III. Die von der allgemeinen Relativitätstheorie behaupteten Widersprüche.

Wir gehen jetzt zur allgemeinen Relativitätstheorie über. Sie behauptet, daß ein euklidischer Raum für die physikalische Wirklichkeit nicht angenommen werden darf. Wir fragen: welches sind die Prinzipien und Erfahrungen, auf die sich die Theorie zur Begründung beruft? Warum nennt sie die Annahme eines euklidischen Raumes falsch?

Einstein sagt in seiner grundlegenden Schrift: „Es kommt mir in dieser Abhandlung nicht darauf an, die allgemeine Relativitätstheorie als ein möglichst einfaches logisches System mit einem Minimum von Axiomen darzustellen. Sondern es ist mein Hauptziel, diese Theorie so zu entwickeln, daß der Leser die psychologische Natürlichkeit des eingeschlagenen Weges empfindet und daß die zugrunde gelegten Voraussetzungen durch die Erfahrung möglichst gesichert erscheinen[7].“

Diese Art der Begründung ist für den Physiker berechtigt, denn ihm kommt es nicht auf die starre Aufrechterhaltung philosophischer Prinzipien an, sondern auf eine möglichst enge Anschmiegung seiner Gedankenbilder an die Wirklichkeit. Der Philosoph aber muß Rechenschaft fordern für eine Abweichung von so fundamentalen Prinzipien, wie sie die euklidische Geometrie enthält. Indem wir die Begründung der Theorie daraufhin ordnen, werden wir finden, daß Einsteins Darstellung in Wahrheit eine viel tiefere Begründung gibt, als er selbst in den begleitenden Worten beansprucht.

Wir hatten schon in den Ausführungen zur speziellen Relativitätstheorie betont, daß die allgemeine Relativität aller Koordinatensysteme vom Standpunkt der kritischen Philosophie nur selbstverständlich ist, und brauchen daher auf diese Forderung nicht mehr einzugehen. Wir fragen aber: Warum führt sie zur Aufgabe des euklidischen Raumes?

Wir denken uns ein homogenes Gravitationsfeld von großer Ausdehnung und darin ein Inertialsystem angenommen. In diesem Koordinatensystem ist dann das Gravitationsfeld überall gleich Null. Wir wissen, daß dann das vierdimensionale Linienelement

4

ds2 =

Σ

dxν2

1

sich als Summe von Quadraten der Koordinatendifferentiale ausdrückt. Führen wir jetzt neue Koordinaten durch eine beliebige Substitution ein, etwa ein System, das sich gegen das Inertialsystem beschleunigt bewegt, so wird das Linienelement seine einfache Form nicht bewahren, sondern in einen gemischt quadratischen Ausdruck übergehen:

4

ds2 =

Σ

gμν dxμ dxν.

1

Dieser Ausdruck ist nach Gauß und Riemann charakteristisch für eine nichteuklidische Geometrie[B]. Die darin auftretenden Koeffizienten gμν drücken sich durch die Beschleunigung des zweiten Koordinatensystems gegen das Inertialsystem aus, und da diese Beschleunigung unmittelbar das für das zweite System bestehende Schwerefeld charakterisiert, so dürfen wir sie als ein Maß für dieses Schwerefeld bezeichnen. Wir sehen also: der Übergang von einem schwerelosen Feld in ein Gravitationsfeld ist mit einem Übergang zu nichteuklidischen Koordinaten verknüpft, und die Metrik dieser Koordinaten ist ein Maß für das Gravitationsfeld. Von hier aus hat Einstein den Schluß gezogen, daß jedes Gravitationsfeld, nicht bloß das durch Transformation erzeugte, sich durch Abweichung von der euklidischen Gestalt des Raumes ausdrücken muß.

[B] Wir gebrauchen hier das Wort „euklidisch“ für die vierdimensionale Mannigfaltigkeit im üblichen Sinne. Obgleich wir die folgenden Betrachtungen für die vierdimensionale Raum-Zeit-Mannigfaltigkeit anstellen werden, gelten sie ebenso für den durch diese definierten dreidimensionalen Raum, denn wenn die erstere eine Riemannsche Krümmung aufweist, ist auch der letzte notwendig gekrümmt, und wenn die erstere euklidisch ist, läßt sich auch der letztere immer euklidisch wählen. Vgl. für die Analogie dieser beiden Mannigfaltigkeiten Erwin Freundlich, Anmerkung 3, S. 29 ff.

Es handelt sich also um eine Extrapolation. Eine solche ist aber immer auf verschiedenen Wegen möglich; wir müssen fragen, welche Prinzipien gerade zu der Einsteinschen Extrapolation geführt haben.

Betrachten wir das geschilderte Gravitationsfeld noch genauer. Daß wir durch die Forderung der allgemeinen Relativität auf nichteuklidische Koordinaten geführt werden, diese also als gleichberechtigt neben den euklidischen zulassen müssen, wird durch das Beispiel hinreichend bewiesen. Aber die dabei entstandene nichteuklidische Raum-Zeit-Mannigfaltigkeit hat noch eine besondere Eigentümlichkeit: es lassen sich in ihr Koordinaten so wählen, daß das Linienelement an jedem Punkt euklidisch wird. Damit ist aber für das nichteuklidische Koordinatensystem eine weitgehende Einschränkung gegeben, es folgt z. B. daß das Riemannsche Krümmungsmaß dieses Systems überall gleich Null wird. Ein solcher Raum ist nur scheinbar nichteuklidisch, in Wahrheit hat er keine andere Struktur als der euklidische Raum. Auch der dreidimensionale euklidische Raum läßt sich durch nichteuklidische Koordinaten ausdrücken. Man braucht dazu nur irgendwelche krummlinige schiefwinklige Koordinaten zu wählen, dann wird das Linienelement zu einem gemischt quadratischen Ausdruck. Bereits die gewöhnlichen Polarkoordinaten liefern für das Linienelement eine von der reinen Quadratsumme abweichende Form. Sieht man von ihrer anschaulichen Bedeutung ab und betrachtet sie als eine dreiachsige Mannigfaltigkeit, ähnlich den drei Achsen des Raumes, so stellen sie also einen nichteuklidischen Raum dar. Man kann die Darstellung des euklidischen Raumes durch Polarkoordinaten als eine Abbildung auf einen nichteuklidischen Raum auffassen. Das Krümmungsmaß aber bleibt dabei gleich Null.

Das gewählte Beispiel zeigt daher nur die Gleichberechtigung pseudo-nichteuklidischer Räume mit den euklidischen. Wenn also die Einsteinsche Theorie, indem sie von homogenen Gravitationsfeldern zu beliebigen inhomogenen Feldern übergeht, die Notwendigkeit echter nichteuklidischer Koordinaten behauptet, so geht sie damit wesentlich über den Gedanken des Beispiels hinaus. Sie behauptet damit, daß es für den allgemeinen Fall nicht möglich ist, den Koordinaten die euklidische Form zu geben. Wir stehen also vor einer sehr weitgehenden Extrapolation. Näher liegend erscheint eine solche Theorie, für die auch im allgemeinen Falle die Transformation auf euklidische Koordinaten möglich ist, in der also auch der massenerfüllte Raum das Krümmungsmaß Null behält.

Auch das von Einstein angeführte Beispiel der rotierenden Kreisscheibe[8] kann eine so weitgehende Verallgemeinerung nicht als notwendig beweisen. Es ist allerdings richtig, daß ein auf der Scheibe befindlicher mitrotierender Beobachter für den Quotienten aus Umfang und Durchmesser der Scheibe eine größere Zahl als π erhält, daß also für ihn und sein mitrotierendes Koordinatensystem die euklidische Geometrie nicht gilt. Aber der Beobachter würde sehr bald entdecken, daß die Meßresultate wesentlich einfacher würden, wenn er ein (von ihm aus gesehen) rotierendes System einführt — das nämlich der Scheibe entgegen mit gleicher Geschwindigkeit rotiert, so daß es in der umgebenden Ebene ruht — und daß er von diesem Bezugssystem aus alle Vorgänge in euklidischer Geometrie beschreiben kann. Auch eine synchrone Zeit kann er für dieses System definieren (was für die Scheibe selbst bekanntlich nicht möglich ist). Dieses Bezugssystem würde für ihn etwa die Rolle spielen, wie das von den Astronomen gesuchte Inertialsystem des Sonnensystems, das für die Newtonschen Gleichungen fingiert wird. Die Geometrie der rotierenden Kreisscheibe ist also ebenfalls pseudo-nichteuklidisch; ihr Krümmungsmaß ist gleich Null.

Wir fragen deshalb, ob nicht eine Gravitationstheorie mit weniger weitgehender Extrapolation möglich ist als die Einsteinsche. Wir wollen folgende Forderungen an sie stellen:

a) die Theorie soll für homogene Felder übergehen in die spezielle Relativitätstheorie;

b) die Theorie soll in jedem Fall die Möglichkeit einer euklidischen Koordinatenwahl zulassen.

In der Tat ist eine solche Theorie möglich; die beiden Forderungen stehen also in keinem Widerspruch. Z. B. könnte das nach Forderung b definierte Koordinatensystem dadurch entstehen, daß man in jedem Punkt des Feldes die Feldstärke mißt, den Mittelwert aller Feldstärken bildet und dasjenige System bestimmt, in dem dieser Mittelwert ein Minimum wird. Für konstante Feldstärke, also homogenes Feld, wäre dann das Mittel gleich der konstanten Feldstärke, also ein Minimum in demjenigen System, in dem die Feldstärke gleich Null ist; das wäre dann das Inertialsystem. So wäre der Anschluß der allgemeinen Theorie an den Spezialfall des homogenen Feldes und die spezielle Relativitätstheorie vollzogen. Natürlich müßte die angenommene Hypothese für das ausgezeichnete System noch mit der Erfahrung verglichen werden. Bemerkt sei übrigens, daß diese Auszeichnung eines Systems nicht etwa der Relativität der Koordinaten widerspricht. Daß der Raum sich in verschiedenen Systemen verschieden ausdrückt, ist selbstverständlich und keine physikalische Bevorzugung. Auch das homogene Gravitationsfeld kennt ja das ausgezeichnete euklidische System.

Jedoch ist die Voraussetzung a nicht die von Einstein gewählte. Zwar hält auch er an einem stetigen Übergang seiner Theorie in die spezielle fest. Die Voraussetzung a vollzieht diesen Übergang, indem sie bei festgehaltenem Raumgebiet die Feldstärken in den verschiedenen Punkten einander gleich werden läßt. Es gibt aber noch eine andere Form des Übergangs. Die Feldstärke muß als stetige Funktion des Raums angenommen werden; dann sind unendlich kleine Feldgebiete homogen. Wir können also den Übergang zum homogenen Feld auch in der Weise vollziehen, daß wir bei festgehaltener Feldstärke das Raumgebiet immer kleiner werden lassen. Diesen Übergang können wir in jedem Punkte des Feldes vornehmen, und wir wollen deshalb die folgende Einsteinsche Voraussetzung für die Extrapolation machen:

c) die Theorie soll in jedem Punkt des Feldes für unendlich kleine Gebiete übergehen in die spezielle Relativitätstheorie.

Wir fragen: Ist mit dieser Forderung c die Forderung b vereinbar?

Wir denken uns in einem inhomogenen Gravitationsfeld ein kleines Gebiet G1 ausgesucht, das wir als hinreichend homogen betrachten dürfen. Dort können wir ein Inertialsystem K1 wählen; in ihm verschwindet die Feldstärke. Das System nach Forderung b, das in jedem Punkte des Feldes euklidisch ist, muß also zu der Schar der gegen K1 gleichförmig translatorisch bewegten Systeme gehören, denn sonst könnte es für G1 nicht euklidisch sein. Dieselbe Überlegung wende ich nun auf ein zweites, entferntes Gebiet G1 an, in dem die Feldstärke einen anderen Wert hat als in G1. Die Inertialsysteme K1 in G1 müssen gegen K1 eine beschleunigte Bewegung ausführen, gehören also nicht zur Schar der Inertialsysteme in G1. Damit das System nach Forderung b in beiden Punkten euklidisch wird, müßte es sowohl zur Schar K1 wie zur Schar K1 gehören, das ist ein Widerspruch. Also ist Forderung c mit Forderung b nicht vereinbar.

Damit ist bewiesen, daß, wenn man aus der speziellen Relativitätstheorie nach der Einsteinschen Forderung c durch Extrapolation zu einer allgemeinen Relativitätstheorie übergeht, der euklidische Charakter des Raumes aufgegeben werden muß. Es ist danach in einem beliebigen Gravitationsfeld durch keine Koordinatenwahl möglich, dem Linienelement in allen Punkten zugleich die euklidische Form zu geben; das Krümmungsmaß des massenerfüllten Raumes ist von Null verschieden.

Die Forderung c beruht einerseits, wie wir bereits sagten, auf der Stetigkeit des Gravitationsfeldes. Da die Stetigkeit nicht bloß eine Eigenschaft der Gravitation ist, sondern allgemein für physikalische Größen vorausgesetzt wird, können wir von einem Prinzip der Stetigkeit physikalischer Größen sprechen. Andererseits beruht die Forderung c auf der Tatsache, daß der Raum für kleine Gebiete keine anderen Eigenschaften zeigt als für große, daß also der Raum homogen ist; denn nur unter dieser Voraussetzung dürfen wir fordern, daß für beliebig kleine Raumgebiete die spezielle Relativitätstheorie gilt, wenn nur die Feldstärke der Gravitation nahezu konstant wird. Würden wir die Homogenität des Raums nicht voraussetzen, so könnte der Fehler, der durch die Verkleinerung des Raumgebiets entsteht, den Einfluß der herabgesetzten Schwankung der Feldstärke in dem Gebiet gerade kompensieren, so daß doch keine Annäherung an die spezielle Relativitätstheorie zustande käme; dann dürften wir den Grenzübergang nur nach Forderung a vollziehen. Drittens beruht die Forderung c auf dem Einsteinschen Äquivalenzprinzip, denn sie besagt, daß jedes homogene Gravitationsfeld, das Schwerefeld ebenso wie das Trägheitsfeld, sich in ein kräftefreies Feld transformieren läßt. Hier liegt eine rein empirische Grundlage der Forderung c. Denn das Äquivalenzprinzip besagt weiter nichts als die Gleichheit von schwerer und träger Masse für jedes Gravitationsfeld, und diese Tatsache läßt sich nur durch das Experiment feststellen. Allerdings konnte das Experiment bisher nur im Erdfeld vorgenommen werden. Aber es ist eine normale Induktion, von diesem Versuche auf die allgemeine Äquivalenz zu schließen.

Man wird die Stetigkeit physikalischer Größen und die Homogenität des Raums evidente apriore Prinzipien im Kantischen Sinne nennen können. Dann dürfen wir, den Zusammenhang umkehrend, sagen, daß diese beiden aprioren Prinzipien einen Verzicht auf die Forderung c nur dann zulassen, wenn die träge und die schwere Masse im allgemeinen nicht gleich sind; das würde verlangen, daß man in der Deutung der bisherigen Beobachtungen auf diesem Gebiete von der normalen Induktion abweicht. Da nun die Forderung c zum Widerspruch gegen die Euklidizität des Raumes führt, so verlangt die Euklidizität umgekehrt, im Verein mit den anderen Prinzipien, den Verzicht auf die normale Induktion in der Äquivalenzfrage. Nennen wir noch die Forderung, daß die allgemeine Theorie für den speziellen Fall in die spezielle übergeht, die Stetigkeit der Gesetze, und verstehen wir unter dem Prinzip der speziellen Relativität den Gesamtinhalt der speziellen Relativitätstheorie als einer Theorie des kräftefreien Feldes, so dürfen wir jetzt behaupten, daß die allgemeine Relativitätstheorie folgende Prinzipien als gemeinsam unvereinbar mit der Erfahrung nachgewiesen hat.

Denn die Gesamtheit dieser Prinzipien ist unvereinbar mit der Erfahrungstatsache, daß im Erdfeld die träge und die schwere Masse gleich sind. Dabei sind alle diese Prinzipien, mit Ausnahme des ersten, apriori im Kantischen Sinne; das erste aber ist gerade dasjenige Prinzip, welches den in der entsprechenden Zusammenstellung des vorhergehenden Abschnitts dargestellten Widerspruch löst.

Wir haben damit die grundlegenden Gedanken für das Verlassen der euklidischen Raumanschauung aufgedeckt. Ehe wir jedoch diese Darlegung beschließen, müssen wir noch etwas über den speziellen Charakter sagen, den auch der Einsteinsche Raum noch besitzt.

Es ist nicht richtig zu sagen, daß in der Einsteinschen Lehre der euklidische Raum keine Vorzugsstellung mehr inne hätte. Eine Bevorzugung liegt immer noch darin, daß das unendlich kleine Raumgebiet als euklidisch angenommen wird. Riemann nennt diese Eigenschaft: „Ebenheit in den kleinsten Teilen“. Sie drückt sich analytisch in der gemischt quadratischen Form des Linienelements aus; aus dieser folgt, daß stets eine solche Koordinatenwahl möglich ist, daß in einem einzigen Punkt das Linienelement sich gerade als reine Quadratsumme darstellt. Man kann also ein Koordinatensystem immer so wählen, daß es für ein beliebig vorgegebenes Punktgebiet gerade euklidisch wird. Physikalisch bedeutet dies, daß man für ein unendlich kleines Gebiet das Gravitationsfeld immer „wegtransformieren“ kann, wie auch das Feld sonst beschaffen sein möge, daß also kein Wesensunterschied zwischen den durch Transformation erzeugten und den statischen Gravitationsfeldern besteht. Das ist der Inhalt der Einsteinschen Äquivalenzhypothese für die träge und die schwere Masse. Umgekehrt ist auch diese Hypothese der Grund für die quadratische Form des Linienelements, und die Ebenheit in den kleinsten Teilen hat danach ihren physikalischen Grund. Würden die physikalischen Verhältnisse anders liegen, so müßte für das Linienelement ein anderer Differentialausdruck, etwa vom vierten Grade, gewählt werden, und damit würde auch die letzte Vorzugsstellung des euklidischen Raumes verschwinden.

Man kann die Sonderstellung der gemischt quadratischen Form für das Linienelement auch folgendermaßen darstellen. Die die Metrik bestimmenden zehn Funktionen gμν sind nicht absolut festgelegt, sondern hängen von der Koordinatenwahl ab. Allerdings sind sie nicht unabhängig voneinander, und wenn vier von ihnen vorgegeben sind, sind die Koordinaten und auch die anderen sechs Funktionen bestimmt. In dieser Abhängigkeit drückt sich der absolute Charakter der Raumkrümmung aus. Für die metrischen Funktionen gμν gilt also keine Relativität, d. h. Beliebigkeit ihrer Wahl. Wohl aber kann man eine andere Relativität behaupten. Es seien beliebige zehn Zahlen vorgegeben, dann läßt sich ein Koordinatensystem immer so wählen, daß die metrischen Koeffizienten in einem beliebig vorgegebenen Punkt gerade gleich diesen zehn Zahlen werden. (In den anderen Punkten sind sie dann natürlich nicht mehr beliebig.) Man kann diese Eigenschaft „Relativität der metrischen Koeffizienten“ nennen; sie besagt, daß für einen gegebenen Punkt die metrischen Koeffizienten keine absolute Bedeutung haben. Es läßt sich leicht zeigen, daß diese Relativität nur für das gemischt quadratische Linienelement gilt; für andere Formen, z. B. den Differentialausdruck vierten Grades, ist die beliebige Wahl der Zahlen nicht möglich. Mit der Relativität der metrischen Koeffizienten hat also die Einsteinsche Theorie ein weiteres willkürliches Element in die Naturbeschreibung eingeführt; wir heben dies deshalb hervor, weil an diesem Relativitätsprinzip die empirische Grundlage, nämlich die Gleichheit von träger und schwerer Masse, besonders deutlich zu erkennen ist.