Die Veränderung der Aggregatzustände der Körper durch die Wärme.

Eine wichtige Wirkung der Wärme ist die Veränderung der Aggregatzustände der Körper. Feste Körper werden durch die Wärme in flüssige, flüssige Körper in luftförmige verwandelt. Das Uebergehen aus dem festen in den flüssigen Zustand nennt man Schmelzen, das Uebergehen aus dem flüssigen in den luftförmigen Zustand Sieden oder Kochen. Diese Uebergänge finden bei jedem Körper bei ganz bestimmten Temperaturen statt, die man ihren Schmelzpunkt und ihren Siedepunkt nennt. Wenn man einen schmelzbaren Körper erhitzt, so steigt seine Temperatur so lange, bis er seinen Schmelzpunkt erreicht hat; dann aber bleibt dieselbe unverändert, bis er ganz flüssig geworden ist. Weil nun die während des Schmelzens zuströmende Wärme keine Temperaturerhöhung bewirkt, so sagt man: diese Wärme wird gebunden. Wenn der flüssige Körper in Folge der Temperaturerniedrigung wieder fest wird, so wird die beim Flüssigwerden gebundene Wärme wieder frei. Auch beim Sieden wird Wärme gebunden, die bei der Rückkehr in den flüssigen Zustand wieder frei wird. Wenn eine Flüssigkeit in den luftförmigen Zustand übergeht, so bildet sie den Dampf. Die Dampfbildung findet aber nicht allein bei der Temperatur des Siedepunktes statt, welche allerdings nothwendig ist, wenn die ganze Masse einer Flüssigkeit bis in ihr Inneres luftförmig werden soll, sondern sie geht an der mit der Luft in Berührung stehenden Oberfläche auch bei jeder Temperatur vor sich. Eine solche Dampfbildung bei niedriger Temperatur nennt man Verdunstung. Der Dampf hat, wie jede Luftart, das Bestreben, sich auszudehnen, und dieses Bestreben nennt man seine Spannkraft oder Expansion. Die Spannkraft des Dampfes ist um so größer, je größer seine Dichtigkeit ist, oder je stärker er bei derselben Dichtigkeit erwärmt wird.

298. Warum kann man Blei über einer Lampe schmelzen, Eisen aber nicht?

Weil jeder Körper, um zu schmelzen, d. h. um aus dem festen in den flüssigen Zustand überzugehen, einer ganz bestimmten Temperatur bedarf, das Eisen aber eine weit höhere Temperatur, nämlich mindestens 1200° R., erfordert als das Blei, das schon bei 267° R. schmilzt. Die Flamme einer Lampe vermag aber eine so hohe Temperatur, die dem Schmelzpunkte des Eisens entspricht, nicht zu gewähren, da die darin stattfindende Verbrennung nicht bedeutend genug ist, und überdies die umgebende Luft einen großen Theil der Wärme entführt. – Jedes Metall hat seinen bestimmten Schmelzpunkt; das Kupfer schmilzt bei 840°, das Silber bei 800°, das Zinn bei 188° R. Es giebt sogar eine Metallmischung, aus 2 Theilen Wismuth, 1 Theil Blei und 1 Theil Zinn bereitet, die schon unter der Temperatur des siedenden Wassers, nämlich bei 75° R. schmilzt. Manche Körper sind schon bei sehr niederen Temperaturen flüssig, der Schwefel bei 88°, das Wachs bei 49°, das Eis bei 0°, und Terpentinöl kann sogar bis –8°, Quecksilber bis –31° R. erkältet werden, ohne den flüssigen Zustand zu verlieren.

299. Warum bleibt im Frühjahr die Luft kühl, so lange noch Eis und Schnee schmelzen?

Weil beim Schmelzen des Eises, wie beim Schmelzen jedes Körpers überhaupt, Wärme verbraucht oder gebunden wird, diese Wärme aber der Luft entzogen werden muß, deren Temperatur dadurch erniedrigt wird. Daß beim Schmelzen Wärme gebunden wird, davon kann man sich überzeugen, wenn man neben einander auf einen heißen Ofen einen Topf mit 1 Pfund Schnee und einen anderen mit 1 Pfund Schneewasser von 0° Temperatur stellt. Sobald der Schnee vollständig geschmolzen ist, wird man die Temperatur des entstandenen Wassers nur zu 0° finden, während in dem anderen Topfe das Wasser sich in derselben Zeit auf 64° R. erhöht hat. Da aber beide Töpfe die Wärme vom Ofen empfangen haben, so müssen die in dem einen Topfe fehlenden 64° Wärme in dem Schneewasser stecken, also von dem schmelzenden Schnee verschluckt oder gebunden worden sein.

300. Warum gefriert im warmen Zimmer ein zinnerner Teller an den Tisch fest, wenn man Wasser auf den Tisch gießt, den Teller darauf setzt und Schnee oder gestoßenes Eis mit Kochsalz gemischt auf den Teller legt?

Weil durch den schmelzenden Schnee auch das Kochsalz gelöst oder in den flüssigen Zustand übergeführt wird, das Kochsalz aber, wie jeder Körper, wenn er aus dem festen in den flüssigen Zustand übergeht, Wärme dazu verbraucht, die er, wie man sagt, bindet, und die er seiner Umgebung entziehen muß. Da nun der zinnerne Teller ein sehr guter Wärmeleiter ist, so erstreckt sich diese Wärmeentziehung auch auf das Wasser unter dem Teller. Durch die Wärmeentziehung wird aber Kälte hervorgebracht, und in Folge dieser Kälte gefriert das Wasser unter dem Teller. Eine noch weit stärkere Kälte als durch diese Mischung von Salz und Schnee kann man durch eine Mischung von 6 Theilen Glaubersalz und 4 Theilen Salzsäure, oder von 5 Theilen Salmiak, 5 Theilen Salpeter und 10 Theilen Wasser bewirken. Eine außerordentliche Temperaturerniedrigung bis zu –24° R. kann man durch eine Mischung von Schnee mit verdünnter Schwefelsäure erreichen, auch durch Mischen von 3 Theilen krystallisirtem Chlorcalcium und 2 Theilen Schnee oder Eis.

301. Warum pflegt im Winter die Kälte bei Schneefall gelinder zu werden?

Weil bei der Schneebildung, also bei dem Uebergange des in der Luft enthaltenen Wassers in den festen Zustand, wie beim Uebergange jedes flüssigen Körpers in den festen Zustand, diejenige Wärmemenge wieder frei wird, welche beim Schmelzen des festen Körpers gebunden wurde. Deshalb kann man auch wohl zarte Pflanzen gegen Nachtfröste schützen, wenn man Wasser in flachen Gefäßen in ihre Nähe stellt und gefrieren läßt. Die beim Gefrieren des Wassers frei werdende Wärme schützt die Pflanzen.

302. Warum thauen gefrorene Kartoffeln auf, wenn man sie in kaltes Wasser legt?

Weil das Wasser, auch wenn es eiskalt ist, noch Wärme abgeben muß, um zu gefrieren, und die beim Gefrieren des Wassers frei werdende Wärme von den Kartoffeln aufgenommen wird und das Aufthauen derselben bewirkt. Ebenso thaut auch eine Flasche mit gefrorenem Wein auf, wenn man sie in eiskaltes Wasser stellt, während sich die Flasche äußerlich mit Eis überzieht. Hier kommt noch dazu, daß der Wein eines noch viel höheren Kältegrades zum Gefrieren bedarf, als das Wasser, und daher dem Wasser noch weit mehr Wärme entzieht.

303. Warum trocknet feuchte Wäsche an der Luft?

Weil das Wasser, welches in der feuchten Wäsche vertheilt ist, mit der Luft in Berührung verdunstet, die feuchtgewordene Luft aber beständig durch neue trockne Luftschichten ersetzt wird, und daher immer neue Luft mit dem verdunstenden Wasser in Berührung kommt. Da dieser Wechsel der Luftschichten am schnellsten bei bewegter Luft geschieht, so trocknet Wäsche auch im Winde am schnellsten.

304. Warum hängt man die Wäsche zum Trocknen auf?

Weil die Verdunstung nur an der Oberfläche vor sich geht, also um so schneller erfolgen muß, eine je größere Oberfläche der Luft dargeboten wird. Zusammengelegte Wäsche kann nur sehr langsam trocknen, weil die Feuchtigkeit erst allmählich an die Oberfläche treten kann, nachdem an dieser die vorhandene Feuchtigkeit verdunstet ist.

305. Warum trocknet die Wäsche an feuchten Herbsttagen oft gar nicht?

Weil an solchen Tagen die Luft selbst schon Wasserdampf enthält und zwar bisweilen so viel, daß sie keinen mehr aufnehmen kann. Die Luft kann nämlich bei einer bestimmten Temperatur nur eine ganz bestimmte Menge von Wasserdampf in sich aufnehmen. Enthält sie diese Menge, so ist sie gesättigt. In trockner Luft trocknet daher die Wäsche auch besser als in feuchter. Ebenso trocknet sie auch besser in warmer Luft als in kalter, da die warme Luft mehr Wasserdampf aufnehmen kann als die kalte, also nicht so schnell gesättigt wird. Daß aber selbst bei großer Kälte noch eine Verdunstung stattfindet, sehen wir daran, daß Wäsche auch bei Frost trocknet, namentlich, wenn die Luft zugleich sehr trocken ist.

306. Warum wird die Luft an heißen Sommertagen durch Regen abgekühlt?

Weil die Regentropfen in der warmen Luft, besonders aber an dem warmen Erdboden und den warmen Gegenständen, mit denen sie in Berührung kommen, verdunsten, bei dieser Verdunstung aber Wärme binden und diese Wärme nun der umgebenden Luft entziehen, die dadurch abgekühlt wird.

307. Warum wird das Feuer durch Wasser gelöscht?

Weil das Wasser in der Hitze des Feuers verdampft, dabei aber Wärme bindet und diese dem brennenden Körper entzieht, dessen Temperatur dadurch bis zu einem Grade erniedrigt wird, bei welchem eine Verbrennung nicht mehr fortbestehen kann.

308. Warum brennt nasses Holz schwerer und giebt auch beim Verbrennen weniger Wärme als trockenes?

Weil die Feuchtigkeit des nassen Holzes in Folge der Erhitzung in Dampf verwandelt wird, dabei aber ein Theil der Wärme, welche zur Entzündung des Holzes dienen soll, verbraucht wird, indem diese von dem Dampfe, in welchen die Flüssigkeit sich verwandelt, gebunden wird. Das Holz kann erst dann anbrennen, wenn keine Verdampfung mehr stattfindet, und die ganze Wärme zu seiner Entzündung verwandt wird. Nasses Holz erfordert also einen höheren Hitzegrad, um auf diejenige Temperatur zu gelangen, bei welcher eine Verbrennung möglich ist. Nasses Holz giebt auch beim Verbrennen weniger Wärme als trockenes, weil auch während des Verbrennens beständig Feuchtigkeit verdampft und die dazu erforderliche Wärme der das Feuer umgebenden Luft entzogen wird.

309. Warum kann man im heißesten Sommer Flaschen Wein dadurch kühl erhalten, daß man nasse Tücher darum schlägt?

Weil die Feuchtigkeit der nassen Tücher in der Hitze verdunstet und zu diesem Uebergang in die Dampfform einer gewissen Wärmemenge bedarf, die sie ihrer nächsten Umgebung, also der Flasche und durch diese auch dem Wein entzieht. Man muß freilich die Tücher immer wieder aufs Neue befeuchten, wenn das Wasser aus ihnen verdunstet ist, damit die Verdunstung und die damit verbundene Abkühlung beständig fortdauert. Noch stärker ist die Abkühlung, welche verdunstender Aether bewirkt. Gießt man auf die mit Baumwolle umwickelte Kugel eines Thermometers Aether, so sinkt das Quecksilber darin von +12° auf –12° R.

310. Warum erhalten sich Flüssigkeiten in porösen Gefäßen selbst im heißesten Sommer sehr kühl?

Weil die Flüssigkeit, welche durch die Poren des Gefäßes dringt, die äußere Oberfläche desselben beständig feucht erhält, diese Feuchtigkeit aber in der äußeren warmen Luft beständig verdunstet, und, indem sie dabei Wärme verbraucht, die sie der Flüssigkeit im Gefäße entzieht, diese von allen Seiten beständig abkühlt. In Spanien und andern heißen Ländern bedient man sich der sogenannten Alcarazza's zur Kühlung des Wassers. Es sind dies sehr poröse Thongefäße, die mit Wasser gefüllt, dem freien Luftzug ausgesetzt, aufgehängt werden.

311. Warum kann der Mensch einen bedeutenden Hitzegrad aushalten?

Weil der Mensch bei großer Hitze am ganzen Körper mit Schweiß bedeckt wird, welcher aus den Poren seiner Haut hervordringt, dieser Schweiß aber in Folge der großen Wärme verdunstet und bei dieser Verdunstung bedeutende Wärmemengen bindet, die er der Haut entzieht. Durch diese Wärmeentziehung wird aber eine Abkühlung der Haut bewirkt. Daher empfinden wir die Hitze weit weniger unangenehm und drückend in sehr trockener Luft, als in sehr feuchter, weil die letztere schon so viel Wasserdampf enthält, daß sie keinen neuen mehr aufnehmen kann, dadurch aber die rasche Verdunstung des Schweißes verhindert und uns so des Gefühls der Abkühlung beraubt.

312. Warum hat man selbst an heißen Tagen, wenn man aus dem Bade steigt, ein so auffallendes Gefühl von Kälte?

Weil das dem Körper anhängende Wasser sogleich zu verdunsten beginnt und, da es dabei Wärme bindet, diese Wärme dem Körper entzieht. Da aber wegen der Vertheilung des Wassers über eine so große Fläche diese Verdunstung mit großer Schnelligkeit erfolgt, so hat der Körper nicht Zeit, von innen heraus die der Haut entzogene Wärme wieder zu ersetzen.

313. Warum erkältet man sich leicht, wenn man seine naß gewordenen Kleider anbehält?

Weil die Feuchtigkeit der Kleider, um in Dampf verwandelt zu werden, sehr viel Wärme aufnehmen muß und diese dem menschlichen Körper entzieht. Man empfindet diesen Wärmeverlust zunächst als Kälte; er hat aber oft weit nachtheiligere Folgen durch die Störungen der Hautthätigkeit, die er veranlaßt, und die zu Entzündungs- und anderen Krankheiten führen können. Man kann sich vor der Erkältung in naß gewordenen Kleidern, die man nicht ablegen kann, nur dadurch einigermaßen schützen, daß man sich recht lebhaft bewegt, damit durch den in Folge der Anstrengung erzeugten Ueberschuß von Wärme der durch die Verdunstung erlittene Verlust an Körperwärme wieder ersetzt wird.

313a. Warum kann man den Feuchtigkeitsgehalt der Luft aus dem Unterschied im Stande zweier Thermometer erkennen, wenn die Quecksilberkugel des einen mit Musselin umwickelt ist, der in ein darunter stehendes Gefäß mit Wasser taucht und dadurch beständig feucht erhalten wird?

Weil die Verdunstung des Wassers um so schneller erfolgt und darum auch eine um so stärkere Abkühlung der Thermometerkugel und ein um so stärkeres Sinken des befeuchteten Thermometers bewirkt, je trockener die Luft ist. Aus dem verschiedenen Stande des trocknen und des angefeuchteten Thermometers kann man also auf den Feuchtigkeitsgehalt der Luft schließen. Beide Thermometer stehen gleich hoch und zeigen dann zugleich die Temperatur des Thaupunktes ([Frage 323]) an, wenn die Luft ganz mit Dämpfen gesättigt ist, also keine Verdunstung mehr stattfinden kann. Eine solche Verbindung eines trocknen und eines angefeuchteten Thermometers nennt man deshalb Psychrometer.

314. Warum kann man in einem kleinen Glaskolben, den man unten mit etwas Watte umwickelt, auf die man von Zeit zu Zeit Schwefeläther tröpfelt, Wasser in Eis verwandeln, wenn man das Kölbchen rasch hin und her bewegt?

Weil der Schwefeläther bekanntlich sehr schnell verdunstet, und diese Verdunstung noch durch die beständige Bewegung beschleunigt wird, bei jeder Verdunstung aber Wärme gebunden und also der Umgebung entzogen wird. Diese Wärme kann aber hier nur dem Wasser in dem Glaskölbchen entzogen werden, und dies muß daher, wenn die Verdunstungskälte groß genug war, gefrieren. Hat man einen Draht in das Wasser gestellt, so findet man ihn beim Herausnehmen mit feinen Eisnadeln bedeckt.

315. Warum gefriert Wasser in einem kleinen Schälchen unter der Glocke einer Luftpumpe, wenn man ein anderes kleines Schälchen mit Schwefeläther darüber stellt?

Weil die Verdunstung des Schwefeläthers, die schon in der gewöhnlichen atmosphärischen Luft ziemlich stark ist, durch das fortwährende Auspumpen der bereits gebildeten Aetherdämpfe außerordentlich befördert wird, dadurch aber auch weit mehr Wärme gebunden oder eine weit größere Verdunstungskälte erzeugt werden muß, die das Wasser sehr schnell in Eis verwandelt.

316. Warum kann man mitten im heißen Sommer mit Hülfe künstlicher Eismaschinen große Massen von Eis erzeugen?

Weil in solchen Eismaschinen zuvor stark verdichtetes Ammoniak einer sehr lebhaften Verdunstung unterworfen wird und dabei große Mengen von Wärme bindet, die es dem Wasser, das sich in demselben Raum mit ihm befindet, entzieht. Das Ammoniakgas besitzt nämlich die Eigenschaft, von kaltem Wasser in großen Mengen verschluckt zu werden, während warmes Wasser nur geringe Mengen davon festhalten kann. Erhitzt man daher in einem verschlossenen Gefäße gewöhnliches Ammoniakwasser (sogenannten Salmiakspiritus), so wird das Ammoniakgas frei, und da sich beständig neue Gasmengen entwickeln, die nicht entweichen können, so entsteht allmählich ein ungeheurer Druck im Innern des Gefäßes. Läßt man dieses stark zusammengepreßte Gas dann in ein von kaltem Wasser umgebenes Kühlrohr einströmen, so wird es darin sogar flüssig. Läßt man dieses flüssige Ammoniak nun in einen geräumigen Behälter ausströmen, so verdampft es, und kommt diesem Dampfe zugleich ein feiner Regen kühlen Wassers entgegen, so wird das Gas mit großer Begierde von dem Wasser verschluckt, der dadurch entstehende luftverdünnte Raum aber zugleich die Veranlassung immer neuer und schnellerer Verdunstung des Ammoniaks. Die durch diese Verdunstung bewirkte Kälte oder vielmehr Wärmeentziehung ist die Ursache des Gefrierens des Wassers in den in diesem Raume aufgestellten Gefäßen. In ähnlicher Weise wird auch das Kohlensäuregas, nachdem es zuvor durch starken Druck in eine Flüssigkeit verwandelt worden, beim Ausströmen an die Luft in Folge der heftigen Verdunstung in einen schneeähnlichen festen Körper verwandelt.

317. Warum kann das Niederschlagen des Rauches bei stiller Luft als Vorbote von Regenwetter gelten?

Weil die unverbrannten Kohlentheilchen, die mit dem Rauch emporsteigen, die Eigenschaft haben, Wasserdampf einzusaugen. Wenn also viel Wasserdampf in der Luft über dem Schornstein vorhanden ist, so nehmen ihn die Kohlentheilchen auf, verdichten ihn in sich, werden dadurch schwerer und fallen so zu Boden; auch steigt der Rauch in der warmen und feuchten Luft der Regen bringenden Süd-West- und Westwinde nicht so schnell und lebhaft empor als in der Luft der dichteren Nord-, Nordost- und Ostwinde. Auch manche Salze haben die Eigenschaft, Wasserdampf aus der Luft aufzunehmen. Pottasche zerfließt in Folge dessen; Kochsalz wird nur sehr feucht.

318. Warum dehnen sich manche Körper, namentlich Haare und Darmsaiten, in feuchter Luft aus?

Weil diese Körper eine große Neigung besitzen, Wasserdampf aus der Luft einzusaugen und in ihren Poren zu verdichten, womit natürlich eine Vergrößerung ihres Volumens verbunden sein muß. Man nennt solche Körper hygroskopische. Besonders ausgezeichnet durch diese Eigenschaft sind Haare, Darmsaiten und Fischbein. Daß die Haare sich bei feuchtem Wetter verlängern, wissen diejenigen Damen, welche Locken tragen. Da aber solche Körper die Feuchtigkeit der Luft anzeigen, ehe sie noch auf andere Weise erkennbar wird, so benutzt man sie auch zu Feuchtigkeitsmessern oder Hygrometern. Ein solches Instrument ist das bekannte Wetterhäuschen, das man oft als Wetterprophet an den Fenstern anbringt. In demselben ist an einer Darmsaite ein Stäbchen aufgehängt, auf dessen einer Seite ein Mann mit einer Gießkanne, auf dessen anderer Seite eine Frau mit einem Regenschirm steht. Bei feuchtem Wetter dreht sich die Saite auf, verlängert sich und bringt die Frau zum Vorschein. Bei trockner Luft dreht sich die Saite wieder zusammen, und nun tritt der Mann aus der Thür des Häuschens. Auch die lange, schraubenartig gewundene Granne der Frucht des Reiherschnabels (Erodium) ist sehr empfindlich gegen Feuchtigkeit. Befestigt man dieselbe in dem Mittelpunkte eines Kreises, so dreht sie sich, indem sie sich bei feuchter Luft mehr aufwickelt, bei trockner Luft mehr zusammenzieht.

319. Warum werden unsere Kleider feucht, wenn wir an schönen Frühlings- oder Herbstabenden spazieren gehen?

Weil die in der Luft enthaltenen Wasserdämpfe in Folge der am Abend eintretenden starken Abkühlung der Luft sich wieder verdichten und nun in sehr feinen Tropfen auf unsere Kleider niederschlagen.

320. Warum müssen Röhren, durch welche Wasserdämpfe an irgend einen Ort geleitet werden sollen, aus schlechten Wärmeleitern bestehen und am besten helle und polirte Oberflächen haben?

Weil gute Wärmeleiter den Wasserdämpfen zu viel Wärme durch Leitung, rauhe und dunkle Röhren aber zu viel Wärme durch Strahlung entziehen und die Temperatur der Dämpfe daher so weit erniedrigen würden, daß ein Theil derselben gar nicht mehr als Dampf bestehen könnte, sondern, ehe er noch an den Ort seiner Bestimmung gelangt wäre, in die tropfbar flüssige Form zurückkehren müßte. Will man dagegen durch Dampf heizen, so muß man ihn umgekehrt durch Röhren leiten, die aus guten Wärmeleitern bestehen und rauhe und dunkle Oberflächen haben. Denn in diesem Falle soll eben die Wärme dem Dampfe möglichst schnell entzogen werden, um dem Raume, durch den er geleitet wird, zu Gute zu kommen.

321. Warum beschlagen unsere Fensterscheiben, wenn die Luft draußen sich abkühlt?

Weil die in unserer Zimmerluft beständig enthaltenen Wasserdämpfe, wenn sie mit den durch die äußere Luft abgekühlten Fensterscheiben in Berührung kommen, selbst so weit abgekühlt werden, daß sie in den tropfbaren Zustand zurückkehren und sich an die Fensterscheiben absetzen.

322. Warum belegen sich beim Winterfroste die Fensterscheiben, vornehmlich bewohnter Zimmer, mit Eis?

Weil die in bewohnten Zimmern reichlich vorhandenen Wasserdämpfe in Berührung mit den von außen erkalteten Fensterscheiben verdichtet werden und sich in tropfbarer Form darauf niederschlagen, sofort aber auch gefrieren müssen, wenn die Temperatur der Fensterscheiben unter dem Gefrierpunkt ist.

323. Warum sind die Pflanzen besonders nach schönen Frühlings- oder Herbstnächten am Morgen mit Wassertropfen bedeckt?

Weil der Erdboden in der Nacht sich in Folge der Wärmestrahlung stark abkühlt, dadurch aber auch die dem Erdboden nahen Luftschichten abgekühlt und damit unfähig werden müssen, die Wasserdämpfe, mit denen sie gemischt sind, luftförmig zu erhalten. Die Wasserdämpfe verdichten sich daher und scheiden sich in Form von Tropfen an den Gegenständen ab. Da aber das Strahlungsvermögen dieser Gegenstände ein sehr verschiedenes und darum auch ihre Abkühlung eine ungleiche ist, besonders rauhe Gegenstände ihre Wärme schneller ausstrahlen als glatte, so scheiden sich auch die verdichteten Wasserdämpfe in verschiedenem Maße an ihnen ab. Pflanzen, besonders die Spitzen der Blätter und Halme, erkalten mehr als Erde und Steine, diese wieder mehr als Metalle; daher finden sich besonders Gras und Blätter am Morgen mit Wassertropfen bedeckt. Diesen nächtlichen Niederschlag des Wasserdampfes der Luft nennt man Thau. Die Stärke desselben ist nicht bloß abhängig von dem Grade der Temperaturerniedigung, sondern auch von dem Wasserdampfgehalt der Luft. Denn die Verdichtung des Wasserdampfes beginnt erst bei derjenigen Temperatur, für welche die Luft mit dem vorhandenen Wasserdampf gerade gesättigt ist. Diese Temperatur nennt man den Thaupunkt. Dieser liegt aber um so tiefer, je weniger Wasserdampf die Luft enthält. Den Thaupunkt kann man bestimmen, wenn man ein Thermometer in ein Glas mit Wasser stellt und dann allmählich so lange kaltes Wasser zugießt, bis die Außenseite des Glases mit einem feinen Thau beschlägt. Die Temperatur, bei welcher dies geschieht, ist der Thaupunkt. Ist die Luftwärme etwa 16° und erfolgt das Beschlagen des Glases bei 10°, so muß die Luft auch bis auf 10° erkalten, wenn eine Thaubildung eintreten soll.

324. Warum fällt bei bewölktem Himmel kein Thau?

Weil die Wolken eine Rückstrahlung der Wärme veranlassen und dadurch die Abkühlung des Bodens verhindern. Darum pflegt es auch unter laubreichen Bäumen und unter Zelten selbst in heiteren sehr thaureichen Nächten nicht zu thauen.

325. Warum bemerkt man nach schönen, aber sehr windigen Nächten keinen Thau?

Weil bei windigem Wetter fortwährend die an den Gegenständen erkalteten Luftschichten wieder entführt und durch wärmere ersetzt werden, die den Gegenständen wieder Wärme mittheilen, so daß diese nicht bis zum Thaupunkt erkältet werden können.

326. Warum werden Felder und Wiesen in schönen Herbstnächten oft mit Reif bedeckt?

Weil durch die starke Wärmeausstrahlung in den längerwerdenden Nächten des Spätherbstes oft die Temperatur des Erdbodens bis unter den Gefrierpunkt erniedrigt wird, und die sich verdichtenden Wasserdämpfe sich daher nicht als kleine Wassertropfen, sondern nur als Eis an den erkalteten Gegenständen absetzen können. Reif ist gefrorener Thau und besteht aus feinen Eisnadeln.

327. Warum sieht man in der Kälte den ausgehauchten Athem?

Weil dem durch das Athmen ausgestoßenen Wasserdampf durch die äußere kalte Luft Wärme entzogen und der Wasserdampf dadurch verdichtet wird. Wasserdampf an sich ist völlig durchsichtig, also unsichtbar; er wird erst sichtbar, wenn er anfängt wieder flüssig zu werden. Er erscheint dann als Nebel.

328. Warum bilden sich besonders im Herbst und Winter so oft Nebel?

Weil von den länger warm bleibenden Wasserflächen und aus dem feuchten Erdboden dann noch beständig Dämpfe aufsteigen, welche aber die kältere oder wasserdampfreichere Atmosphäre nicht mehr aufzunehmen vermag, und die sich daher nun verdichten müssen. Dieser sich verdichtende Wasserdampf nimmt zuerst die Gestalt außerordentlich kleiner hohler Wasserbläschen an, die an einander gehäuft nicht mehr durchsichtig sind, wie fein gemahlenes Glas auch nicht mehr durchsichtig ist. Die Wasserbläschen des Nebels werden eine Zeit lang von der Luft getragen, sinken dann aber nieder. Fallen sie auf wärmeres Erdreich oder Wasser – wie ja im Herbst und zu Zeiten im Winter Erdreich und Wasser wärmer zu sein pflegen als die Luft, – so steigen sie wieder als Dampf auf und verdichten sich wieder zu Nebel. Auf diesem Wechsel von Vergehen und Entstehen beruht die anhaltende Dauer mancher Herbst- und Winternebel.

Fig. 54.

329. Warum entsteht aus den Wolken Regen?

Weil die Wolken nichts anderes als Nebel in höheren Luftschichten sind, und weil, wenn sie sich in tiefere Luftschichten herabsenken, die bereits mit Wasserdampf fast gesättigt sind, oder wenn sie mit kälteren Luftschichten in Berührung kommen, ihre Wasserbläschen zusammenfließen, schwerer werden und nun in Tropfengestalt herabfallen. Die Tropfen sind um so kleiner, je näher die Wolken der Erde sind, um so größer, aus je größeren Höhen sie fallen, da sie auf ihrem Wege, vermöge ihrer niedrigen Temperatur, die Wasserdünste der Luftschichten verdichten, durch welche sie hindurchfallen, und sich dadurch vergrößern. In Luftschichten, deren Temperatur unter dem Gefrierpunkt liegt, verwandeln sich die verdichteten Wasserdünste nicht in Tropfen, sondern in feine Eisnadeln, die sich zu Schneeflocken ([Fig. 54]) zusammensetzen. Die besonders im Frühling fallenden Graupelkörner entstehen wohl in ähnlicher Weise wie der Schnee und bestehen nur aus fest zusammengeballten Eisnadeln. Ueber die Entstehung des Hagels ist man noch nicht völlig im Klaren. Die beste Erklärung scheint diejenige zu sein, welche Nöllner gegeben hat. Danach können die Nebelbläschen, welche Wolken bilden, bis unter den Gefrierpunkt erkalten, ohne daß ein Erstarren derselben eintritt, wie Aehnliches vom tropfbar flüssigen Wasser nachgewiesen ist. Das Gefrieren erfolgt erst, aber dann auch plötzlich und in großem Umfange, wenn die erkalteten Bläschen heftig erschüttert werden. Befindet sich also eine so tief erkaltete Wolkenschicht in der Luft, und fallen auf diese aus einer höheren Wolkenschicht Graupelkörner, so schlägt sich auf ihnen der Bläschendampf als Wasser nieder, das augenblicklich gefriert. Auf diese Weise wird allerdings die oft so massenhafte Eisbildung in ganz kurzer Zeit begreiflich.

Das Ansehen der Wolken selbst ist, je nachdem sie höher oder tiefer schweben, mehr oder weniger dicht sind, und je nach ihrer Beleuchtung sehr mannigfaltig. Man unterscheidet Federwolken, die sich besonders zuerst nach vollkommen heiterem Wetter am blauen Himmel bilden, Schichtwolken, die sich in wagerechten Streifen über den Himmel ziehen und vorzugsweise schön bei Sonnenuntergang erscheinen, Haufenwolken, die sich namentlich im Sommer zeigen, und Regenwolken, die aus Haufenwolken entstehen, aber unregelmäßige Formen annehmen und große Dichtigkeit erlangen.

330. Warum sehen wir bisweilen bei völlig heiterem Himmel und ruhiger Luft sich plötzlich Wolken bilden und ein andres Mal wieder die Wolken ebenso plötzlich verschwinden?

Weil die Luft zwar Wasserdämpfe genug aufgelöst enthalten kann, die sich aber bei der herrschenden Temperatur nicht verdichten können, bei einer plötzlich eintretenden Abkühlung der Luft jedoch, etwa in Folge einer kälteren Luftströmung, sich plötzlich zu Wasserbläschen verdichten und Wolken bilden müssen; während andererseits eine vorhandene Wolke, wenn sie sich etwa in eine wärmere Luftschicht hinabläßt, oder wenn ein wärmerer Luftstrom sie trifft, sich wieder in unsichtbaren Wasserdampf auflösen muß. Das Vermögen der Luft, Wasserdämpfe in sich aufzunehmen – ihr Sättigungsvermögen – ändert sich je mit ihrer Temperatur.

331. Warum kocht Wasser und jede andere Flüssigkeit ein, wenn man sie längere Zeit kochen läßt?

Weil das Wasser und überhaupt jede Flüssigkeit beim Kochen sich in Dampf verwandelt, und dieser Dampf vermöge seines geringen specifischen Gewichts in die Luft aufsteigt und sich mit ihr vermischt, die Flüssigkeit also durch dieses beständige Entweichen ihrer Theile in Luftgestalt endlich völlig verschwinden muß. Sie existirt zwar noch, aber nicht mehr als Flüssigkeit und nicht mehr in dem Gefäße. War aber mit dem Wasser ein anderer Körper vermischt oder vielmehr darin aufgelöst, wie etwa Salz, der nicht in Dampf übergehen kann, so bleibt dieser nach dem Kochen zurück.

332. Warum siedet Wasser erst bei einer Temperatur von 80° R.?

Weil die Wasserdämpfe, welche sich zwar auch bei niedrigerer Temperatur entwickeln, dem Drucke der äußeren atmosphärischen Luft erst dann widerstehen können, wenn sie eine Spannkraft erlangt haben, welche derjenigen der atmosphärischen Luft gleich ist, was erst bei einer Temperatur von 80° R. geschieht. Wenn man daher Wasser über einem Feuer erhitzt, so entwickeln sich sehr bald, namentlich am Boden, kleine Dampfbläschen, die aber unter dem Drucke des Wassers und dem auf diesem lastenden Drucke der Atmosphäre sich wieder verdichten und tropfbar flüssig werden. Erst bei 80° R. haben die sich im Innern des Wassers entwickelnden Dämpfe eine Spannkraft erlangt, welche dem Drucke der Umgebung das Gleichgewicht hält. Die Spannkraft des beim Sieden des Wassers, wie überhaupt beim Sieden jeder Flüssigkeit entstehenden Dampfes ist also genau dem Drucke der Atmosphäre gleich oder vermag eine Quecksilbersäule von 760 Millimeter Höhe zu tragen. Verdunstung und Sieden unterscheiden sich dadurch, daß bei der Verdunstung an der Oberfläche einer Flüssigkeit sich Dämpfe von geringer Spannkraft bilden, die sich unmittelbar mit der Luft vermischen, während bei dem Sieden Dämpfe von großer Spannkraft im Innern der Flüssigkeit entstehen.

333. Warum kann Wasser in einem bleiernen oder zinnernen Gefäße zum Sieden gebracht werden, ohne daß das Metall zum Schmelzen kommt?

Weil das Gefäß die vom Feuer ihm mitgetheilte Wärme an das darin befindliche Wasser abgiebt, dieses aber nie eine höhere Temperatur als 80° R. annehmen kann, alle übrige Wärme, die es empfängt, vielmehr zu seiner Verwandlung in Dampf verwendet. Das Gefäß kann also selbst auch keine höhere Temperatur als 80° annehmen, so lange noch Wasser darin ist, das ihm seine überschüssige Wärme abnimmt. Es kann darum auch nicht schmelzen, da der Schmelzpunkt des Zinnes erst bei 188°, der des Bleies sogar bei 267° R. liegt. Aus demselben Grunde kann man sogar Wasser in einem kleinen Gefäße aus Papier über einer Lichtflamme zum Sieden bringen, ohne daß das Papier anbrennt. Das Papier ist zwar ein schlechter Wärmeleiter, aber wenn es hinreichend dünn ist, leitet es doch schnell genug die von der Flamme empfangene Wärme in das Wasser über, so daß seine Temperatur nicht über 80° R. steigen kann, eine Temperatur, bei der es sich noch nicht entzündet.

334. Warum verdampfen Wassertropfen, die man auf eine rothglühende Metallplatte fallen läßt, nicht, sondern sammeln sich wie Quecksilber auf Glas und gerathen in eine drehende Bewegung, ohne zu kochen?

Weil das glühende Metall vom Wasser nicht benetzt wird, Vielmehr eine Dampfschicht die gegenseitige Berührung beider verhindert, so daß auch ein merklicher Uebergang der Wärme vom Metall zum Wasser nicht stattfinden kann. Erst bei abnehmender Hitze stellt sich die Berührung wieder her, und darum erfolgt dann eine plötzliche heftige Dampfbildung. Man nennt diese Erscheinung den Leidenfrost'schen Tropfen, weil sie zuerst von Leidenfrost im Jahre 1756 beobachtet wurde. Daß die Flüssigkeit bei dieser Erscheinung die Tropfenform annimmt, erklärt sich daraus, daß durch die hohe Temperatur die Adhäsion vernichtet ist und die Cohäsion der Flüssigkeit daher zur vollen Wirkung kommt. Auch große Flüssigkeitsmassen kann man in diesen Zustand versetzen, den man deshalb auch den sphäroidalen nennt. Sie verdampfen nicht, sondern behaupten eine Temperatur, die etwas unter ihrem Siedepunkte liegt. Läßt man flüssige schweflige Säure, deren Siedepunkt 10° unter Null liegt, in eine glühende Schale tropfen, und fügt dann einige Tropfen Wasser hinzu, so gefriert dies augenblicklich zu Eis. Mit diesen Erscheinungen hängt wohl auch die merkwürdige Thatsache zusammen, daß Arbeiter in Gießereien ihre Hand in geschmolzenes Eisen tauchen können, ohne sie zu verbrennen. Eine Dampfschicht, welche durch die Feuchtigkeit der Haut gebildet wird, verhindert die unmittelbare Berührung mit dem geschmolzenen Metall und darum auch den Uebergang der Wärme.

335. Warum kann man Zinn in einem Gefäß mit Wasser über dem stärksten Feuer nicht schmelzen?

Weil das Wasser beim Kochen alle ihm vom Feuer zugeführte Wärme zur Dampfbildung verwendet und daher selbst keine höhere Temperatur als die von 80° R. annimmt, weshalb aber auch das Zinn in dem kochenden Wasser nicht über 80° R. erhitzt werden und somit auch nicht seinen Schmelzpunkt, der erst bei 188° R. liegt, erreichen kann. Es giebt freilich, wie bereits erwähnt ([Fr. 298]), Metallgemische oder Metalllegirungen, die schon im siedenden Wasser schmelzen, weil ihr Schmelzpunkt noch unter dem Siedepunkte des Wassers liegt.

336. Warum werden sehr fette oder in Fett gekochte Speisen schneller weich als sehr magere und im bloßen Wasser gekochte?

Weil Fette einen weit höheren Siedepunkt als das Wasser haben und daher auch eine weit höhere Temperatur annehmen können, so daß auch die Speisen, die in ihnen gekocht werden, eine größere Wärmemenge empfangen. Sehr mageres Fleisch, wie Wildfleisch, wird darum auch beim Braten langsamer gar als sehr fettes Fleisch.

337. Warum wird sehr dünner und schlechter Branntwein durch Destilliren stärker?

Weil der Weingeist (Spiritus) oder Alkohol schon bei einer niedrigeren Temperatur flüchtig oder in Dampf verwandelt wird als das Wasser, das Destilliren aber darin besteht, daß man den aus Wasser und Weingeist bestehenden Branntwein erst in Dampf verwandelt und die Dämpfe dann durch Abkühlung wieder zu tropfbarer Flüssigkeit verdichtet. Bei der Destillation wird also mehr Weingeist als Wasser flüchtig, und die verdichtete Flüssigkeit muß dann auch mehr Weingeist als vorher enthalten. Der Gehalt an Weingeist aber bestimmt die Stärke des Branntweines.

Fig. 55.

338. Warum kann man in einem Papin'schen Topfe ([Fig. 55]) selbst Knochen zu einem Brei zerkochen?

Weil in einem solchen Topfe, dessen Deckel luftdicht festgeschraubt ist, die Dämpfe nicht entweichen können und durch ihren heftigen Druck auf das Wasser den Siedepunkt desselben bedeutend erhöhen, so daß das kochende Wasser in dem Topfe eine weit höhere Temperatur annimmt, als das an der Luft unter dem gewöhnlichen Druck der Atmosphäre kochende. Wenn die eingeschlossenen Dämpfe nämlich weiter erhitzt werden, so wächst ihr Bestreben, sich auszudehnen, oder ihre Spannkraft, immer mehr. Sie üben darum nach allen Seiten, also auch auf das Wasser einen hohen Druck aus und machen dadurch das weitere Aufsteigen von Dampfblasen, also das weitere Sieden unmöglich, bis die Temperatur des Wassers selbst so hoch gesteigert ist, daß die sich entwickelnden Dämpfe dieselbe Spannkraft haben, wie die bereits vorhandenen, welche den Druck ausüben. Wegen des heftigen Druckes der gespannten Dämpfe in einem solchen Topfe muß derselbe auch sehr starke Wände aus Eisen oder Messing haben, und zugleich der Deckel mit einem sogenannten Sicherheitsventil versehen sein, welches die Dämpfe bei einem gewissen Grade der Spannung öffnen, und durch welches sie dann entweichen können. Sonst würde man Gefahr laufen, daß der Topf durch den innern Druck gewaltsam zersprengt wird.

339. Warum kommt warmes Wasser, das unter die Glocke der Luftpumpe gebracht wird, bei fortgesetztem Auspumpen der Luft in's Sieden?

Weil durch das Auspumpen der Luft die Luft unter der Glocke verdünnt und dadurch auch der Luftdruck vermindert wird, welcher auf dem Wasser ruht, so daß die Dämpfe, die sich im Innern desselben bilden, einer geringeren Spannkraft bedürfen, um diesem Luftdruck zu widerstehen, um also die Erscheinung hervorzurufen, die wir Sieden nennen. Da aber die Spannkraft des Dampfes von der Temperatur abhängt, so reicht auch eine geringere Temperatur hin, um das Wasser unter der Glocke der Luftpumpe zum Sieden zu bringen.

340. Warum siedet Schwefeläther schon bei gewöhnlicher Temperatur, ja sogar bei 0 Grad unter der Glocke der Luftpumpe, nachdem die Luft ausgepumpt worden ist?

Weil der Schwefeläther schon bei gewöhnlichem Luftdruck einen sehr niedrigen Siedepunkt hat, nämlich bereits bei 28½° R. siedet, seine Dämpfe also bei derselben Temperatur eine größere Spannkraft haben müssen, als die des Wassers, im luftleeren Raume daher auch eine weit niedrigere Temperatur hinreicht, damit seine Dämpfe den äußeren Druck überwinden und so die Erscheinung des Siedens herbeiführen.

Fig. 56.

341. Warum kann man Wasser in dem sogenannten Wasserhammer oder Pulshammer ([Fig. 56]) durch die bloße Wärme der Hand zum Sieden bringen?

Weil das durch die Hand erwärmte Glas hinreichend genug Wärme an das in dem Pulshammer befindliche Wasser abgiebt, um dasselbe in dem luftleeren Raume, der sich darüber befindet, zum Sieden zu bringen. Der Pulshammer besteht nämlich aus zwei durch eine Röhre verbundenen gläsernen Kugeln, in deren einer Wasser vor dem Zuschmelzen des ganzen Apparates bis zum Sieden erhitzt war. Das Innere des Pulshammers enthält also nur Wasserdampf, und der Druck desselben auf das Wasser ist bei gewöhnlicher Temperatur ein so geringer, daß schon die geringste Erwärmung des Wassers hinreicht, Dämpfe zu erzeugen, deren Spannkraft diesen Druck überwindet.

342. Warum siedet Wasser auf hohen Bergen bei einem geringeren Wärmegrad als in der Ebene?

Weil auf hohen Bergen der Luftdruck ein weit niedrigerer ist als in der Ebene, die Wasserdämpfe daher auch einer geringeren Spannkraft bedürfen, um diesen Druck zu besiegen, und um diese geringere Spannkraft hervorzubringen, wieder eine geringere Wärme nöthig ist. Auf der Hochebene von Quito in Südamerika kocht daher das Wasser schon bei 72° R., auf dem Montblanc sogar bei 68° R. Auf solchen hohen Bergen kann man daher auch Fleisch in offenen Gefäßen nicht weich kochen. – Man kann diese verschiedenen Siedetemperaturen des Wassers auch benutzen, um die Höhen der Berge zu messen.

343. Warum wird der Deckel eines am Feuer stehenden Gefäßes, in dem sich siedendes Wasser befindet, mit einiger Gewalt in die Höhe gehoben oder abgeworfen?

Weil die sich beim Sieden entwickelnden Wasserdämpfe vermöge ihrer Spannkraft einen bedeutenden Druck nach allen Seiten hin ausüben, dieser Druck aber zunächst nur gegen den Deckel wirksam werden kann, der von oben her der Ausdehnung der Dämpfe Widerstand leistet. Wäre der Deckel fest verschlossen, so würde die mit der Temperatur wachsende Spannkraft der Wasserdämpfe endlich das ganze Gefäß zersprengen.

Fig. 57.

344. Warum wird der luftdicht schließende Kolben in einem Glasgefäß, das etwas Wasser enthält, gewaltsam in die Höhe getrieben, wenn man dies Wasser über einer Lampe erhitzt, und warum wird dieser Kolben von selbst wieder abwärts getrieben, sobald man das Gefäß in kaltes Wasser taucht?

Weil die durch die Wärme sich entwickelnden Dämpfe wegen ihrer Spannkraft sich ausdehnen und den Kolben, der sie abschließt, aufwärts treiben, durch die Abkühlung im kalten Wasser aber sich wieder verdichten, dadurch einen luftverdünnten Raum erzeugen und nun dem äußeren Luftdruck, der auf die obere Seite des Kolbens wirkt, keinen Widerstand mehr entgegensetzen können, so daß dieser den Kolben wieder abwärts treibt.

345. Warum kann man mit Hülfe des Wasserdampfes große Maschinen in Bewegung setzen?

Weil eingeschlossener Wasserdampf eine sehr bedeutende Spannkraft besitzt, die dadurch wirksam gemacht werden kann, daß man auf der anderen Seite des Körpers, welchen der Dampf in Bewegung setzen soll, einen luftverdünnten oder luftleeren Raum herstellt.

Die einfachste Einrichtung einer Dampfmaschine wurde schon im Jahre 1690 von Papin in Marburg ersonnen und entsprach im Wesentlichen der oben ([Fr. 344]) besprochenen Vorrichtung, bei welcher Wasser in einem Glasgefäß abwechselnd erhitzt und wieder abgekühlt wird. Dieser Gedanke kam jedoch nie zur Ausführung. Wirklich hergestellt wurde die erste Dampfmaschine von dem Engländer Thomas Savery im Jahre 1698. Dieser vermied den von Papin vorgeschlagenen Kolben und suchte das Wasser selbst durch Dampf zu heben. Seine Maschine bestand daher aus einem Dampfkessel, in welchem der Dampf hergestellt wurde, und einem zum Theil mit Wasser gefüllten Behälter, in welchen der Dampf einströmte. Mit diesem Behälter stand ein Saugrohr in Verbindung, welches in das Wasser hinabreichte, das gehoben werden sollte, während an der entgegengesetzten Seite sich ein Steigrohr befand, um das Wasser aufwärts zu führen. Beide Röhren waren mit Ventilen versehen. Sobald der Dampf in den Behälter einströmte, wurde durch den Druck desselben das Ventil der Saugröhre geschlossen und das im Behälter befindliche Wasser durch das Steigrohr hinaufgetrieben. Wurde dann der Behälter durch darüber fließendes kaltes Wasser abgekühlt, so verdichtete sich der Dampf, es entstand ein luftleerer Raum, und während der Druck des Wassers das Ventil des Steigrohrs schloß, wurde durch den Druck der Atmosphäre das Wasser durch das Saugrohr in den Behälter emporgetrieben. Die große Spannung des Dampfes aber, welche diese Maschine erforderte, und der dadurch bedingte Aufwand von Brennmaterial ließen diese Maschine wenig in Gebrauch kommen, und schon nach einigen Jahren (1705) wurde sie durch die glänzende Erfindung zweier Handwerker, des Schlossers Newcomen und des Glasers Cowley, gänzlich verdrängt. Diese kehrten zu dem Papin'schen Gedanken der Anwendung eines Kolbens zurück, ließen aber den Dampf nicht in dem Cylinder selbst, sondern in einem besondern Dampfkessel erzeugen, und die Verdichtung der Dämpfe nicht durch Abkühlung der Wände von außen, sondern durch Einspritzen kalten Wassers bewirken. Die Newcomen'sche Maschine besteht daher aus einem Dampfkessel, in welchem der Dampf erzeugt wird, und einem durch ein enges Rohr damit verbundenen Cylinder, in welchem sich ein Kolben luftdicht auf und nieder bewegt. Sobald der Dampf in diesen Cylinder eingetreten ist und den Kolben aufwärts getrieben hat, wird durch einen Hahn die Verbindung mit dem Kessel geschlossen und ein zweiter Hahn geöffnet, durch welchen ein Strahl kalten Wassers in den Cylinder eingespritzt wird. Die Dämpfe werden dadurch verdichtet, und der von außen auf den Kolben wirkende Druck der atmosphärischen Luft treibt ihn nun nieder. Um den Auf- und Niedergang des Kolbens in den Auf- Und Niedergang einer Pumpenstange zu verwandeln, ist der Kolben mittelst einer Kette an den Arm eines Balanciers gehängt, der auf einer Mauer ruht, und an dessen anderm Arme ebenfalls mittelst einer Kette die Pumpenstange hängt. Durch den Niedergang des Kolbens wird die Pumpenstange gehoben, während sie beim Aufgange des Kolbens durch ihr eigenes Gewicht wieder niedergezogen wird. Die Regulirung der Hähne wurde durch die sinnreiche Erfindung eines Knaben, Namens Potter, im Jahre 1713 vermittelst einfacher Hebelvorrichtungen ebenfalls dem Balancier übertragen.

Fig. 58.

Bei solchen Maschinen, wie die Newcomen'sche, spielt der Dampf nur eine untergeordnete Rolle. Die eigentliche bewegende Kraft ist der Luftdruck, der den Kolben niederdrückt und die Pumpenstange emportreibt. Man nennt sie deshalb auch atmosphärische Maschinen, und weil sie nur während des Kolbenniederganges eine Arbeit verrichten, einfach wirkende Maschinen. Erst mehr als ein halbes Jahrhundert später beginnt die Entwicklung der Dampfmaschine zu ihrer heutigen glänzenden Höhe durch den Mechaniker James Watt in Glasgow. Schon im Jahre 1765 beseitigte er den bisherigen Uebelstand eines zu großen Dampfverbrauchs dadurch, daß er die Verdichtung des Dampfes nicht mehr in dem Dampfcylinder selbst, sondern in einem besonderen Raume, dem Condensator, geschehen ließ, der mit dem Dampfcylinder durch ein mit einem Hahne versehenes Rohr beliebig in Verbindung gesetzt werden kann. Die wichtigste Verbesserung aber begann er mit dem Jahre 1769, indem er den Niedergang des Kolbens nicht mehr durch den äußeren Luftdruck bewirken, sondern die ganze Thätigkeit der Maschine durch die Spannkraft des Dampfes hervorbringen ließ. Er verwandelte also die atmosphärische Maschine in eine wirkliche Dampfmaschine und die einfach wirkende in die doppelt wirkende, d. h. beim Aufgang wie beim Niedergang des Kolbens Arbeit leistende Maschine. Diese Verbesserung ist darum so wichtig, weil sie erst die Dampfmaschine für alle die mannigfachen und kunstreichen Arbeiten befähigt hat, die wir sie heute verrichten sehen.

Fig. 59.

Fig. 60.

Um die Aufwärtsbewegung des Kolbens durch den Dampfdruck bewirken zu lassen, wurde zunächst der Dampfcylinder auch oben geschlossen und dann eine Einrichtung geschaffen, die es möglich machte, den Cylinderraum oberhalb wie unterhalb des Kolbens abwechselnd mit dem Dampfkessel und mit dem Condensator in Verbindung zu setzen. Diese Einrichtung war der sogenannte Vierwegehahn, d. h. ein Hahn mit zwei von einander unabhängigen Durchbohrungen, durch welche er von vier an ihm mündenden Röhren abwechselnd je zwei mit einander in Verbindung setzen kann. Jetzt dient statt desselben das Schieberventil ([Fig. 59] u. [60]). Es ist ein viereckiger Kasten, in welchen der Dampf aus dem Kessel zunächst eintreten muß, und in welchen zugleich die Kanäle münden, die den Dampf einerseits zum Condensator, andererseits zum obern und untern Cylinderraum leiten sollen. In diesem Kasten bewegt sich ein Schieber auf und nieder, welcher so eingerichtet ist, daß er abwechselnd den zum obern und dann wieder den zum untern Cylinderraum führenden Kanal absperrt und dafür den Weg zum Condensator frei läßt. Hat also der Kolben seine höchste Stellung erlangt, so treten die Dämpfe aus dem Kessel durch den Kasten in den obern Cylinderraum ein und treiben den Kolben abwärts ([Fig. 59]). Gleichzeitig ist den Dämpfen des unteren Raumes durch das Rohr a der Weg in den Condensator geöffnet, in welchem sie verdichtet werden. Ist der Kolben unten angelangt, so treten in Folge der veränderten Schieberstellung die Dämpfe aus dem Kessel in den Raum unter dem Kolben und treiben diesen aufwärts ([Fig. 60]), während die Dämpfe oberhalb des Kolbens zum Condensator entweichen.

Die Bewegung des Kolbens wird nun durch die Kolbenstange auf den Balancier übertragen. Da aber die auf- und niedergehende Kolbenstange eine senkrechte gradlinige Bewegung hat, während das Ende des Balanciers, wie das Ende eines Wagebalkens, offenbar einen Kreisbogen beschreibt, so ist die Kolbenstange nicht unmittelbar an den Balancier, sondern erst vermittelst des sogenannten Watt'schen Parallelogramms befestigt. Dieses besteht aus zwei gleich langen Stangen, die am Balancier aufgehängt und unten durch eine dritte Stange verbunden sind, und zwar so, daß sie sich sämmtlich an ihren Verbindungsstellen um Charniere drehen können. An der vom Ende des Balanciers herabhängenden Stange ist unten, gleichfalls drehbar, die Kolbenstange befestigt, während eine vierte, am Maschinengestell befestigte Stange mit der zweiten vom Balancier herabhängenden Stange verbunden ist. Wird nun der Balancier durch den auf- und niedergehenden Kolben in Bewegung gesetzt, so verschieben sich die das Parallelogramm bildenden Stangen so gegen einander, daß der Endpunkt desselben, an welchem die Kolbenstange befestigt ist, sich in grader Linie auf- und abwärts bewegt.

Um die hin- und herschwingende Bewegung dieses Balanciers in die rotirende Bewegung einer Welle zu verwandeln, wandte Watt den einfachen, vom Spinnrad und Schleifstein her Jedem bekannten Mechanismus der Kurbel und Treibstange an. Die Treibstange oder, wie sie bei der Dampfmaschine heißt, die Pleuelstange P ([Fig. 58]) ist am Ende des Balanciers drehbar aufgehängt und umfaßt mit ihrem untern Ende den Zapfen der Kurbel, die an der zu drehenden Welle befestigt ist. Die Drehung der Welle kann zunächst freilich keine gleichförmige sein. Schon die Ungleichheiten in der Bewegung des Kolbens, wie in der Wirkung des Dampfdrucks, bedingen eine ungleichförmige Geschwindigkeit, und noch mehr bedingt diese die Stellung der Treibstange zur Kurbel selbst. So oft nämlich die Kurbel ihren höchsten oder tiefsten Stand erreicht, fällt ihre Richtung mit der Treibstange zusammen, und diese kann natürlich in solchen Augenblicken gar nicht auf die Umdrehung der Kurbel wirken. Daß die Maschine in diesen sogenannten todten Punkten der Kurbel nicht zum Stillstehen kommt, liegt nur an der Trägheit, welche die einzelnen Maschinentheile ihre Bewegung fortsetzen läßt. In einer Vermehrung dieser Trägheit fand darum auch Watt das Mittel, die Ungleichheiten in der Bewegung der Maschine auszugleichen. Dies Mittel besteht in dem Schwungrade, einem großen Rade von bedeutendem Gewicht, das auf der Kurbelwelle befestigt ist und mit dieser sich umdreht, um vermöge seiner Trägheit gleichsam in Momenten des Ueberflusses Arbeit aufzusammeln und sie in Momenten des Mangels wieder abzugeben.

Fig. 61.

Endlich blieb zur Vervollkommnung der Dampfmaschine noch übrig, auch die Unregelmäßigkeiten zu beseitigen, welche theils durch Aenderungen in der Dampfspannung in Folge von Unregelmäßigkeiten in der Unterhaltung des Feuers und Zufuhr des Wassers, theils durch Veränderungen der Widerstände, welche der Kolbendruck überwinden soll, um mancherlei Arbeiten zu verrichten, veranlaßt werden. Vermittelst einer überaus sinnreichen Einrichtung, der sogenannten Drosselklappe, in Verbindung mit dem Centrifugal-Regulator ([Fig. 61]), wird auch diese Aufgabe von der Maschine selbst gelöst. Die Drosselklappe ist eine gewöhnliche Klappe (K), die in dem Rohre, das den Dampf vom Kessel zum Cylinder führt, angebracht ist. Ist sie völlig geöffnet, so strömt der Dampf ungehindert in den Cylinder; je mehr sie geschlossen wird, desto mehr wird auch die Menge des einströmenden Dampfes vermindert. Die Regulirung dieser Klappe ist dem Centrifugal-Regulator übertragen. Er besteht aus zwei durch eine Welle (A) gesteckten und um einen Zapfen (C) drehbaren Hebeln (B), die unten mit metallenen Kugeln (D) von bedeutendem Gewichte beschwert sind. Mit diesen sind an ihren oberen Enden, um Zapfen drehbar, zwei kleinere Stangen (E) verbunden, die oben an einer Hülse (F) befestigt sind, welche an der Axe der Welle auf und nieder gleiten kann. Sobald die Welle rasch gedreht wird, fahren die schweren Kugeln vermöge ihrer Centrifugalkraft auseinander und ziehen dadurch die Hülse herab. An dieser Hülse aber ist ein zweiarmiger Hebel (G) befestigt, welcher durch eine Stange (I) den kleinen Hebel bewegt, der die Drosselklappe dreht. Durch das Herabgleiten der Hülse wird also die Drosselklappe mehr und mehr geschlossen. Bewegt sich die Welle dagegen langsamer, so sinken die Kugeln etwas herab, rücken dadurch die Hülse mehr hinauf, und der von dieser abhängige Hebel öffnet die Klappe mehr. Man sieht also, daß, so oft sich der Gang der Maschine aus irgend einer Ursache beschleunigt, sei es, weil die von ihr zu überwindenden Widerstände abnehmen, oder weil die Dampfspannung im Kessel wächst, die Kugeln des Regulators auseinander fahren, die Drosselklappe mehr zudrehen und dadurch den Dampfzufluß vermindern; daß aber, so oft die Geschwindigkeit der Maschine aus andern Gründen sich verlangsamt, die zusammenfallenden Kugeln des Regulators die Drosselklappe mehr öffnen und dadurch den Dampfzufluß vermehren.

So ist die Dampfmaschine das wunderbare Werk geworden, als das sie heute dasteht. Sie verrichtet nicht allein die ihr aufgetragene mannigfaltige Arbeit, sondern regelt auch selbst ihren Gang als ihr eigener Wärter. Sie bewegt selbst durch Hebelstangen die Steuerung, d. h. sie öffnet und schließt die Ventile, welche den Dampf in die Räume des Cylinders vertheilen und zum Condensator leiten. Sie bewegt selbst die Pumpen, die Kaltwasserpumpe sowohl, welche dem Condensator das zur Verdichtung der Dämpfe nöthige kalte Wasser zuführt, als die sogenannte Luft- oder Warmwasserpumpe, welche das condensirte Wasser und die in dem Condensator sich anhäufende Luft entfernt, als endlich die Speisepumpe, welche den Kessel mit frischem Wasser versorgt.

Fig. 62.
[Größeres Bild]

346. Warum hat die Locomotive weder Balancier noch Schwungrad, wie andere Dampfmaschinen?

Weil die Locomotive ([Fig. 62]) einerseits eine sogenannte Hochdruckmaschine ist, d. h. mit Dämpfen von hoher Spannung arbeitet, deshalb aber schon der gewöhnliche Druck der Atmosphäre auf der einen Seite des Kolbens einen genügenden Unterschied der beiderseitigen Druckkräfte zuläßt, eine Condensirung der Dämpfe also und eine Regelung der dadurch bedingten Pumpen und Ventile durch den Balancier überflüssig wird, und weil andrerseits die Locomotive auch eine gekuppelte Maschine ist, d. h. aus zwei so mit einander verbundenen Maschinen besteht, daß die Kurbeln derselben einander unterstützen und zur Gleichförmigkeit der Bewegung eines Schwungrades nicht bedürfen.

Man unterscheidet nämlich Niederdruck- und Hochdruckmaschinen, d. h. solche, bei welchen Dämpfe angewandt werden, deren Spannung die der gewöhnlichen atmosphärischen Luft nur um weniges, höchstens das 1¼–1½fache übertrifft, und solche, bei denen die Dampfspannung das 3–6fache des gewöhnlichen Atmosphärendrucks beträgt. Bei der Niederdruckmaschine läßt sich der Dampf nur dadurch wirksam machen, daß man auf der entgegengesetzten Seite des Kolbens einen luftverdünnten Raum erzeugt, also die Dämpfe verdichtet. Bei der Hochdruckmaschine ist diese Dampfverdichtung nicht nöthig, darum kann der ganze Bau ein viel einfacherer sein. Die Pleuelstange wird hier unmittelbar mit der Kolbenstange verbunden, und die gradlinige Bewegung der letzteren einfach durch zwei Leisten, die sogenannten Gradführungen, bewirkt, zwischen denen die Kolbenstange hin und her gleitet. Die Bewegung der einzigen Pumpe, die noch erforderlich ist, der Speisepumpe, und der wenigen Ventile, nämlich des Schieberventils und der Drosselklappe, geht unmittelbar von der Kurbelwelle aus und wird durch excentrische Scheiben vermittelt, die an der Welle befestigt sind. Bei gekuppelten Maschinen, wie sie die Locomotive gleichfalls darstellt, sind überdies zwei Maschinen so mit einander verbunden, daß sie auf eine gemeinschaftliche Kurbelwelle wirken und zwar in der Weise, daß die beiden Kurbeln einen rechten Winkel mit einander bilden, daß also jedesmal, wenn die eine Kurbel sich in einem ihrer todten Punkte befindet, die andere gleichzeitig in ihre günstigste Stellung eingetreten ist. Zur Ueberwindung der todten Punkte bedarf es also hier eines Schwungrades nicht.

Die erste Hochdruckmaschine ist von Oliver Evans in Philadelphia hergestellt worden, der sie bereits im Jahre 1800 zur Bewegung eines Wagens benutzte. Die erste Locomotive wurde von dem englischen Ingenieur George Stephenson im Jahre 1814 gebaut.

Die Schiffsmaschine ist eine gekuppelte Niederdruckmaschine. Das erste mit Schaufelrädern versehene Dampfschiff wurde von Robert Fulton in Newyork im Jahre 1807, das erste Schraubendampfschiff von Ericson und Smith im Jahre 1839 in Amerika gebaut.

347. Warum muß der Kessel einer Dampfmaschine mit einem Sicherheitsventil versehen sein?

Weil in dem völlig verschlossenen Kessel die Dämpfe sich anhäufen und dadurch eine so bedeutende Spannkraft erlangen würden, daß sie den Kessel gewaltsam zersprengen müßten, was durch das Sicherheitsventil verhindert wird, da dieses sich bei einem bestimmten Drucke der Dämpfe öffnet und diese so lange ausströmen läßt, bis derjenige Druck wieder hergestellt ist, bei welchem man eine Gefahr des Zerspringens nicht mehr zu fürchten hat.