On the History of Gunter's Scale and the Slide Rule During the Seventeenth Century - Florian Cajori - Book

On the History of Gunter's Scale and the Slide Rule During the Seventeenth Century

UNIVERSITY OF CALIFORNIA PUBLICATIONS IN MATHEMATICS
Vol. 1, No. 9, pp. 187-209 February 17, 1920
BY FLORIAN CAJORI
UNIVERSITY OF CALIFORNIA PRESS BERKELEY
Gunter’s scale, which Wingate calls the “rule of proportion,” contained, as described in the French edition of 1624, four lines: (1) A single line of numbers; (2) a line of tangents; (3) a line of sines; (4) a line, one foot in length, divided into 12 inches and tenths of inches, also a line, one foot in length, divided into tenths and hundredths.
Important are the first and second scales, by which cube root extraction was possible “by inspection only, without the aid of pen or compass;” similarly the third and fourth scales, for square roots. This innovation is due to Wingate. The 1645 edition announces that the instrument was made in brass by Elias Allen, and in wood by John Thompson and Anthony Thompson in Hosier Lane.
William Leybourn, in his The Line of Proportion or Numbers, Commonly called Gunter’s Line, Made Easie , London, 1673, says in his preface “To the Reader:”
The Line of Proportion or Numbers, commonly called (by Artificers) Gunter’s Line, hath been discoursed of by several persons, and variously applied to divers uses; for when Mr. Gunter had brought it from the Tables to a Line, and written some Uses thereof, Mr. Wingate added divers Lines of several lengths, thereby to extract the Square or Cube Roots, without doubling or trebling the distance of the Compasses: After him Mr. Milbourn, a Yorkshire Gentleman, disposed it in a Serpentine or Spiral Line, thereby enlarging the divisions of the Line.
On pages 127 and 128 Leybourn adds:
1. First next the center is two circles divided one into 60, the other into 100 parts, for the reducing of minutes to 100 parts, and the contrary. 2. You have in seven turnes two inpricks, and five in divisions, the first Radius of the sines (or Tangents being neer the matter, alike to the first three degrees,) ending at 5 degrees and 44 minutes. 3. Thirdly, you have in 5 turns the lines of numbers, sines, Tangents, in three margents in divisions, and the line of versed sines in pricks, under the line of Tangents, according to Mr. Gunter’s cross-staff: the sines and Tangents beginning at 5 degrees, and 44 minutes where the other ended, and proceeding to 90 in the sines, and 45 in the Tangents. And the line of numbers beginning at 10, and proceeding to 100, being one entire Radius, and graduated into as many divisions as the largeness of the instrument will admit, being 10 to 10 50 into 50 parts, and from 50 to 100 into 20 parts in one unit of increase, but the Tangents are divided into single minutes from the beginning to the end, both in the first, second and third Radiusses, and the sines into minutes; also from 30 minutes to 40 degrees, and from 40 to 60, into every two minutes, and from 60 to 80 in every 5th minute, and from 80 to 85 every 10th, and the rest as many as can be well discovered. The versed sines are set after the manner of Mr. Gunter’s Cross-staff, and divided into every 10th minutes beginning at 0, and proceeding to 156 going backwards under the line of Tangents. 4. Fourthly, beyond the Tangent of 45 in one single line, for one Turn is the secants to 51 degrees, being nothing else but the sines reitterated beyond 90. 5. Fifthly, you have the line of Tangents beyond 45, in 5 turnes to 85 degrees, whereby all trouble of backward working is avoided. 6. Sixthly, you have in one circle the 180 degrees of a Semicircle, and also a line of natural sines, for finding of differences in sines, for finding hour and Azimuth. 7. Seventhly, next the verge or outermost edge is a line of equal parts to get the Logarithm of any number, or the Logarithm sine and Tangent of any ark or angle to four figures besides the carracteristick. 8. Eightly and lastly, in the space place between the ending of the middle five turnes, and one half of the circle are three prickt lines fitted for reduction. The uppermost being for shillings, pence and farthings. The next for pounds, and ounces, and quarters of small Averdupoies weight. The last for pounds, shillings and pence, and to be used thus: If you would reduce 16s. 3d. 2q. to a decimal fraction, lay the hair or edge of one of the legs of the index on 16. 3½ in the line of 1. s. d. and the hair shall cut on the equal parts 81 16; and the contrary, if you have a decimal fraction, and would reduce it to a proper fraction, the like may you do for shillings, and pence, and pounds, and ounces.

Florian Cajori
О книге

Язык

Английский

Год издания

2013-02-26

Темы

Slide-rule

Reload 🗙