Größenklassen und entsprechende Helligkeitswerte der 20 hellsten Sterne:
| Gr. | H. | |
| Sirius | -1,6 | 11,0 |
| Canopus | -0,9 | 5,8 |
| α Zentauri | 0,1 | 2,3 |
| Wega | 0,1 | 2,3 |
| Capella | 0,2 | 2,1 |
| Arkturus | 0,2 | 2,1 |
| Rigel | 0,3 | 1,9 |
| Prokyon | 0,5 | 1,6 |
| Cuhernar | 0,6 | 1,4 |
| Beteigeuze (veränd.) | 0,9 | 1,1 |
| β Zentauri | 0,9 | 1,1 |
| Atair | 0,9 | 1,1 |
| α Crucis | 1,0 | 1,0 |
| Aldebaran | 1,1 | 0,9 |
| Spika | 1,2 | 0,8 |
| Pollux | 1,2 | 0,8 |
| Antares | 1,2 | 0,8 |
| Fomalhaut | 1,3 | 0,8 |
| Deneb | 1,3 | 0,8 |
| Regulus | 1,3 | 0,7 |
Der zweiten Größe gehören etwa 50 Sterne am ganzen Himmel beider Hemisphären an. Dann folgt die dritte Größe mit bereits 200, die vierte mit 600, die fünfte mit etwa 1200 und die sechste mit 3600 Sternen. Damit sind wir an der Grenze der Sterne angekommen, die ein gutes Auge unter günstigen Bedingungen noch unbewaffnet sehen kann. Es sind dies also gar nicht so sehr viele. Gleichzeitig wird man am Himmel wohl kaum jemals mehr als zweitausend Sterne zählen können. Diese Zahl erscheint überraschend klein. Die unzählbare Menge von Sternen ist ja sprichwörtlich.
Wie unzulänglich aber unser bloßes Auge ist und wie unendlich das Fernrohr unsern Blick geweitet hat hinaus in eine unermeßlich große Welt von Welten, das erkennen wir, wenn wir nun weiter die Sternenfülle überblicken, die die machtvoll alle Himmelsräume durchdringenden Sehwerkzeuge unserer Zeit dem Auge erschließen. Schon in verhältnismäßig kleinen Fernrohren könnte man eine halbe Million Sterne zählen, wieviel aber in unsern mächtigsten Teleskopen unsern Blicken noch zugänglich werden, darüber werden selbst die Schätzungen ganz unsicher. Viele meinen, es würden etwa 50 Millionen sein, andere wollen sich mit der doppelten Zahl noch nicht begnügen. Fünfzig Millionen Sonnenwelten wie die unsrige! Welche über alle Maße gewaltige Fülle von Kraft und Arbeit, von aufstrebendem Kampf und Glückseligkeit können diese Sonnen hervorbringen, wenn sie vom Schlage der unsrigen sind! Das zu ergründen, soll unser Ziel sein.
Eine außerordentlich langwierige Arbeit war es begreiflicherweise, diese Sternenfülle zu mappieren, um über etwaige Veränderungen, über das Verschwinden oder das Neuauftreten und über Ortsveränderungen der Sterne etwas erfahren zu können. Solange man noch keine Fernrohre besaß, ging dies noch an. So konnte schon im zweiten Jahrhundert vor Christus der alexandrinische Astronom Hipparch einen Katalog von 1080 Sternen entwerfen, der also so ziemlich alle für ihn sichtbaren Sterne enthielt, wenn man von den schwächsten absieht. Ein solcher Katalog muß natürlich auch die Positionen der Objekte angeben. Die bloße Anordnung nach den Sternbildern genügte bald nicht mehr. Man teilte deshalb schon früh die Himmelskugel durch Kreise ab, wie man es mit dem Erdglobus tut, und ebenso wie durch die geographische Länge und Breite ein beliebiger Punkt auf der Erde festgelegt ist, geschieht dies am Himmel durch die beiden Koordinaten der Rektaszension und Deklination. Die Fundamentalebene beider Systeme ist die des Äquators, der sich durch den Erdumschwung in der täglichen Bewegung der Gestirne abspiegelt. Der Nullpunkt, von dem die Rektaszensionen gezählt werden, ist der Punkt des Äquators, den die Sonne zu Frühlingsanfang passiert: Der Frühlingspunkt, oder kurz das Äquinoktium genannt.
Nach der Erfindung des Fernrohrs, das zugleich auch als Meßinstrument für die Bestimmung der Lage der Sterne dient, wuchs natürlich der Umfang dieser Sternkataloge gewaltig, und die ganze sichtbare Sternenfülle war auf diese Weise überhaupt nicht mehr zu bewältigen. Der bedeutendste dieser Kataloge ist der von Argelander, der fast sein ganzes langes Leben dieser Riesenaufgabe widmete. Er bestimmte die genauen Örter von 33 811 Sternen und genäherte Örter von 324 188 Sternen. Diese sogenannte »Bonner Durchmusterung des Himmels« enthält vom Nordpol bis 2 Grad südlicher Deklination fast alle Sterne bis zur 9. Größe. Die Arbeit ist später auf der südlichen Halbkugel fortgesetzt. Das Argelandersche Riesenwerk erschien um die Mitte des vorigen Jahrhunderts. In den letzten Jahrzehnten hat eine internationale Vereinigung von Astronomen als »Katalog der Astronomischen Gesellschaft« ein ähnliches, noch umfassenderes Werk unternommen, das seiner Vollendung entgegengeht. Auf Grund dieser Kataloge sind dann auch Sternkarten hergestellt, von denen wieder die Bonner die weitaus vollständigsten sind.
Aber es wäre natürlich ein ganz unerfüllbares Verlangen gewesen, alle die vielleicht hundert und mehr Millionen Sterne auf die erwähnte Weise genau zu mappieren, wenn hier nicht die Photographie zu Hilfe gekommen wäre. Sie gestattet es, Sterne ihrer gegenseitigen Lage nach genau zu fixieren, die selbst in den lichtstärksten Fernrohren nicht mehr direkt sichtbar sind. Man kann ja die Expositionszeit beliebig verlängern, um durch Summierung der Lichtwirkung selbst die allerschwächsten aus einer praktischen Unendlichkeit herüberflimmernden Lichtstrahlen sich mechanisch selbst aufzeichnen zu lassen. Man sehe sich die nebenbei abgebildete kleine Partie des Himmels im Sternbild des Schwans, allerdings mitten in der Milchstraße, an. Alle diese Sterne zeichneten sich auf nur einer photographischen Platte in wenigen Stunden auf. Wäre es überhaupt denkbar, wenn auch durch eine Arbeit von Jahren, diese Sterne messend oder durch Einzeichnen auf einer Karte mit annähernd ähnlicher Genauigkeit festzulegen, so daß man einmal nach Jahren sagen könnte, hier sei einer wirklich hinzugekommen oder verschwunden? Unter diesen Sternen auf der Platte ist längst keiner mehr mit bloßem Auge und sind vielleicht nur einige hundert mit den besten Fernrohren zu sehen.
Ein Teil der Milchstraße im Schwan.
Nach einer photographischen Daueraufnahme.
Bei diesen gewaltigen Vorteilen der photographischen Mappierung haben sich im September 1887 eine Reihe von Astronomen in Paris zusammengefunden, die gemeinsam auf ihren über den ganzen Erdball verteilten Sternwarten nach einem einheitlichen Plan eine vollständige photographische Karte des Himmels herstellen. Diese wird über 20 Millionen Sterne enthalten, von denen 3 Millionen auf den Platten ihrer Lage nach ausgemessen werden sollen, um daraus einen Riesenkatalog herzustellen. Es wird wohl noch mindestens ein Jahrhundert hingehen, ehe die Arbeit vollendet ist.
Wir haben gesehen, daß die Anzahl der Sterne sehr bedeutend mit der Abnahme ihrer Helligkeit zunimmt. Dies wird ohne weiteres niemand merkwürdig finden: Überall in der Welt ist das Kleinere zahlreicher als das Große. Aber wir können doch noch etwas mehr aus dieser Tatsache entnehmen. Wir müssen doch voraussetzen, daß nicht alle Sterne, die uns so schwach leuchten, wirklich auch dunkler und kleiner seien, sondern in den meisten Fällen werden sie nur durch ihre Entfernung so viel kleiner erscheinen. Ihre Helligkeit gibt uns also unter Umständen etwas über ihre Entfernung an, und da wir sonst nur in ganz vereinzelten Fällen darüber etwas erfahren konnten, müssen wir diese Gelegenheit, so gut es eben geht, ergreifen, um über die räumliche Verteilung der Sterne etwas Allgemeineres kennenzulernen.
Würden wir zum Beispiel voraussetzen können, alle Sterne wären gleich groß und besäßen die Helligkeit der Sonne, so würde die Vergleichung der scheinbaren Helligkeiten direkt auch die wirkliche Entfernung ergeben, denn diese Helligkeit nimmt mit dem Quadrat der Entfernung ab. Wir können also schließen, daß Sirius, der 4¼mal heller leuchtet als Wega, uns noch einmal so nahe stehen müsse als dieser Stern, wenn beide in Wirklichkeit die gleiche Leuchtkraft besitzen. Nach den Parallaxmessungen ist in der Tat Wega 2½mal weiter von uns entfernt als Sirius. Beide Sonnen scheinen also wirklich etwa gleich groß zu sein. Wie sich freilich ihre Größe gegen die Sonne verhält, können wir hieraus noch nicht entnehmen, wir müßten dazu die scheinbare Helligkeit dieser beiden Sterne gegen die der Sonne abschätzen können, was sehr schwierig ist. Wir werden aber später noch einen Weg kennen lernen, auf dem man wenigstens für einige Sterne etwas über ihre wahre Größe ermitteln kann; man fand dann meist, daß diese fernen Sonnen auch in dieser Hinsicht von der unsrigen nicht allzu verschieden sein können.
Aber es gibt hiervon zweifellose Ausnahmen. So gehört zum Beispiel Arkturus zu den hellsten Sternen, während er eine so geringe Parallaxe zeigt, daß seine Entfernung sehr viel größer sein muß als durchschnittlich bei Sternen seiner Helligkeit. Er ist also auch in Wirklichkeit eine sehr große oder doch ungewöhnlich hell leuchtende Sonne. Andererseits haben wir gesehen, wie es recht kleine Sterne von 9. Größe gibt, die deutliche Parallaxen besitzen und uns also relativ nahe stehen. Das müssen ungewöhnlich kleine oder doch ungewöhnlich schwach leuchtende Sonnen sein.
Aber im allgemeinen müssen wir, wie gesagt, doch wohl annehmen, daß die schwächeren Sterne durchschnittlich auch die entfernteren seien. Dann entsprechen den verschiedenen Größenklassen der Sterne verschiedene Tiefen, in denen sie sich befinden. Die photometrische Vergleichung der Größenklassen ergibt also zugleich ihre relativen Abstände. Solche Vergleichungen haben nun gezeigt, daß jede tiefere Größenklasse etwa 2½mal weniger Licht besitzt als die höhere, daß also ein Durchschnittsstern 3. Größe 2½mal schwächer leuchtet als einer der 2. Größe. Hiernach haben zum Beispiel die Sterne 10. Größe nur noch 0.00025 des Lichtes von Wega, dem Normalsterne 1. Größe. Nach dem Gesetz von der quadratischen Abnahme des Lichtes haben wir also aus dieser Zahl nur die Quadratwurzel zu ziehen, um unter unserer Annahme zu erfahren, daß diese Sterne 10. Größe, die noch längst nicht zu den schwächsten gehören, etwa 64mal weiter von uns abstehen müssen als durchschnittlich ein Stern 1. Größe. Nehmen wir für diese letztere Durchschnittsentfernung 15 Lichtjahre oder rund 1 Million Sonnenentfernungen, eine sogen. Sternweite, so würde sich ergeben, daß das Licht der Sterne 10. Größe schon etwa tausend Jahre braucht, um zu uns zu gelangen. Für die schwächsten in Fernrohren noch sichtbaren Sterne findet man so an zehntausend und mehr Jahre.
Aber hier hat die Rechnung doch wohl ein Loch. Es scheint, daß diese am schwächsten leuchtenden Sterne, die zum größten Teil die Milchstraße bilden, wirklich auch kleiner sind als der Durchschnitt, und daß man sie also doch in wesentlich größerer Nähe vermuten muß. Außerdem ist es kaum anders möglich, als daß auch der Weltraum mit einem sehr dünnen, lichtabsorbierenden Stoffe erfüllt ist, ähnlich wie die Luft unserer Atmosphäre, und daß also auch dadurch die Sterne scheinbar in eine größere Entfernung gerückt werden, als ihnen wirklich zukommt. Aus manchen noch weiter dazukommenden Gründen meint man deshalb annehmen zu dürfen, daß die letzten, allerfernsten Sterne, die unsere optischen Mittel noch erreichen können, etwa »nur« 2000 Lichtjahre von uns abstehen. Dies ist der ungeheure Umfang des Gesichtskreises für unsere folgenden Betrachtungen. In Zahlen ausgedrückt, die uns aber keine Begriffe geben können, mißt danach die ganze Welt, soweit wir sie noch sinnlich wahrnehmen können, nach jeder Richtung hin rund zwanzigtausend Billionen Kilometer (20 000 000 000 000 000 km) oder 130 Millionen Sonnenentfernungen oder »Sternweiten«. Dies ist nach aller Wahrscheinlichkeit ein allergeringstes Maß.
Wie sollen wir aber etwas über die Natur dieser fernen Welten erfahren können, wenn sie sich nur als Punkte darstellen, so daß also keinerlei besondere Merkmale an ihnen zu erkennen sind, durch die man sie etwa mit unserer Sonne in Vergleich stellen könnte? Wieder jenes Wunderinstrument ist es, das wir uns aus einem einfachen lichtbrechenden Prisma zusammengesetzt haben, das Spektroskop, das den Forscherblick auch hier bis in das innerste Wesen der Materie trägt, die sich doch in ganz unausmeßbar großer Entfernung von uns befindet. Sind die Sterne für uns auch Punkte, so bestehen doch ihre Strahlen aus einem vielverschlungenen Gefüge von Lichtakkorden, die uns die Art der dort glühenden Stoffe verraten, so wie wir es bei der Sonne gesehen haben.
Sternspektren.
Da tritt nun die wunderbare Tatsache hervor, daß die größte Zahl der daraufhin untersuchten Sterne ein Spektrum hat, das in allen seinen Hunderten von Linien mit dem der Sonne völlig übereinstimmt. Dies bedeutet also, daß dieselben Stoffe unter denselben physischen Bedingungen jene Sterne zusammensetzen, wie sie unsere Sonne und auch unsere Erde aufgebaut haben. Das ganze Universum ist, wie sein Name es sagt, aus einem Wurf entstanden, aus ein und derselben Materie. Oben sind einige Sternspektren abgebildet. Jede Linie ist erzeugt von einem dort in Gasform glühenden Stoffe. Das oberste gehört einem jener »Sonnensterne« an, das zweite ist das Sonnenspektrum selbst. Man sieht, wie fast alle Linien sich in beiden Spektren untereinander fortsetzen, nur mit verschiedener Stärke.
Nun gibt es freilich auch Sterne mit andern Spektren, anderer chemischer und physikalischer Beschaffenheit. Man hat sie dementsprechend in drei spektroskopische Klassen geteilt. Zu der ersten Klasse gehören die ganz weißen Sterne, nach ihrem hauptsächlichsten Vertreter auch die Siriussterne genannt. Rigel, Wega, Spika gehören zu ihnen. Man kann aus ihrem Spektrum ersehen, daß sie noch ganz besonders heiß sein müssen, heißer als die Sonne. Sie haben sehr große heiße Atmosphären um sich gebildet, die namentlich aus Wasserstoff und Helium bestehen, wie die Chromosphäre der Sonne. Im Falle dieser Sterne ist sie aber so mächtig, daß die vielleicht auch hier darunter liegende Photosphäre mit ihrem Spektrum metallischer Gase nicht oder nur sehr schwach durchdringen kann. Es zeigen sich also hauptsächlich nur die Linien jener Chromosphärengase. Bei der zweiten Spektralklasse aber treten nun die Metallinien deutlich hervor, wie bei der Sonne. Das Licht dieser Sterne zeigt einen Stich ins Gelbliche, dadurch andeutend, daß die hellste Weißglut bei ihnen schon vorüber ist. Auch die Sonne hat ein etwas gelbliches Licht. Zu diesen Sonnensternen gehört Arkturus im Bootes, Capella im Fuhrmann und Aldebaran im Stier.
Die dritte Klasse endlich enthält die roten Sterne. Sie sind schon zur Rotglut herabgesunken. Die beiden untern Spektren unseres Bildes gehören diesem Typus an. Man sieht, wie hier viele dunkle Linien und Bänder das Spektrum durchziehen, was eine starke Lichtabsorption in ihren erkaltenden Atmosphären andeutet. Zu ihnen gehört Beteigeuze im Orion, dessen rötliches Licht ohne weiteres auffällt.
Wir schlossen hier aus der Farbe der Sterne allein auf ihren Hitzegrad. Es wäre nun interessant zu erfahren, ob vielleicht neben den Lichtstrahlen trotz der ungeheueren Entfernung auch noch eine Wärmestrahlung der Sterne direkt wahrzunehmen sei. In der Tat hat man eine solche bei einigen Sternen nachweisen können, aber in neuerer Zeit hat auch hier das Spektroskop tiefere Einblicke gestattet, indem es auf Grund gewisser Untersuchungen von Lummer und Pringsheim über die Beziehungen der Lichtverteilung im Spektrum zur Temperatur des leuchtenden Körpers sogar Grenz-Zahlenwerte der Temperatur der Fixsterne festzustellen gestattete. Man fand so für Sirius eine Temperatur zwischen 6000 und 8000 Grad, er ist etwa 2000 Grad heißer als es sich nach derselben Methode für unsere Sonne ergibt. Wega wäre danach ungefähr ebenso heiß wie die Sonne, die Temperatur des Arkturus läge zwischen 2500–2700 Grad, ebenso die des Aldebaran und die des rötlichen Beteigeuze zwischen 2800 und 3200 Grad, das ist ungefähr die Temperatur einer elektrischen Bogenlampe.
Unter jenen roten Sternen befinden sich nun viele, deren Licht Schwankungen unterworfen ist, sogen. veränderliche Sterne. Es gibt davon sehr verschiedene Typen, die ihren Lichtwechsel offenbar auch sehr verschiedenen Ursachen verdanken. Aber jene roten Sterne unter ihnen zeigen alle einen gleichen Charakter. Der Stern Mira, der »Wunderbare«, im Walfisch, ist der Hauptvertreter dieser Klasse offenbar erkaltender Sonnen. Zuzeiten kann dieser Wunderbare zu den hellsten Sternen zählen, er strahlt dann gelegentlich in 1. bis 2. Größe. Aber dieser Glanz hält nur wenige Wochen an, dann sieht man ihn schwächer und schwächer werden, bis er etwa siebzig Tage nach seinem Maximum für das bloße Auge verschwindet und dann sieben Monate lang unsichtbar bleibt. In Fernrohren freilich kann man ihn noch weiter sehen, aber er nimmt doch bis zur 9. bis 10. Größe ab. Nun wächst sein Licht wieder, und zwar viel schneller als es abgenommen hatte, so daß von seinem Wiedersichtbarwerden für das bloße Auge bis zu seinem höchsten Glanz nur noch vierzig Tage verfließen, gegen siebzig bei der Abnahme. Im ganzen dauert die Periode von einem Maximum zum andern durchschnittlich 333 Tage oder elf Monate. Aber alle diese Zeiten werden nur ganz ungefähr innegehalten, der Stern zeigt nichts von der sonst an den Himmelserscheinungen so sehr bewunderten astronomischen Pünktlichkeit. Auch sein Glanz kommt nicht immer wieder auf die gleiche Höhe, er erreicht manchmal nur die vierte Größe, so daß er ganz unscheinbar bleibt. Dies alles interessiert uns hier besonders. Wir erinnern uns, daß auch die Fleckenperiode der Sonne ganz ähnliche Erscheinungen darbietet, wenn auch in sehr abgeschwächtem Maße. Auch bei der Fleckenperiode ist die Zeit vom Minimum zum Maximum wesentlich kürzer als die Rückentwicklung, und auch bei der Sonne werden alle diese Zeiten nicht genau innegehalten. Auch die Größe der Bedeckung mit Flecken schwankt ja bekanntlich bei jedem Maximum und jedesmal nach drei Perioden von je 111/3 Jahren; nach 34–35 Jahren treten also, wie wir sahen, ganz besonders viele Flecke auf. Auch bei Mira glaubt man eine größere Periode von 40 Jahren erkennen zu können. Die Sonne ist demnach ein veränderlicher Stern vom Miratypus und deshalb Mira wahrscheinlich eine Sonne, die sich jedesmal nach elf Monaten mit sehr vielen Flecken überzieht. Wir haben eine neue Parallele gefunden zwischen jenen Sternen in der Unendlichkeit und unserer Sonne, die uns im Vergleich zu ihnen geradezu handgreiflich nahesteht. Mira aber ist für uns ein Zukunftsbild der Sonne. Es werden Zeiten kommen, wo ihr Licht und all ihre strahlende Kraft in derart erschreckendem Maße schwanken wird, zum sicheren Verderben alles Lebendigen.
Und noch eine sehr bezeichnende Ähnlichkeit findet sich zwischen der Sonne und diesen Mirasternen. Wenn letztere in ihrer Glanzperiode sind, zeigt ihr Spektrum sehr deutlich helle Wasserstofflinien, dieselben, die die Protuberanzen, jene riesigen Flammen, aufweisen, die aus dem Innern der Sonne hervorbrechen und während des Fleckenmaximums besonders zahlreich und groß sind. Ungleich heftiger als in unserer Sonne kämpfen also dort in den Mirasternen jene widerstreitenden Mächte miteinander, auf der einen Seite die unaufhaltsam vorschreitende Kälte des Weltraums, die alle Sonnen zum Erlöschen zu bringen trachtet, und auf der andern die immer neue Wärme erzeugende Wirkung der Massenzusammenziehung, die Verdichtungsarbeit, die, sich im Innern sammelnd, von Zeit zu Zeit in mächtigen Ausbrüchen dem vordringenden Verderben Widerstand leistet.
Mira war der erste dieser Art von Sternen, den man entdeckte. Der Danziger Ratsherr Hevel, der zugleich ein trefflicher Astronom war und eine der bestausgerüsteten Sternwarten seiner Zeit besaß, erkannte den merkwürdigen Lichtwechsel um die Mitte des 17. Jahrhunderts, und seither zeigt der Stern immer die gleichen Eigentümlichkeiten.
Inzwischen sind aber noch Hunderte[4] von ähnlichen veränderlichen Sternen von diesem Typus entdeckt. Merkwürdig ist es, daß diese meist, wenn sie überhaupt eine Periode verraten, ihr Licht innerhalb 300–400 Tagen wechseln.
Aber einige von diesen Sternen sind überhaupt völlig unregelmäßig. So zum Beispiel der Stern R in der Krone. (Man pflegt die veränderlichen Sterne durch große Buchstaben von R ab zu bezeichnen.) Dieser Stern bleibt oft jahrelang unveränderlich, um dann ziemlich langsam ab- und hierauf wieder zuzunehmen. So schwankt er zwischen 6.5. und 12. Größe. Irgend eine Periode ist an ihm nicht zu entdecken.
Wieder anders verhält sich U Geminorum. Auch dieser Stern bleibt meistens auf der gleichen sehr geringen Lichtstärke (etwa 13. Größe); diese aber steigt in ganz unregelmäßigen Zwischenräumen mit großer Schnelligkeit oft innerhalb 24 Stunden um mehrere Größenklassen, während er viel langsamer wieder abnimmt.
Alle diese Sterne verraten durch ihr eigentümliches Verhalten offenbar physische Umwälzungen auf ihrer Oberfläche. Diese ist in einigen Fällen vielleicht schon mit festen Schlacken überzogen, durch die gelegentlich die feuerflüssige Masse wieder ausbricht.
Lichtkurven veränderlicher Sterne:
I. Algol. II. δ Cephei. III. β Lyrae.
Auf einer ähnlichen vorgeschrittenen Stufe der Abkühlung befindet sich wahrscheinlich eine andere Klasse der veränderlichen Sterne, die ihr Licht in viel kürzeren Zwischenräumen wechseln als die Mirasterne. Diese andern Sterne, vom Lyratypus, nach dem zweiten Sterne (Beta) in der Leier so benannt, zeigen einen viel regelmäßigeren und ziemlich pünktlich innegehaltenen Lichtwechsel, der aber mehrere verschieden starke Minima und Maxima zu haben pflegt. Jener obengenannte Hauptvertreter der Gruppe hat eine Periode von 12 Tagen 21 Stunden 24 Minuten und einer langsam veränderlichen Zahl von Sekunden. Die hier oben abgebildete Kurve zeigt den Charakter des Lichtwechsels mit den beiden Nebenmaxima. Man kann die Erscheinung kaum anders erklären, als daß sich auf diesen Sternen vom Lyratypus schon eine feste Oberfläche gebildet hat, die teilweise bis unter Rotglut abgekühlt ist, während an andern Stellen vielleicht noch große glühend-flüssige Meere von Lava die Oberfläche bedecken. Indem nun die erstarrende Sonne sich um ihre Achse dreht, wendet sie uns in regelmäßigen Zwischenzeiten ihre leuchtenden und ihre dunklen Oberflächenteile zu. Die unregelmäßige Verteilung dieser verschieden hellen Gebiete erklärt die verschiedenen Maxima.
Zwischen den Veränderlichen dieser beiden Klassen gibt es nun mancherlei Abstufungen, und es ist deshalb wohl anzunehmen, daß die herbeigezogenen Erklärungsversuche nicht für alle diese Erscheinungen unbedingt Gültigkeit haben.
In dieser Hinsicht ist namentlich der Veränderliche S Cygni zu nennen, der überhaupt zu den merkwürdigsten dieser Art von Himmelskörpern gehört. Er bleibt etwa zwei Monate ganz unverändert in etwa 11. Größe. Dann steigt sein Glanz ähnlich wie bei U Geminorum rasch auf 8.5 Grad, das ist das 12- bis 14fache seiner normalen Helligkeit. Dies geschieht in wenigen Tagen, in der Hauptsache sogar in etwa 19 Stunden. Nun bleibt er in dieser Helligkeit abwechselnd fünf Tage oder noch einmal so lange. Es wechseln also kurze mit langen Perioden ab. Das Minimum ist nach einer Woche wieder erreicht. Nach einem kurzen Maximum bleibt er dann auch nur kürzere Zeit, 40 Tage, nach einem langen 45 Tage unverändert. Würde dies nun immer genau innegehalten, so müßte man an eine Umlaufserscheinung denken, ähnlich wie die, die wir gleich noch bei den Algolsternen kennenlernen werden. Nun aber zeigen sich namentlich wieder in neuerer Zeit (1903), wie auch schon 1897 und 99, seltsame Abweichungen von der Regel. 1897 waren mit einemmal zwei kurze Maxima aufeinander gefolgt, und darauf dauerte das Minimum nur 22 Tage, statt 40 oder 45. Kurz, es sind Störungen eingetreten, für die zunächst noch die Erklärung fehlt.
Völlig auf der Grenze zwischen dieser und der nächsten Klasse von veränderlichen Sternen steht S Antliae. Seine Periode beträgt nur 7 Stunden 46.8 Minuten, die er regelmäßig innehält; sein Licht bleibt aber nicht eine Zeitlang unverändert, um dann schnell auf- oder abzusteigen, sondern verändert sich ganz allmählich. Auch insofern weicht der Stern von der Regel ab, als die Lichtzunahme langsamer erfolgt als die Abnahme.
Vor ganz kurzer Zeit wurde noch ein ähnlicher Stern mit der kürzesten überhaupt beobachteten Periode von 4 Stunden 0.13 Sekunden entdeckt. Daß diese Periode etwas mit der Umschwungszeit des Sternes um seine Achse oder von zwei Sternen umeinander zu tun haben muß, ist wohl zweifellos. Wir hätten also hier ganz ungewöhnlich schnelle Umlaufsbewegungen konstatiert.
Unsere aufmerksame Beobachtung hat uns abermals eine Ähnlichkeit zwischen jenen durchmesserlosen Sternen und der Sonne aufgedeckt, die Umschwungsbewegung um eine Achse. Die rotierende und kreisende Bewegung der Weltkörper ist eine ganz allgemeine Erscheinung. Sie ist notwendig, damit im Rhythmus dieses Umschwungs eine Entwicklung stattfinden kann, denn nur kreisende Weltkörper können ihresgleichen gebären.
Nun gibt es noch eine Klasse von veränderlichen Sternen, die nicht in den bisher verfolgten Entwicklungsgang der Sterne durch allmähliche Abkühlung passen und dies auch schon durch ihr rein weißes Licht verraten; es sind die Sterne vom Algoltypus. Der Vorgang spielt sich im Gegensatz zu den meisten Veränderlichen der andern Klassen mit völlig astronomischer Pünktlichkeit ab. Algol, der zweite Stern im Bilde des Perseus, hat zum Beispiel eine Periode von genau 2 Tagen 20 Stunden 48 Minuten und 55.4 Sekunden. Diese letztere Sekundenzahl schwankt im Laufe der Jahrzehnte um höchstens 5 Einheiten in offenbar gesetzmäßiger Weise. Für gewöhnlich ist der Stern zweiter Größe, etwa so wie der Polarstern, und man kann ihn leicht in dem Sternbilde finden. So bleibt er nur 2½ Tage unverändert. Dann beginnt er dunkler zu werden, erst ganz langsam, dann immer beschleunigter, und nach etwa 4½ Stunden ist sein Licht um anderthalb Größenklassen herabgesunken, so daß er nur noch ein unscheinbares Sternchen 3. bis 4. Größe ist. Nun nimmt er aber sofort wieder zu und hat in derselben Zeit, die er zur Abnahme brauchte, seine frühere Helligkeit wieder erreicht.
Es gibt nur eine Erklärung für diesen Vorgang: Es findet jedesmal eine Verfinsterung dieser Algolsonne für unsern Standpunkt statt, ein dunkler Körper tritt zwischen sie und uns, wie bei den Sonnenfinsternissen der Mond. Dieser dunkle Körper umkreist den Algol offenbar innerhalb jener Periode von weniger als drei Tagen. Er muß sich deshalb sehr nahe bei ihm befinden und sehr groß sein, da er soviel Licht von ihm verdecken kann. Die Zeichnung S. [64] drückt diese Verhältnisse aus.
Wieder haben wir eine Entdeckung gemacht, durch die sich uns eine neue, bedeutsame Verwandtschaft zwischen den Sternen und der Sonne dartut: Auch jene Sonnen des fernsten Universums werden umkreist von andern Körpern, sie haben Planeten um sich versammelt wie unser mütterliches Gestirn, die sie mit ihren Wohltaten überhäufen können. Freilich ist dieses Algolsystem doch sehr verschieden von dem der Sonne. Man hat unter bestimmten Voraussetzungen die wirkliche Größe der beiden Körper berechnen können und findet, daß der leuchtende Stern im Durchmesser 1 700 000 Kilometer hält, also nicht viel mehr als unsere Sonne mißt, und daß der dunkle Begleiter fast genau so groß ist wie sie. Der größte Planet unseres Systems, Jupiter, aber ist 10mal kleiner als die Sonne. Ein so großer und seiner Sonne so naher Planet kann Lebendiges sicher nicht mehr beherbergen. Die beiden Körper müssen sich zu stark beeinflussen. Es scheint, als ob zwischen ihnen ein furchtbares Ringen stattfindet, in dem die mächtigere Sonne ihren dunklen Rivalen mit sich zu vereinigen trachtet.
Das Algolsystem, nach H. C. Vogel.
Vielleicht besteht dieses Algolsystem sogar aus drei Körpern, die in großer gegenseitiger Nähe einander umkreisen. Ich habe schon vorhin gesagt, daß die Sekundenzahl des beobachteten Lichtwechsels wieder in periodischer Weise schwankt. Diese Sekunden summieren sich natürlich, und es ergibt sich, daß nach etwa 140 Jahren 173 Minuten Differenz gegen einen unveränderlichen Umlauf zusammengekommen sind; dann verändert sich die Periode wieder im umgekehrten Sinne. Immer aber bleibt die astronomische Genauigkeit bestehen. Ganz ähnliche langsame Schwankungen der Umlaufsbewegungen nehmen wir auch in unserem Sonnensystem wahr; sie entstehen dadurch, daß sich die Planeten gegenseitig durch ihre besondere Anziehung beeinflussen, oder daß zum Beispiel im Falle unseres Mondes die Abplattung der Erde in solchem Sinne wirkt. Ähnliches muß notwendig auch im Algolsystem stattfinden. Wir haben wieder eine neue Verwandtschaft zwischen jenen fernen Sonnensystemen und dem unsrigen entdeckt.
Veränderliche vom Algoltypus sind sehr selten; es gibt nur etwa zwanzig. Genau sind solche Zählungen indes nie möglich, da es in einzelnen Fällen zweifelhaft bleibt, in welche Klasse man den betreffenden Stern einzuordnen hat. Bei allen spielt sich der Lichtwechsel in sehr kurzer Zeit ab; die längste Periode beträgt 9½ Tage, bei S Cancri. Die kürzeste Periode fand man bei U Ophiuchi mit 20 Stunden 7 Minuten und 43 Sekunden, wenn man von dem hier nur zweifelhaft hergehörigen S Antliae absieht, von dem ich oben sprach.
Daß diese Art von Sternen so selten ist, wird man begreiflich finden, wenn man überlegt, daß naturgemäß nicht häufig zwei fast gleichgroße Körper so nahe beisammenstehen werden; dazu kommt die Bedingung einer bestimmten Lage beider Körper zu uns, damit der eine den andern gerade für unsern Standpunkt im Weltall verdunkeln kann. Diese Seltenheit beweist deshalb auch nichts gegen die Ansicht, daß vielleicht sogar die meisten andern Sonnen am Himmel eine Schar von Planeten um sich versammelt haben wie die unsrige. Gerade wenn die Verhältnisse ebenso sind wie bei uns, können wir niemals etwas davon erkennen. Die dunklen Begleiter selbst zu sehen, ist ganz ausgeschlossen; ihre Verfinsterungen aber würden wir gleichfalls nicht mehr wahrnehmen können, weil das abgehaltene Licht einen zu kleinen Teil des ganzen Sonnenlichtes ausmachen würde, wenn die Größe des Begleiters zu seiner Sonne im gleichen Verhältnis stände wie Jupiter zu der unsrigen.
In einem besonderen, freilich wieder in anderer Weise von den Verhältnissen in unserem Sonnensystem abweichenden Falle können wir nun aber doch direkt sehen, daß die Sonnen Begleiter haben, die in ähnlichen Größen- und Entfernungsverhältnissen stehen, wie die Planeten zur Sonne, nämlich sobald diese Begleiter noch selbst leuchten, selbst also noch Sonnen sind. Solcher Doppel- und vielfachen Sterne gibt es nun in der Tat viele Tausende am Himmel. Alle Abstufungen sind vertreten. Bei ganz hellen Sternen stehen ganz schwache, dann sieht man wieder zwei gleich helle Lichtpunkte nebeneinander, wie bei dem Stern 61 im Schwan, der nach unserer Kenntnis der drittnächste von uns ist. Seine Entfernung beträgt nur etwa 7 Lichtjahre, 70 Billionen Kilometer. Ein dreifacher Stern, Gamma in der Andromeda, gehört zu den herrlichsten unter den funkelnden Edelsteinen des Himmels. Schon kleine Fernrohre zeigen ihn in seiner ganzen Schönheit. Der Hauptstern ist dritter Größe und leuchtet in goldgelbem Lichte, aber sein Nebenstern, der wieder doppelt ist und fünfter Größe, ist intensiv blau in wundervollem Kontraste gegen den andern: Ein Topas neben einem Saphir.
In vielen Fällen können wir nun zwar bei diesen nahe nebeneinanderstehenden Sternen nicht unterscheiden, ob sie nicht vielleicht nur zufällig für unsern Standpunkt diese Stellung einnehmen, in Wirklichkeit aber weit hintereinander stehen. Wir können ja in den wenigsten Fällen ihre wirklichen Entfernungen ausmessen. Es würde sich dann nur um optische Doppelsterne handeln, von denen sich ganz gewiß viele unter den bekannten befinden.
Bei einer ganzen Reihe aber ist kein Zweifel über ihre wirkliche Zusammengehörigkeit, weil man die Wahrnehmung machte, daß sich einer der beiden Sterne um den andern bewegt, wie ein Planet um seine Sonne. Eine neue Übereinstimmung von ganz besonderem Werte für unsere Betrachtungen, denn wir erkennen daraus zugleich, daß dieselben Gesetze der Schwerkraft, die die schöne Ordnung in unserem engeren Weltreiche schuf und festhält, auch dort in derselben Weise dieselbe Materie beherrscht wie hier.
Unter diesen physischen Doppelsternen haben die beiden Einzelsterne bei weitem den größten Abstand voneinander bei dem uns zugleich auch am nächsten stehenden: Alpha im Zentauren. Wir verstehen ohne weiteres, daß, je näher uns ein solches System ist, wir auch um so leichter seine einzelnen Teile sehen können. Bei jenem Stern steht der Begleiter 17.7´´ entfernt. Da seine Parallaxe 0.7´´ ist und wir wissen, daß dieser Winkel gleich der Entfernung der Sonne von uns, aus dieser Entfernung gesehen, ist, so brauchen wir nur diese 17.7 durch 0.7 zu dividieren, um zu finden, um wieviel Sonnenentfernungen dieser leuchtende Planet von seiner Sonne absteht. Das macht also etwa 25 Sonnenentfernungen. Neptun, der entfernteste Planet, befindet sich 30 dieser Einheiten von der Sonne entfernt. Auch hier wieder eine schöne Übereinstimmung der Verhältnisse. Jener Stern bewegt sich um den Mittelpunkt seines Systems in 81 Jahren, Neptun braucht dazu 165 Jahre. Da nun die Geschwindigkeit, mit der sich zwei Himmelskörper umeinander bewegen, außer von ihrer gegenseitigen Entfernung von ihrer Masse abhängt, so kann man von dem Verhältnis dieser Geschwindigkeiten in verschiedenen Systemen auf das Verhältnis ihrer Massen schließen. So findet man, daß die Masse von Alpha Zentauri gleich 2.2 Sonnenmassen sein muß. Die uns nächste Sonne ist also nicht wesentlich größer als die unsrige. Ist diese Masse auch ebenso dicht über ihren Körper verteilt, so kann ihr Durchmesser nur wenig größer sein als der unsrer Sonne. Es ergibt sich dann, daß jene ferne Sonne von uns aus gesehen nur noch 0.006 Bogensekunden messen kann. Da unsere besten Fernrohre kaum eine Scheibe von einigen Zehntel Bogensekunden von einem Punkt zu unterscheiden vermögen, so begreift man wohl, daß uns die Sterne durchmesserlos erscheinen.
Die kürzeste bisher berechnete Umlaufszeit von Doppelsternen beträgt nach neuester Bestimmung von Aitkens 5.7 Jahre, sie ist ungefähr die Hälfte der des Jupiter. Der Abstand beider Sterne ist aber in diesem Falle nur noch 0.4´´. Daß wir nicht noch kürzere Umlaufszeiten direkt wahrnehmen, liegt offenbar daran, daß die Sterne so sehr weit von uns entfernt sind, während die Größenverhältnisse jener Sternensysteme von denen unserer Sonnenwelt nicht so sehr abweichen. Die gewiß vorhandenen noch näheren Begleiter sind eben nicht mehr getrennt zu sehen.
Aber je mehr unsere optischen Mittel verschärft werden, desto mehr findet man ganz nahe Begleiter bei den Sternen, und es scheint heute geradezu, daß ein Stern ohne Begleiter zu den Ausnahmen gehört. Fast alle Sonnen haben Nebenkörper hervorgebracht, die einst, schneller erkaltend wie sie, zu eigentlichen Planeten werden sollen.
Die Umlaufsbewegungen dieser leuchtenden Begleiter anderer Sonnen unterscheiden sich jedoch sämtlich in einer sehr auffälligen Eigenschaft von denen der Planeten. Beide Arten von Körpern bewegen sich zwar, genau den Gesetzen der Schwerkraft entsprechend, in Ellipsen um den gemeinsamen Schwerpunkt ihrer Massen, aber bei den Planeten sind diese Ellipsen Kreisen sehr ähnlich, sie sind sehr wenig exzentrisch, während die Doppelsterne meist in sehr langgestreckten Bahnen einander umkreisen. Die Doppelsterne nähern sich dadurch gewissen Kometen, die in unserem Sonnensystem zwischen den Planetenbahnen umlaufen. Eine Entwicklung des Lebens wäre auf solchen Weltkörpern, nachdem sie einmal erkaltet wären, ganz unmöglich, weil im Laufe ihrer Jahreszeiten die Beleuchtungs- und Erwärmungsverhältnisse bei dem starken Wechsel der Entfernung vom Zentralgestirn zu veränderlich sein würden. Vielleicht sind unbekannte Einwirkungen vorhanden, durch die im Laufe der Zeit, die solche kleineren Sonnen brauchen, um zu Planeten zu erkalten, auch ihre Bahnen allmählich zu ungefähren Kreisen abgeschliffen werden. Sind in diesen offenbar jungen Weltsystemen noch viele kleinere Nebel- oder meteorische Massen von der ersten Entwicklungszeit her vorhanden, die der Bewegung Hindernisse entgegenstellen, so müßte in der Tat solche langsame Verkleinerung der Exzentrizität eintreten.
Unter den Doppelsternen befindet sich auch Sirius. Wie er aber als Doppelstern erkannt wurde, hat ein ganz besonderes Interesse. Jene hellste Sonne am Nachthimmel machte nämlich ganz seltsame Bewegungen. Zwar rücken alle Sterne am Himmel langsam von ihrem Platze, wovon wir noch ausführlicher zu sprechen haben, aber Sirius bewegte sich abweichend von den übrigen Sternen geradeso, als ob sich in seiner Nähe noch ein anderer unsichtbarer Körper befände, der mit ihm um den gemeinsamen Mittelpunkt des Systems kreiste. Man konnte vorhersagen, daß der unsichtbare Körper zu einem Umlauf etwa 50 Jahre brauche, und Auwers in Berlin berechnete dann auch noch die übrigen »Elemente« seiner Bahn. Dieser rechnerischen Voraussetzung gemäß ist denn auch wirklich der Begleiter gefunden worden. Dieser ist gar nicht so sehr klein, 9. Größe, aber doch nur schwer zu sehen, weil ihn der mächtige Glanz seiner Sonne so stark überstrahlt. Der kleinere Stern kann sich höchstens um 9.7 Bogensekunden von ihr entfernen. Gewöhnlich befindet er sich aber wesentlich näher. Die Umlaufszeit ist von Lohse in Potsdam zu 50.38 Jahren neu bestimmt. Da man auch bei Sirius die Entfernung von uns kennt, so läßt sich auch die Masse der beiden Körper berechnen. Man findet, daß er 13–14mal soviel Masse besitzt wie unsere Sonne, der Begleiter 6–7mal soviel. Die große Helligkeit dieser Sonne erklärt sich also wohl teilweise aus ihrer bedeutenden Größe. Merkwürdig aber ist, daß der Begleiter gar nicht soviel kleiner ist als Sirius und doch so sehr viel schwächer leuchtet. Wir haben hier wieder ein Beispiel dafür, daß im besonderen die Helligkeit nichts Sicheres über die wahre Größe eines Himmelskörpers aussagt.
Jenes wahrhafte Wunderinstrument, das Spektroskop, hat uns auch noch tiefer in die Geheimnisse dieser fernen Sonnensysteme blicken und Sterne als doppelt erkennen lassen, die in unsern Fernrohren wohl niemals getrennt gesehen werden können. Bei den Spektren einiger Sterne sieht man nämlich periodisch Doppellinien auftreten, die nur davon herrühren können, daß hier zwei Körper Licht aussenden, von denen der eine sich zu uns her, der andere von uns hinweg bewegt. Dadurch verschiebt sich die Lage der Linien im Spektrum. Es ist einer der größten Triumphe unserer modernen Beobachtungskunst, daß es durch diese Linienverschiebungen gelingt, die Größe der Bewegung solcher Himmelskörper sogar in Kilometern in der Sekunde zu bestimmen, obgleich man über die Entfernung selbst, in der diese Bewegungen stattfinden, gar nichts weiß. Wir sehen es heute in der Tat einem Sterne unmittelbar an, ob er sich gerade auf uns zu oder von uns hinweg bewegt und zwar um wieviel in der Sekunde. Da bei kreisenden Bewegungen die Richtung sich beständig ändert, so ändern sich auch jene Linienverschiebungen, und wir können aus diesen periodischen Schwankungen die Umlaufszeit solcher spektroskopischen Doppelsterne bestimmen, die wir doch immer nur als einen einzigen Lichtpunkt sehen. Die größte Umlaufszeit, die auf diese Weise entdeckt wurde, hat ein Stern im Drachen mit 282 Tagen. Die meisten dieser Sterne aber haben nur Umlaufszeiten von wenigen Tagen und verraten sich deshalb als Algolsterne mit sehr nahen Begleitern, die sich von jenen nur dadurch unterscheiden, daß diese Begleiter noch selbst leuchten. Natürlich braucht sich der Begleiter auch nicht in der Richtung der Gesichtslinie zu uns zu befinden, wie beim Algol und seinen Verwandten. Andererseits muß man Algol als spektroskopischen Doppelstern erkennen, wenn die für seinen Lichtwechsel gegebene Erklärung zutrifft. In der Tat verschieben sich die Linien im Spektrum innerhalb derselben Periode wie sein Lichtwechsel. Auch bei andern Veränderlichen mit nahezu konstanter Periode hat man dieselbe Übereinstimmung gefunden.
Ebenso wie die Sonne mehrere Planeten um sich versammelt hat, bemerkt man am Himmel auch mehrfache Sternsysteme, wo vier, fünf, selbst bis zu neun Sterne sicher oder doch wahrscheinlich physisch miteinander verbunden zu erkennen sind. Daß solche Systeme für unsere Wahrnehmung selten vorkommen, beweist wieder nichts gegen ihre wirkliche Häufigkeit. Sind die andern Sonnensysteme dem unsrigen in dieser Hinsicht ähnlich, so müßten die kleineren Körper von der Art unserer Erde für uns verschwinden, auch wenn sie noch selbst leuchten.
Selbst auf dem spektroskopischen Wege hat man Andeutungen von einer Vielfachheit gefunden, wo wir doch immer nur einen Lichtpunkt unterscheiden. In neuerer Zeit hat Tickhoff bei Beta Aurigae die Wahrnehmung gemacht, daß sich nicht nur seine Linien periodisch verdoppeln, sondern daß wieder in andern Perioden jede der doppelten Linien sich abermals spaltet. Wir haben hier also ein vierfaches System vor uns; wahrscheinlich haben die beiden Hauptkörper je noch einen kleineren Trabanten.
Die Perioden der spektroskopischen Doppelsterne reihen sich, je weiter unsre betreffenden Kenntnisse vordringen, desto mehr in ihrer oberen Grenze denen der optisch wahrgenommenen unten an, setzen sich dann aber bis zu wenigen Tagen fort, das heißt, zu einer mutmaßlichen Nähe der Begleiter, bei denen ein direktes Erkennen längst ausgeschlossen wäre.
Daß es verhältnismäßig viele so sehr nahe beieinanderstehende Weltkörper gibt, ist jedenfalls merkwürdig. Unser Sonnensystem zeigt nicht entfernt irgendwo in seinem Bau ähnliche Verhältnisse. Wir müssen annehmen, daß hier, ebenso wie bei den exzentrischen Doppelsternbahnen, besondere Entwicklungszustände vorliegen, in denen sich unser Sonnensystem nur gegenwärtig nicht befindet. In einem anderen Bändchen[5] dieser Sammlung habe ich dargetan, daß diese ganz nahen Doppelsterne möglicherweise das letzte Stadium einer Rückentwicklung sind, in dem die Systeme ihre Massen wieder vereinigen, die Planeten in ihre Sonne wieder zurückfallen. Aber manches spricht doch wieder dagegen. Gerade die Algolsterne und die meisten spektroskopischen Doppelsterne zeichnen sich durch ein besonders weißes Licht aus, sie sind nicht rötlich, wie diejenigen veränderlichen Sterne, die wir als alternde Sonnen erkannt haben. Man hat deshalb gemeint, daß man es bei diesen einander so nahen und nahezu gleichgroßen Doppelkörpern ganz umgekehrt mit einem Geburtsakt zu tun habe, bei dem eine Sonne sich zweiteilt. Gewisse theoretische Untersuchungen haben die mechanische Möglichkeit solcher Abtrennung erwiesen. Wir können über diese einander völlig widersprechenden Ansichten derzeit noch nicht entscheiden.
Viele Sterne zeigen uns nun durch jenes sogen. Dopplersche Prinzip der Linienverschiebungen, daß sie nicht in kreisender, sondern geradliniger Bewegung den Raum durcheilen, und wir können dann den Teil davon messen, der gerade auf uns zu oder von uns hinweg gerichtet ist, ohne daß wir sie im Fernrohr von der Stelle rücken zu sehen brauchen. So ergaben Beobachtungen von Vogel und Scheiner in Potsdam, daß Sirius und Wega sich in jeder Sekunde um 15 Kilometer uns nähern, dagegen Aldebaran, der erste Stern im Stier, seine unbekannte Entfernung von uns in jeder Sekunde um 48 Kilometer vergrößert. Durchschnittlich sieht man die Sterne sich im Spektroskop um 20–30 Kilometer im Raume fortbewegen. Eine ungewöhnlich große Eigenbewegung hat man letzthin an dem Doppelsterne O Persei entdeckt, der um mehr als 100 Kilometer in der Sekunde fortrückt. Dabei schwankte diese Geschwindigkeit in einer Periode von 4.4 Tagen beträchtlich, so daß man es hier mit einem auch nur spektroskopisch doppelten Sterne zu tun hat, von dem Vogel in Potsdam ausrechnete, daß die beiden Sterne 6 600 000 Kilometer voneinander abstehen und zusammen nur etwa 0.6 der Sonnenmasse besitzen. Da sich hier die Spektrallinien nicht periodisch spalten wie bei den sonstigen spektroskopischen Doppelsternen, so ist anzunehmen, daß der eine Begleiter dunkel ist wie beim Algol, nur daß seine Bahn nicht vor dem hellen Stern vorbeiführt, so daß er also keine Lichtschwankungen hervorbringen kann.
Solche Bewegungen der Sterne werden nun auch direkt im Fernrohr wahrgenommen, soweit sie in der andern Richtung, also senkrecht zur Gesichtslinie, stattfinden. Kein Stern steht am Himmel wirklich still, und der Name Fixstern ist nicht mehr berechtigt. Es gibt Sterne, wie zum Beispiel Arkturus, die, seitdem man es vor zweitausend Jahren zuerst versuchte, ihren Ort am Himmel festzustellen, diesen um mehr als zwei Vollmondsbreiten verändert haben. Die größte Eigenbewegung hat, wie man erst vor kurzem entdeckte, ein kleiner Stern 8. bis 9. Größe auf der südlichen Halbkugel, bezeichnet mit Cordoba Z. 5.243; sie beträgt 8.7´´ im Jahre. Er braucht nur 200 Jahre, um eine Vollmondsbreite weiterzurücken. Die zweitgrößte Eigenbewegung hat ein Stern 6. Größe, der 1830 Groombridge benannt wird. Seine jährliche Bewegung beträgt 7.05 Bogensekunden. Die zehn größten Eigenbewegungen sind auf dem oberen Diagramm S. [72] in ihrer relativen Größe aufgezeichnet. Darunter befinden sich die Eigenbewegungen der zehn hellsten Sterne des Himmels. Wir sehen, daß diese hellsten Sterne keineswegs auch durchschnittlich sich am schnellsten bewegen, was man voraussetzen könnte, wenn sie uns auch die nächsten wären. Nur unser nächster Nachbar im Weltall, Alpha Zentauri, hat auch eine große Eigenbewegung. Wir sehen auch aus diesem Umstande wieder, daß die hellsten Sterne uns keineswegs auch immer die nächsten sind. Die hier mit zum Teil sehr kleinen Eigenbewegungen verzeichneten Sterne erster Größe haben sich als für uns praktisch unendlich weit entfernt herausgestellt. Wir müssen also annehmen, daß diese Sterne, Canopus, der zweithellste, auf der südlichen Halbkugel stehende Stern, dann Rigel und Beteigeuze im Orion, ganz gewaltige Sonnen sind, gewiß Hunderte von Malen größer als die unsrige, da sie aus fast unausmeßbarer Entfernung noch so hell zu uns herüberleuchten und auch durch ihre geringen Eigenbewegungen ihren großen Abstand von uns verraten. Andererseits aber zeigt Arkturus, der für uns gleichfalls in nahezu unendlicher Entfernung steht, eine sehr große Eigenbewegung. Er muß sich in Wirklichkeit also ungeheuer schnell durch den Himmelsraum bewegen. Unter der Annahme der sehr kleinen Parallaxe, die man mit ziemlicher Unsicherheit für diesen Stern gefunden hat, folgt aus seiner scheinbaren Eigenbewegung von 2,3´´ im Jahre, daß er mit einer Geschwindigkeit von 670 Kilometern in der Sekunde den Raum durchrasen müßte, das ist tausendmal schneller als unsere schnellsten Geschosse fliegen. In den Himmelsräumen, wo alles mit einem Maßstabe gemessen wird, der uns Parasiten eines kosmischen Sandkornes völlig über den Horizont geht, ist man wohl auf große Geschwindigkeiten gefaßt, mit denen die Materie ihren unbekannten Zielen entgegengeführt wird, aber jene Geschwindigkeit gehört doch zu den größten auch nach diesem kosmischen Maßstabe. Und eine ganze Sonne soll sich so schnell fortbewegen! Mit was für unausdenkbaren Kräften arbeitet das Getriebe der Weltkörper!