Encyclopaedia Britannica, 11th Edition, 'Equation' to 'Ethics' / Volume 9, Slice 7 - Various

Encyclopaedia Britannica, 11th Edition, "Equation" to "Ethics" / Volume 9, Slice 7

Articles in This Slice
EQUATION (from Lat. aequatio , aequare , to equalize), an expression or statement of the equality of two quantities. Mathematical equivalence is denoted by the sign =, a symbol invented by Robert Recorde (1510-1558), who considered that nothing could be more equal than two equal and parallel straight lines. An equation states an equality existing between two classes of quantities, distinguished as known and unknown; these correspond to the data of a problem and the thing sought. It is the purpose of the mathematician to state the unknowns separately in terms of the knowns; this is called solving the equation, and the values of the unknowns so obtained are called the roots or solutions. The unknowns are usually denoted by the terminal letters, ... x, y, z, of the alphabet, and the knowns are either actual numbers or are represented by the literals a, b, c, &c..., i.e. the introductory letters of the alphabet. Any number or literal which expresses what multiple of term occurs in an equation is called the coefficient of that term; and the term which does not contain an unknown is called the absolute term. The degree of an equation is equal to the greatest index of an unknown in the equation, or to the greatest sum of the indices of products of unknowns. If each term has the sum of its indices the same, the equation is said to be homogeneous. These definitions are exemplified in the equations:—
In (1) the unknown is x, and the knowns a, b, c; the coefficients of x² and x are a and 2b; the absolute term is c, and the degree is 2. In (2) the unknowns are x and y, and the known a; the degree is 3, i.e. the sum of the indices in the term xy². (3) is a homogeneous equation of the second degree in x and y. Equations of the first degree are called simple or linear ; of the second, quadratic ; of the third, cubic ; of the fourth, biquadratic ; of the fifth, quintic , and so on. Of equations containing only one unknown the number of roots equals the degree of the equation; thus a simple equation has one root, a quadratic two, a cubic three, and so on. If one equation be given containing two unknowns, as for example ax + by = c or ax² + by² = c, it is seen that there are an infinite number of roots, for we can give x, say, any value and then determine the corresponding value of y; such an equation is called indeterminate ; of the examples chosen the first is a linear and the second a quadratic indeterminate equation. In general, an indeterminate equation results when the number of unknowns exceeds by unity the number of equations. If, on the other hand, we have two equations connecting two unknowns, it is possible to solve the equations separately for one unknown, and then if we equate these values we obtain an equation in one unknown, which is soluble if its degree does not exceed the fourth. By substituting these values the corresponding values of the other unknown are determined. Such equations are called simultaneous ; and a simultaneous system is a series of equations equal in number to the number of unknowns. Such a system is not always soluble, for it may happen that one equation is implied by the others; when this occurs the system is called porismatic or poristic . An identity differs from an equation inasmuch as it cannot be solved, the terms mutually cancelling; for example, the expression x² − a² = (x − a)(x + a) is an identity, for on reduction it gives 0 = 0. It is usual to employ the sign ≡ to express this relation.

Various
Содержание

О книге

Язык

Английский

Год издания

2011-02-25

Темы

Encyclopedias and dictionaries

Reload 🗙