IV. Staudämme, Talsperren und elektrische Überlandzentralen.
Die ersten Anfänge des Baus von Staudämmen und Talsperren reichen bis in das frühe Altertum zurück. Schon damals erkannte man deren hohen Wert, der für jene Zeiten darin sich verkörperte, daß in wasserreichen Monaten Vorräte gesammelt wurden, die während der wasserarmen, trockenen Zeit zur Bewässerung der Ländereien dienten. Schon vor Tausenden von Jahren baute man derartige zum Teil sehr ansehnliche Wasserspeicher in Ägypten, auf Ceylon, in China, Japan und in Indien. Zu den bedeutendsten Staudämmen des Altertums gehört der Möris-See, so benannt nach seinem Erbauer, dem König Möris. Dieser gewaltige See war imstande, Milliarden von Kubikmetern Wasser aus dem Nil zur Zeit der Hochwasser aufzunehmen und aufzuspeichern. Am Euphrat errichtete schon die Königin Nitokris eine großartige Stauanlage. Aus der späteren Zeit, beginnend um die Mitte des 16. Jahrhunderts, sind die planmäßig angelegten Stauanlagen des Oberharzes zu nennen, die für die dortigen Bergwerke das Aufschlagwasser lieferten und während des Weltkrieges die Aufrechterhaltung der Kupfergewinnung ermöglichten, die an andern Orten Deutschlands durch den Kohlenmangel gehindert wurde.
Nach Dr. G. Respondek ergibt sich folgende Übersicht über die in den wichtigsten Industrieländern vorhandenen Wasserkräfte:
| Land | ausgenutzte | verfügbare | ausgenutzt |
| Wasserkräfte in P.S. | v. H. | ||
| Vereinigte Staaten | 7 000 000 | 28 100 000 | 24,9 |
| Kanada | 1 735 000 | 18 803 000 | 9,2 |
| Frankreich | 1 100 000 | 5 587 000 | 11,6 |
| Norwegen | 1 120 000 | 5 500 000 | 20,4 |
| Spanien | 440 000 | 5 000 000 | 8,8 |
| Schweden | 7 045 000 | 4 500 000 | 15,6 |
| Italien | 976 300 | 4 000 000 | 24,4 |
| Schweiz | 511 000 | 2 000 000 | 25,5 |
| Deutschland | 618 000 | 1 425 000 | 43,4 |
| Großbritannien | 80 000 | 963 000 | 8,3 |
Demnach steht Deutschland bezüglich der Ausnutzung seiner Wasserkräfte an erster Stelle. Dagegen entfallen von seinen Wasserkräften nur 0,02 P.S. auf den Kopf der Bevölkerung, während dieser Betrag in den übrigen Ländern um ein vielfaches höher ist. Will also Deutschland im Wettkampf mit den übrigen Industrieländern nicht unterliegen, so muß es seine Wasserkräfte voll ausbauen.
In der neuesten Zeit hat der Bau der Staudämme und Talsperren auf Grund wissenschaftlicher Vertiefung einen ungeahnten Aufschwung genommen, und wir begegnen zurzeit in allen Weltteilen Neubauten und Plänen, deren einer den andren an Größe überbietet. Es ist dies zu einem erheblichen Teil das Verdienst des im Jahr 1904 verstorbenen Aachener Professors Intze.
Die Talsperren können verschiedenen Zwecken dienen, von denen meist mehrere bei den einzelnen Anlagen in Betracht kommen. Hier ist an erster Stelle die Gewinnung von Kraft zu nennen; diese ist in der neusten Zeit um deswillen von besonderer Bedeutung, weil der mittels der Wasserkräfte erzeugte elektrische Strom bequem und wirtschaftlich vorteilhaft über weite Strecken dahingeleitet und zum Betrieb von Arbeitsmaschinen aller Art benutzt werden kann. An sonstigen Aufgaben, die die Staudämme zu erfüllen haben, sind zu nennen: der Hochwasserschutz, die Bewässerung von Ländereien, die Versorgung von Ortschaften mit Trinkwasser, die Erhöhung des Niedrigwassers der Flüsse und – was neuerdings von besonderer Wichtigkeit ist – die Speisung der Schiffahrtskanäle.
Die Anlage der Staudämme ermöglicht sich am bequemsten im Gebirge, denn hier kann durch Errichtung einer Staumauer ein Tal alsbald in einen Stausee verwandelt werden. Die Vorarbeiten bestehen in der auf Grund meteorologischer und statistischer Aufzeichnungen erfolgenden Feststellung der im Laufe des Jahres aus Niederschlägen und Zuflüssen zu erwartenden Wassermengen. Besondere Sorgfalt ist der Berechnung der Abmessungen der Staumauern zuzuwenden, für welche als Baustoffe in erster Linie Erde und Mauerwerk in Betracht kommen. Der Querschnitt der Mauer nimmt entsprechend der Beanspruchung, die sie durch das im Becken aufgestaute Wasser erfährt, von oben nach unten hin zu und weist oft sehr erhebliche Abmessungen auf. Fehlerhafte Berechnung der letzteren kann zu den folgenschwersten Ereignissen führen. Wir erwähnen hier als den verderblichsten Dammbruch, dem am 31. Mai 1889 der im Tale des South Forkflusses in der Nähe der Stadt Johnstown in Pennsylvanien belegene im Jahre 1842 erbaute Staudamm zum Opfer fiel; derselbe kostete gegen 4000 Menschen das Leben und verursachte einen Schaden von 35 Mill. Dollar. Dem am 27. April 1895 erfolgten Einsturz der Sperrmauer von Bouzy fielen 90 Menschen zum Opfer.
Im Innern der Mauer müssen Stollen und Rohrleitungen angebracht werden, durch welche das Wasser dem Becken entnommen und seiner Zweckbestimmung zugeführt wird. Auch müssen für den Fall, daß die aufgestaute Wassermenge einen die Mauer gefährdenden Betrag übersteigt, Überläufe und Auslässe vorgesehen werden, um rechtzeitig eine Entlastung der Mauern herbeizuführen. Die Mauern müssen ferner, um dem Druck des Wassers widerstehen zu können, nach der Wasserseite zu gewölbt verlaufen. Die älteste nach neuzeitlichen Grundsätzen erbaute Stauanlage Deutschlands ist die im Jahre 1889 begonnene Eschebachtalsperre; dieselbe dient der Wasserversorgung der Stadt Remscheid. Zu den größten Staubecken der Erde gehört die Urftalsperre bei Gmünd in der Eifel (Abb. 15); dieselbe vermag gegen 45,5 Mill. cbm Wasser zu stauen und bezweckt die Verhütung von Hochwasser und die Lieferung von Kraft. Die Kosten ihrer Herstellung betrugen 4 Mill. Mk. Die Staumauer hat eine Höhe von 58 m und eine Länge von 228 m. Auch das Wupper- und Ruhrtal, der Freistaat Sachsen und Schlesien verfügen über eine Anzahl von großartigen Talsperren. In Schlesien sind besonders die Gebiete des Bobers und des Queis zu nennen, für die im ganzen 17 Stauanlagen geplant sind. Hier waren vor allem die verderblichen Hochwasserkatastrophen des Jahres 1897 die treibende Ursache. Die bei Marklissa belegene, 15 Mill. Kubikmeter fassende Talsperre hatte gelegentlich der Hochflut des Sommers 1907 Gelegenheit, sich segensreich zu bewähren. Diese Anlage erzielte durch Abgabe von Kraft schon im Jahr 1908 eine Jahreseinnahme von etwa 240 000 Mk. Von umfangreicheren Abmessungen ist eine andre Anlage Schlesiens, nämlich die in den Jahren 1903–1912 bei Mauer erbaute Bober-Talsperre mit einem Inhalt von 50,5 Mill. cbm. Die Sperre bei Marklissa hat eine Länge von 130 m, eine Mauerwerksmasse von 65 000 cbm und eine Höhe von 45 m. Die Sperre bei Mauer ist 270 m lang, hat eine Mauerwerksmasse von 250 000 cbm und eine Höhe von 60 m.
Abb. 15. Die Urftalsperre.
Die Abführung des aufgespeicherten Wassers geschieht für gewöhnlich durch Grundablässe, bei besondern Umständen aber, so z. B. bei Erreichung einer übergroßen Stauhöhe, durch Überfälle. Die Grundablässe liegen in der Tiefe des Staubeckens und gestatten, das Wasser von unten abzulassen. Sie bestehen in Kanälen, die mit Schieberverschlüssen ausgestattet sind; letztere werden von der Krone der Staumauer oder von einem in das Becken vorgebauten Häuschen aus bewegt. Die Weite dieser Kanäle ist oft eine sehr beträchtliche und beträgt z. B. bei der Marklissa-Sperre 1,10 m, bei der Mauer-Sperre 1,50 m. Die Schieber stehen unter einem sehr hohen Wasserdruck. Dieser beträgt bei 1,10 m Rohrweite und 40 m Wassertiefe 38 000 kg; bei 1,5 m Weite und 48 m Wassertiefe 84 000 kg. Diese Belastungen sind, da das Wasser mit mehr als 20 m Geschwindigkeit in der Sekunde austritt, mit starken Stößen verbunden. Außerdem bilden sich hinter den Verschlußvorrichtungen infolge der saugenden Wirkung des ausströmenden Wassers luftleere Räume. Aus alledem folgt, daß der Bau sicher wirkender Abschlußvorrichtungen der Grundablässe eine überaus schwer zu lösende Aufgabe bildet. Auf Grund von Versuchen ist es endlich gelungen, Schieber herzustellen, die den eigenartigen Anforderungen genügen. Die Überfälle, die z. B. bei Marklissa während des Hochwassers 780 cbm, bei Mauer sogar 1200 cbm in der Sekunde abführen müssen, werden entweder in Kaskaden- und Treppenform oder als einziger großer von der Krone der Sperrmauer sich herabstürzender Fall ausgeführt. Bei den Kaskadenüberfällen (Abb. 15) ergießt sich das von der Krone der Sperrmauer herabfallende Wasser über eine Anzahl von Treppenstufen abwärts.
Das größte Staubecken Europas ist die Edertalsperre bei Hemfurt in Waldeck mit einer Staumenge von 202,4 Mill. cbm. Dieser Stausee, dem drei blühende Dörfer vollständig und zwei Dörfer teilweise zum Opfer fielen, hat eine Länge von 27 km und eine größte Breite von 1 km. Der Anlaß zum Bau dieses mit einem Kostenaufwand von ca. 20 Mill. Mk. ausgeführten Riesenwerkes wurde durch die Notwendigkeit gegeben, den im Bau begriffenen Mittellandkanal aus der Weser zu speisen und zugleich eine Verbesserung des Fahrwassers der Weser bei niedrigem Wasserstande zu schaffen. Bei Minden überschreitet der Mittellandkanal die Weser mittels eines den Strom brückenartig überspannenden Bauwerks, eines sog. Brückenkanals, und hier sollten aus der Weser 7500 l pro Sekunde in den Kanal emporgepumpt werden. Diese Wassermenge konnte nun aber ohne schwere Schädigung der Schiffahrt der Weser nicht dauernd entzogen werden. Auch eine Kanalisation der Weser erschien nicht angängig, da der Staat Bremen seine Zusage, die bedeutenden Kosten zu tragen, zurückzog, als der preußische Landtag den Bau des Kanals nicht sogleich vom Rhein bis zur Elbe, sondern vorläufig nur bis Hannover bewilligte. Infolgedessen faßte man den Plan, im Quellgebiet der Weser Talsperren zu schaffen. Eine derselben liegt an der Diemel bei Niedermarsberg mit 45 Mill. cbm Staumenge; die zweite ist die Edertalsperre. Hier lagen die Verhältnisse besonders günstig, da das abzusperrende Tal besonders eng ist und ein sehr günstiger Baugrund zur Verfügung steht. Die Sperrmauer hat eine Höhe von 48 m über der Talsohle und eine Länge von 400 m; sie beanspruchte 300 000 cbm Mauerwerk. Am linken Abhang des Tales liegt eine große Überlandzentrale, welche die in dem Stausee aufgespeicherten Kräfte in elektrischen Strom verwandelt und in dieser Form 100 km weit fortleitet, um der Landwirtschaft und der Industrie dienstbar gemacht zu werden. Außer an den beiden Talhängen zu je sechs angeordneten 1,35 m bis 1,5 m weiten Eisenrohren ist unmittelbar unterhalb der Mauerkrone ein Überfall von 145 m Länge für das Hochwasser angebracht. Außerdem erhielt die Mauer noch 14 Notauslässe 14,5 m unterhalb der Mauerkrone. Diese werden geöffnet, wenn der Gefahrpunkt erreicht ist, d. h. wenn man das Mauerwerk nicht dem vollen Wasserdruck aussetzen will. Am Fuße der Mauer ist ein Becken von 6 m Tiefe angebracht, das zum Abfangen der von der Mauer herabstürzenden Wassermengen dient. Auf diese Weise wird die Geschwindigkeit dieser Wassermengen derart gemildert, daß sie unbedenklich ihren Weg talabwärts fortsetzen können, ohne daß zu befürchten ist, daß sie eine verheerende reißende Wirkung ausüben können.
Die im Juli 1913 in Betrieb genommene Möhnetalsperre bei Soest erhielt einen Inhalt von 130 Mill. cbm, ist vom Ruhrtalsperrenverein erbaut und bildet die zehnte im Ruhrgebiet errichtete Sperre. Sie umfaßt die Flußgelände der Möhne und Heve; der Rückstau erstreckt sich im Möhnetal auf 10 km, im Hevetal auf etwa 5 km. Ihrem Bau fielen die Dörfer Kettlersteich und Delecke zum Opfer, außerdem noch Teile einiger andrer Dörfer, so daß insgesamt 200 von 700 Personen bewohnte Gebäude niedergerissen werden mußten. Das dem Staubecken zugehörige Niederschlagsgebiet umfaßt 416 qkm mit einem jährlichen mittleren Abfluß von 245 Mill. cbm. Zur Verbindung der Ufer des Sperrbeckens, das im Grundriß die Gestalt einer ungleichschenkligen Gabel hat und sich aus dem Möhnesee und dem Hevesee zusammensetzt, sind außer der Sperrmauer zwei umfangreiche Viadukte und mehrere kleine Anlagen erbaut; der eine dieser Viadukte, der Delecke-Viadukt, besteht aus 16 Steinbogen. Die Gesamtkosten belaufen sich auf etwa 22 Mill. Mk. Der Grundriß der Mauer verläuft nach einer Parabel. Die Länge derselben beträgt an der Krone 650 m, die Höhe von der Fundamentsohle ab 40 m, vom Talboden ab 33 m, die Breite unten am Fuß 34,20 m, oben an der Krone 6,25 m. Die Abgabe des Wassers erfolgt durch vier schmiedeeiserne Rohre von 1,40 m Durchmesser; jedes derselben ist dreifach verschließbar. Das gegenwärtig seiner Verwirklichung entgegengehende großzügige »Bayernwerk« Oskar von Millers bezweckt, ein Hochspannungsnetz zu schaffen, das alle im rechtsrheinischen Bayern zerstreuten Wasser- und Dampfkräfte sammelt und deren gegenseitige Unterstützung und bessere Ausnutzung gewährleistet. Es wird darauf gerechnet, daß durch die Kuppelung der einzelnen Elektrizitäts-Erzeugungsanlagen an sonst durch Dampfkräfte zu erzeugender Elektrizität 166 Mill. Kilowattstunden jährlich im ersten und 253 Mill. Kilowattstunden im zweiten Ausbau erspart werden. Während des ersten Ausbaues kommen in der Hauptsache nur die Wasserkräfte des Walchensees in Betracht, zu denen im zweiten Ausbau noch die des Lechs bei Schwangau hinzutreten. Im Lennetal wird eine Riesentalsperre mit einem Inhalt von 180 Mill. cbm errichtet werden. Sie hat die Aufgabe des von uns bereits erwähnten Ruhrtalsperren-Vereins wesentlich zu erweitern und den genossenschaftlichen Bau von Talsperren zu fördern, indem den Vereinigungen der Triebwerkbesitzer Zuschüsse gewährt werden.
Überaus rührig sind die Vereinigten Staaten von Amerika mit dem Bau von Talsperren vorgegangen. Diese dienen hier vielfach der Wasserversorgung der Städte. Hier ist zunächst der in den Jahren 1886–1888 mit einem Aufwand von 1 200 000 Fr. erbaute Sweetwater-Damm in Kalifornien zu nennen. Seine Stauhöhe betrug ursprünglich 18,3 m, wurde aber später auf 27,45 m gebracht. Die Länge der Mauerkrone beläuft sich auf 103,6 m. Der Radius, nach welchem die Mauer verläuft, beträgt 67,66 m. Die Entnahme des Wassers erfolgt von einem in 15 m Abstand von der Mauer errichteten Turm, von dem aus sieben Öffnungen, die in verschiedenen Höhenlagen angebracht sind, bedient werden können. Das Becken faßt 22 Mill. cbm und hat eine Oberfläche von 2,95 qkm. Den im Laufe eines Jahres durch Verdunstung erfolgenden Wasserverlust schätzt man auf 1,22 m Wasserhöhe. Der in einem Nebental des Hudsons gelegene Croton-Damm liefert einen Teil der für New York erforderlichen Wassermenge; er hat einen Inhalt von 121 Mill. cbm und ein Niederschlagsgebiet von 349 qkm. Der Roosevelt-Damm in Arizona, der in den Jahren 1906–1911 mit einem Kostenaufwand von 15 Mill. Mk. errichtet wurde, faßt 1500 Mill. cbm und wäre imstande, 5200 qkm mit einer 0,3 m hohen Wasserschicht zu bedecken. Die Stärke der Mauer beträgt unten an der Wurzel 51,5 m, oben an der eine Fahrstraße tragenden Krone 5 m. Die Höhe der Mauer beträgt 85 m. Unterhalb des Dammes liegt eine Kraftstation, in welcher durch sechs Turbinen elektrischer Strom erzeugt wird, der auf 45 000 Volt transformiert und über Berge und wüste Strecken zu den Ortschaften Mesa und Phönix geleitet wird.
Sammelbecken von außergewöhnlichen Abmessungen umfaßt auch die neue Wasserversorgung von New York. Zu den allerneusten und größten Stauwerken gehört eines, das in der Wiege der Stauwerke, in Ägypten, in erweiterter Gestalt dem Betrieb übergeben wurde. Es ist dies der bei Assuan errichtete Nildamm. Dieser wurde im Jahre 1903 zuerst für eine Staumenge von 1000 Mill. cbm ausgeführt, in neuerer Zeit aber derart erhöht, daß er 1300 Mill. cbm staut und nach Bedarf zur Bewässerung Unterägyptens abgibt.
Die größte elektrische Kraftzentrale liegt an den Niagarafällen und versorgt über Hunderte von Kilometern hinaus zahlreiche industrielle Werke und Verkehrsanlagen mit Strom. Dort wurde im Jahre 1879 die erste Dynamomaschine mit einer Leistung von 36 Pferdekräften für die Beleuchtung der Fälle aufgestellt. Jetzt leisten die elektrischen Anlagen rund 850 000 Pferdestärken. Die aus den Niagarafällen zu erzielenden Pferdekräfte werden auf 2 500 000 P.S. geschätzt. Das größte Dampfkraftwerk der Erde, das bei Bitterfeld belegene Golpawerk wurde während des Krieges fertiggestellt und führt u. a. der Stadt Berlin mittels einer 132 km langen Leitung 30 000 Kilowatt zu.
Eine jede elektrische Kraftübertragungsanlage besteht aus folgenden Teilen: dem den Strom erzeugenden Kraftwerke (Wassermotoren, Dampfmaschinen, Großgasmaschinen), der Hochspannungsleitung, den Transformatoren, den den Strom am Verbrauchsort aufnehmenden Einrichtungen, bestehend in Motoren, Lampen, chemischen Apparaten usw.
Für die elektrische Kraftübertragung haben sämtliche Arten des elektrischen Stroms: Gleichstrom, Wechselstrom und Drehstrom Anwendung gefunden. Unter Gleichstrom versteht man diejenige Stromart, bei welcher der Strom wie ein ständig laufender Wasserstrahl stets in derselben Richtung sich bewegt. Der Wechselstrom ändert in rascher Folge seine Stärke und Richtung, und zwar in seiner üblichen Form fünfzigmal in der Sekunde. Man kann ihn mit dem in einer gewöhnlichen Kolbendampfmaschine wirkenden, hin- und hergehenden Dampfstrom vergleichen. Werden mehrere solcher Wechselströme benutzt, die ihre Richtung zu verschiedenen Zeiten wechseln, so erhält man den Mehrphasen- oder Drehstrom, so benannt, um ihn von dem Einphasenstrom zu unterscheiden. Um den Vergleich mit der Dampfmaschine beizubehalten, entspricht der Mehrphasen- oder Drehstrom dem in einer Mehrzylinder-Dampfmaschine mit gegeneinander versetzten Kurbeln arbeitenden Dampfstrom.
Der elektrische Strom besitzt eine gewisse Spannung und eine gewisse Stärke. Erstere entspricht, wenn wir uns des Vergleichs mit dem dahinströmenden Wasser weiter bedienen, dem Druck, letztere der Menge des dahinströmenden Wassers. Die Spannung wird in Volt, die Stromstärke in Ampere gemessen. Die Leistung erhält man durch die Multiplikation der in Volt gemessenen Spannung mit der in Ampere gemessenen Stromstärke. Das Produkt: 1 Volt mal 1 Ampere nennt man 1 Watt; 1000 Watt nennt man 1 Kilowatt. 0,6 Kilowatt entsprechen einer Pferdekraft.
Will man Gleichstrom für die Kraftübertragung benutzen, muß man in der Maschine selbst Strom von entsprechend hoher Spannung erzeugen. Dies ist schwierig und nur in gewissem Maße möglich. Nun ist aber die Kraftübertragung auf die hochgespannten Ströme angewiesen, wie nachstehende Überlegung ergibt. Der Querschnitt des zur Fortleitung des Stromes dienenden Drahtes ist proportional der zu befördernden Zahl der Ampere. Man kann also einen um so dünnern, das ist billigern Draht benutzen, je geringer die Zahl der Ampere ist. Der Wechselstrom hat dem Gleichstrom gegenüber den großen Vorzug, daß er sich auf sehr hohe Spannungen transformieren läßt. Hierbei verringert sich die Zahl der Ampere, so daß man den Strom in Leitungen geringen Querschnitts fortleiten und alsdann am Orte des Verbrauchs wieder auf Strom von der niedrigern für den jeweiligen Zweck geeigneten Spannung heruntertransformieren kann. Demgemäß benutzt man Gleichstrom innerhalb von industriellen Anlagen und Ortschaften geringerer Ausdehnung und zum Betriebe von Straßenbahnen. Soll aber die Übertragung über beträchtlichere Entfernungen hin erfolgen, so benutzt man Wechselstrom, und zwar meist Drehstrom, da dieser hinsichtlich der Wirtschaftlichkeit den Einphasenstrom übertrifft.
Die elektrische Kraftübertragung im heutigen Sinne datiert vom 25. August 1891. An diesem Tage wurde die Kraft des bei Lauffen belegenen Neckarfalls nach Frankfurt a. M. übertragen, und zwar anläßlich des dort tagenden Internationalen Elektrotechniker-Kongresses und der dort veranstalteten elektrotechnischen Ausstellung. Die Übertragung von 300 P.S. erfolgte hier mit 8000 Volt auf eine Entfernung von 170 km bei einem Wirkungsgrad von 75%. In Europa sind jetzt Überlandzentralen mit Spannungen bis zu 110 000 Volt, in Amerika sogar bis zu 140 000 Volt und mehr im Betriebe. Die Übertragung kann in wirtschaftlich einwandfreier Weise bis auf 5000 km erfolgen. Weitere Steigerungen auf größere Entfernungen und auf 200 000 bis 250 000 Volt Spannung liegen bereits im Bereiche technischer und wirtschaftlicher Möglichkeit. Die Verlegung der viele Kilometer entlang das Land überspannenden Leitungsnetze gestaltet sich häufig sehr schwierig, insbesondere dann, wenn breite Ströme oder Meeresarme zu überschreiten sind. Die größte Spannweite von 1463 m weist die den St. Lorenzstrom bei Three Rivers überschreitende Leitung auf. An den Ufern sind zwei Gittertürme von 107 m Höhe errichtet, die an ihren Spitzen zwei das Kabel tragende 31 m lange Arme besitzen.
Die Leben und Gesundheit bedrohenden Eigenschaften des elektrischen Stromes, die man anfangs stark unterschätzt hat, und die von den Freileitungen aus ihren verderblichen Weg nehmen können, sind geeignet, die Entwicklung des Luftverkehrs stark zu beeinträchtigen.
Jedes mit einer Freileitung in Berührung kommende Luftfahrzeug ist dem Verderben ausgesetzt. Hier eine alle Teile befriedigende Lösung zu finden, erscheint z. Z. unmöglich, und es wird von den Vertretern des Luftverkehrs die Forderung erhoben, die gefahrbringenden Freileitungen durch Kabel zu ersetzen oder unterirdisch zu verlegen. Man hat bisher versucht, unter großem Kostenaufwande die Freileitungen durch Blechhauben, farbige Ringe, Isolatoren usw., durch ungewöhnlich gefärbte oder gebaute Masten auf weite Entfernungen hin kenntlich zu machen. Alle diese Mittel versagen bei Dunkelheit und unsichtigem Wetter, werden auch meist erst dann erkannt, wenn es zu spät ist.