Physiological Theory of Evolution as a part of his regular junior work. After a half year's study and the preparation of a short thesis, Mr. Clark had become so far intimate with Nägeli's work as to make it seem best for him to continue the study through his senior year. This study involved extended translations from the text, including Nägeli's Summary , which, considering its difficult accessibility to American students, has been chosen for publication. The work has been done chiefly by Mr. Clark, but has all been under my immediate supervision, and I have given the whole matter a final restudy and revision. Those who have had any experience with similar work will know how impossible it is that all mistakes should have been avoided, and it would be a kindness to the translators if readers would point out any defects, in order that they may be corrected.
F. A. WAUGH.
University of Vermont, July 1, 1898.
When separated and promiscuously moving molecules of any substance in solution or in a melted condition pass into the solid form by reason of removal of the causes of separation and motion (warmth or solvent), they arrange themselves into solid masses impermeable to liquids. These minute bodies grow by accretion, and when molecular forces are permitted to act undisturbed, assume the regular outer form and inner structure of crystals. The number of crystals, their size, changes of form and growth, all depend on external conditions.
Certain organic compounds, among them albumen, are neither soluble, despite their great affinity for water, nor are they fusible, and hence are produced in the micellar form. These compounds are formed in water, where the molecules that arise immediately adjoining each other arrange themselves into incipient crystals, or micellæ. Only such of the molecules as are formed subsequently and come in contact with a micella contribute to its increase in size, while the others, on account of their insolubility, produce new micellæ. For this reason the micellæ remain so small that they are invisible, even with the microscope.

Carl Nägeli
О книге

Язык

Английский

Год издания

2010-08-23

Темы

Evolution

Reload 🗙