Encyclopaedia Britannica, 11th Edition, "Geodesy" to "Geometry" / Volume 11, Slice 6
Articles in This Slice
The basis of every extensive survey is an accurate triangulation, and the operations of geodesy consist in the measurement, by theodolites, of the angles of the triangles; the measurement of one or more sides of these triangles on the ground; the determination by astronomical observations of the azimuth of the whole network of triangles; the determination of the actual position of the same on the surface of the earth by observations, first for latitude at some of the stations, and secondly for longitude; the determination of altitude for all stations.
For the computation, the points of the actual surface of the earth are imagined as projected along their plumb lines on the mathematical figure, which is given by the stationary sea-level, and the extension of the sea through the continents by a system of imaginary canals. For many purposes the mathematical surface is assumed to be a plane; in other cases a sphere of radius 6371 kilometres (20,900,000 ft.). In the case of extensive operations the surface must be considered as a compressed ellipsoid of rotation, whose minor axis coincides with the earth’s axis, and whose compression, flattening, or ellipticity is about 1/298.
Measurement of Base Lines.
To determine by actual measurement on the ground the length of a side of one of the triangles (“base line”), wherefrom to infer the lengths of all the other sides in the triangulation, is not the least difficult operation of a trigonometrical survey. When the problem is stated thus—To determine the number of times that a certain standard or unit of length is contained between two finely marked points on the surface of the earth at a distance of some miles asunder, so that the error of the result may be pronounced to lie between certain very narrow limits,—then the question demands very serious consideration. The representation of the unit of length by means of the distance between two fine lines on the surface of a bar of metal at a certain temperature is never itself free from uncertainty and probable error, owing to the difficulty of knowing at any moment the precise temperature of the bar; and the transference of this unit, or a multiple of it, to a measuring bar will be affected not only with errors of observation, but with errors arising from uncertainty of temperature of both bars. If the measuring bar be not self-compensating for temperature, its expansion must be determined by very careful experiments. The thermometers required for this purpose must be very carefully studied, and their errors of division and index error determined.