Gleichgewicht und Bewegung fester Körper.

Kein ruhender Körper kommt durch sich selbst in Bewegung; es bedarf dazu einer bewegenden Ursache, einer Kraft. Wenn mehrere Kräfte in ihren gegenseitigen Wirkungen sich vollständig aufheben, so sagt man, sie halten sich das Gleichgewicht. Das Gleichgewicht findet statt, wenn zwei genau gleiche Kräfte nach entgegengesetzten Richtungen wirken. Wenn eine Kraft auf einen Körper wirkt, so bewegt er sich nur in der Richtung dieser Kraft, und seine Bewegung ist eine gradlinige. Wenn auf einen bewegten Körper in jedem Augenblick eine andere Kraft einwirkt, so verändert er in jedem Augenblicke seine Richtung, und seine Bewegung wird eine krummlinige. Eine solche in jedem Augenblick wirkende Kraft ist die Schwere, und geworfene Körper beschreiben daher krummlinige Bahnen. Durchläuft ein Körper in gleichen Zeiten immer gleiche Räume, so ist seine Bewegung eine gleichförmige. Durchläuft er in gleichen Zeiten verschiedene Räume, so ist seine Bewegung eine ungleichförmige, und zwar eine beschleunigte oder verzögerte, je nachdem die in gleichen Zeiten durchlaufenen Räume zu- oder abnehmen. Ein fallender Körper hat eine beschleunigte, ein aufwärts geworfener Körper eine verzögerte Bewegung. Das Verhältniß zwischen der Länge des Weges und der Zeit, in welcher er zurückgelegt wird, nennt man die Geschwindigkeit der Bewegung. Von zwei bewegten Körpern hat derjenige die größere Geschwindigkeit, welcher in derselben Zeit den größeren Weg zurücklegt. Die Wirkung eines bewegten Körpers hängt sowohl von der Masse desselben als von der Geschwindigkeit seiner Bewegung ab; sie entspricht dem Produkt aus der Masse und der Geschwindigkeit.

100. Warum bringt eine mit der Hand geworfene Kugel eine viel geringere Wirkung hervor, als eine aus der Büchse geschossene?

Weil die geworfene Kugel sich mit einer viel geringeren Geschwindigkeit bewegt, als die geschossene, die Wirkung eines bewegten Körpers aber nicht blos von der Masse desselben, sondern auch von seiner Geschwindigkeit abhängt.

101. Warum ist man trotz aller Anstrengung nicht im Stande, einen Korkpfropfen ebenso weit zu werfen, wie einen gleich großen Stein?

Weil der Kork, auch wenn wir ihm dieselbe Geschwindigkeit geben wie dem Stein, doch nicht dieselbe Wirkung auf die widerstehende Luft ausüben kann, da diese Wirkung außer von der Geschwindigkeit auch von der Masse des bewegten Körpers abhängt, die Masse des Korks aber eine außerordentlich geringe gegen die Masse des Steins ist. Die Bewegung des Korks wird daher viel früher durch den Widerstand der Luft aufgehoben als die Bewegung des Steins.

Fig. 13.

102. Warum gelangt ein Kahn, der zugleich vom Strom und von einem von der Seite her wehenden Winde getrieben wird, in schräger Richtung über einen Fluß?

Weil ein Körper, auf welchen gleichzeitig zwei Kräfte in verschiedenen Richtungen wirken, weder der Richtung der einen noch derjenigen der andern Kraft folgen kann, sondern eine mittlere Richtung einschlagen muß. Der Kahn gelangt genau an dieselbe Stelle des andern Ufers, an welche er gelangt wäre, wenn er zuerst nur von der Kraft der Strömung (von a nach b) und dann nur von der Kraft des Windes (von b nach d) getrieben worden wäre. Er hat also die Mittellinie oder Diagonale eines Parallelogramms durchlaufen, dessen Seiten die beiden auf ihn wirkenden Kräfte ihrer Stärke wie ihrer Richtung nach vorstellen. Er hat sich also so bewegt, als ob er von einer einzigen Kraft, welche diese Diagonale vorstellt, getrieben wäre. Dieses Gesetz, welches allgemein die Bewegung eines von zwei verschieden gerichteten Kräften bewegten Körpers bestimmt, nennt man das Gesetz des Parallelogramms der Kräfte.

Fig. 14.

103. Warum wird ein Schiff auch von einem Seitenwinde, der seine schief gestellten Segel trifft, vorwärts getrieben?

Weil der Stoß des Windes (fe), wenn er schief auf die Segelfläche (cd) trifft, gleichsam in zwei Kräfte zerlegt wird, von denen die eine (eh) längs der Fläche des Segels wirkt, also nutzlos bleibt, die andere (ge) aber senkrecht gegen das Segel trifft, also zur Wirkung kommt. Wegen der schiefen Stellung des Segels kann aber auch diese letztere Kraft für die Bewegung des Schiffes selbst nicht ihre volle Wirkung ausüben, wird vielmehr wieder gleichsam in zwei Seitenkräfte zerlegt, von denen die eine (ei) das Schiff in der Richtung des Kiels vorwärts treibt, die andere (ek) es seitwärts drängt. Da nun das Schiff so gebaut ist, daß es in der Richtung nach vorn vom Wasser einen möglichst geringen, in der Richtung nach seitwärts einen möglichst großen Widerstand erfährt, und da das Steuerruder diese Stellung des Rumpfes behauptet, so folgt das Schiff dem Stoße des Windes nach vorn möglichst vollständig, dem Stoße nach der Seite aber nur in sehr geringem Grade.

104. Warum steigt ein Papierdrache, den ein Knabe am Faden gegen den Wind zieht, in die Höhe, obwohl er doch als schwerer Körper zu Boden fallen sollte?

Weil auch hier der Stoß der Luft wegen der schiefen Stellung des Drachen zerlegt wird und nur einen Theil seiner Kraft in einer auf die Fläche des Drachen senkrechten Richtung wirksam machen kann, dieser abgelenkte Stoß aber sich wieder mit dem Zuge des Fadens verbindet und so eine von dem Faden weg nach oben strebende Bewegung hervorbringt.

Fig. 15.

105. Warum kann der Auflader vermittelst der Schrotleiter ein schweres Faß auf den Wagen bringen, das er sonst nicht zu heben vermag?

Weil das Fallbestreben eines Körpers auf der schiefen Ebene, wie sie die Schrotleiter darstellt, nicht mehr dem ganzen Gewichte des Körpers entspricht, der Druck desselben vielmehr in zwei Kräfte zerlegt wird, in eine senkrecht auf die Ebene wirkende (ad), welche aber durch den Widerstand der Ebene aufgehoben wird, und in eine mit der Ebene parallel wirkende (ae), welche allein noch überwunden werden muß, wenn der Körper aufwärts bewegt werden soll. Diese noch zu überwindende Kraft ist aber selbstverständlich viel kleiner als das Gewicht des schweren Fasses und steht zu diesem in demselben Verhältniß, wie die Höhe der schiefen Ebene (AC), d. h. hier die Höhe des Wagens zu der Länge derselben (AB), d. h. hier die Länge der Schrotleiter.

Fig. 16.

106. Warum kann der Holzhauer mit Hülfe des Keils die großen Klötze leichter spalten als mit der Axt?

Weil auch der Keil nach zwei Seiten eine schiefe Ebene darbietet, und daher die Widerstände, welche das Holz dem Eindringen des Keils entgegensetzt, an den schiefen Flächen desselben eine Theilung erfahren, und zwar jeder in eine senkrecht nach oben gerichtete Kraft (eg) und in eine andere (dg und fg) senkrecht auf die Richtung, in welcher der Keil eindringt, zerlegt wird. Die letzteren beiden aber heben einander auf als gleich und entgegengesetzt gerichtet, so daß nur die nach oben wirkenden Kräfte übrig bleiben, um den Keil aus dem Spalt hinauszutreiben. Nur diese hat der Schlag des Hammers auf den Keil zu überwinden. Sie sind aber kleiner als die ursprünglichen Widerstände selbst und verhalten sich zu diesen wie der halbe Rücken zur Seitenfläche des Keils. Auch die Axt, wie jedes schneidende Werkzeug ist zwar ein Keil, aber mit schmälerem Rücken. Sie dringt darum zwar leichter in das Holz ein, erfährt aber einen stärkeren Druck durch die Widerstände des Holzes von der Seite her. Deshalb bedient man sich zum Spalten von Scheitholz einer Axt, deren Schneide einen ziemlich stumpfen Keil bildet, zum Kleinhauen aber einer Axt mit sehr spitzem Keile.

107. Warum kann man einen Balken eines Hauses, der sich etwas gesenkt hat, wieder heben, wenn man einen Keil darunter treibt?

Weil dieser Keil nur eine bewegliche schiefe Ebene ist, und der Balken, wenn er an seiner Fläche gleichsam hinaufgeschoben wird, mit einem um so geringeren Theile seines Gewichtes widersteht, je flacher der Keil ist.

108. Warum führt man Wege in vielen Windungen auf hohe und steile Berge?

Weil man durch diese Windungen die Steilheit des Weges vermindert, da der gewundene Weg gleichsam nur eine bedeutend verlängerte schiefe Ebene darstellt, deren Neigung um ebenso viel kleiner ist, dieselbe Last aber eine um so geringere Kraft zur Aufwärtsbewegung erfordert, je geringer die Neigung der Ebene ist. An Arbeit wird allerdings dabei nichts erspart; denn was an Kraft gewonnen wird, geht am Wege verloren. Die Last muß vielleicht 8 oder 10mal so weit fortbewegt werden, als die Höhe des Berges, zu der sie gehoben wird, beträgt.

Fig. 17.

109. Warum kann man mit Hülfe der Schraube bei der Buchdrucker- oder Weinpresse einen so starken Druck ausüben?

Fig. 18.

Weil eine Schraube nichts Anderes ist, als eine um einen Cylinder gewundene schiefe Ebene, und ein gegen diese geleisteter Widerstand theilweise wirkungslos an der schiefen Ebene abgleitet, so daß eine auf die Schraube wirkende Kraft einem weit größeren Gegendrucke das Gleichgewicht halten kann. Bei der Schraube verhält sich die Kraft zu dem Widerstande oder der Last, der sie das Gleichgewicht zu halten vermag, wie die Höhe des Schraubenganges zu dem Umfange der Spindel. Hat also eine solche Schraube einen Durchmesser von 1 Centimeter, und ist jeder Schraubengang 1 Millimeter hoch, so vermag sie mit einem Kraftaufwande von nur 1 Pfund einen Druck von 31½ Pfunden auszuüben. Um die Reibung zu vermindern, welche die Wirkung der Schraube schwächen muß, pflegt man sie sich in einer Schraubenmutter bewegen zu lassen, d. h. in einem hohlen Cylinder, an dessen innerer Fläche sich genau dieselbe schiefe Ebene, vertieft oder eingeschnitten, hinaufwindet. Man kann auch die Schraubenspindel fest machen und die Schraubenmutter sich daran auf und nieder bewegen lassen. Darauf beruhen die Buchbinderpresse und die Kartenpresse. Man kann natürlich auch die Schraube benutzen, um schwere Lasten zu heben, freilich wird bei jedem Umgang der Schraube die Last nur um die Höhe des Schraubenganges gehoben werden.

110. Warum kann man mit dem Pfropfenzieher den Kork aus einer Flasche ziehen?

Weil der Pfropfenzieher ein schraubenförmig gewundener Keil ist, dessen Keilform das Eindringen in den Kork erleichtert, dessen Schraubenform aber die Reibung beim Aufwärtsziehen so vergrößert, daß der Kork an dem Propfenzieher hängen bleibt.

111. Warum kann man mit Hülfe einer vom Dampfe getriebenen Schraube ein Schiff bewegen?

Weil, wenn die Schraube umgedreht wird, sie mit ihrer schiefen Fläche einen Stoß gegen das Wasser ausübt, dessen Wirkung, wenn sie auch wegen der schiefen Richtung des Stoßes zum Theil seitwärts verloren geht, doch stark genug ist, um durch den Widerstand, den die Wassermasse diesem Stoße entgegensetzt, das Schiff vorwärts zu treiben.

Fig. 19.

112. Warum wird die Schraube häufig zu feinen Messungen, namentlich zur Messung sehr dünner Gegenstände benutzt, wo alle anderen Meßinstrumente nicht mehr ausreichen?

Weil jede ganze Umdrehung der Schraube auch eine Hebung oder Senkung ihrer Spindel um die Höhe ihres Schraubenganges bewirkt, und wenn man sie mit einer Scheibe versieht, die an ihrem Umfange mit einer feinen Theilung versehen ist, auch jede Umdrehung um einen Theilstrich eine Hebung oder Senkung um einen entsprechenden Theil dieser Höhe bewirken muß. Ist der Rand der Scheibe z. B. in 100 Theile getheilt, und zählt die Schraube auf jeden Centimeter 100 Schraubengänge, so entspricht jede Drehung der Scheibe um einen Theilstrich einer Hebung oder Senkung der Spindel um 1/10000 Centimeter. Ruht die Schraubenmutter also mittelst dreier stählerner Füße auf einer geschliffenen Glasplatte, und legt man einen dünnen Gegenstand unter ihre Spindel und dreht die Scheibe, bis die Spindel den Gegenstand berührt, so kann man an der Größe der Drehung die Dicke des Gegenstandes messen.

Fig. 20.

113. Warum kann ein Arbeiter mit Hülfe eines einfachen Hebebaumes einen viele Centner schweren Ballen bewegen?

Weil dieser Hebebaum ein sogenannter Hebel und zwar ein zweiarmiger Hebel ist, dessen Stützpunkt ein dem zu hebenden Ballen möglichst nahe untergeschobener Klotz oder Stein ist, und an welchem eine Kraft um so mehr leistet, in je weiterer Entfernung vom Stützpunkt sie wirkt. Indem der Mann den Hebebaum an einem Ende niederdrückt, um am anderen Ende die Last zu heben, dreht er die Stange um ihren Stützpunkt (c). Das entferntere Ende beschreibt dabei einen größeren Bogen als das nähere, und zwar einen genau so viel größeren, als die Entfernung des Angriffspunktes vom Stützpunkt (ac) größer ist, als die Entfernung der Last vom Stützpunkt (cb). Die Leistung einer Kraft oder eine Arbeit wird aber gemessen durch das Produkt aus dem zu überwindenden Widerstande und dem zurückgelegten Wege. Um so viel kleiner der Weg, um so größer kann also der Widerstand oder die zu hebende Last sein. Am Hebel halten sich also Kraft und Last das Gleichgewicht, wenn sie sich umgekehrt wie die Abstände ihrer Angriffspunkte vom Stützpunkt oder, wenn man diese Abstände Hebelarme nennt, umgekehrt wie die Hebelarme verhalten. Ist der Hebebaum 2 Meter lang und der Klotz ¼ Meter vom Ballen untergeschoben, so kann der Arbeiter diesen Ballen mit einem Kraftaufwande von 50 Pfund in Bewegung setzen, wenn derselbe auch 4 Centner wöge.

Fig. 21.

114. Warum müssen die beiden Arme einer Wage genau gleich lang sein?

Weil bei der Wage zwei gleiche Gewichte einander das Gleichgewicht halten sollen, die Wage aber ein zweiarmiger Hebel ist, an welchem zwei gleiche Gewichte nur dann im Gleichgewicht sein können, wenn sie auch in gleichem Abstande vom Drehpunkt wirken. Wären die Arme der Wage ungleich, so würde schon ein kleines Gewicht am längeren Arme hinreichen, einem größeren am kürzeren Arme das Gleichgewicht zu halten. Gleichwohl kann man auch auf einer unrichtigen Wage richtig wägen. Man legt nämlich zuerst auf die eine Schale der Wage den zu wägenden Körper, auf die andere so viele Gewichte oder Schrotkörner, als nöthig sind, um das Gleichgewicht herzustellen, nimmt dann den Körper selbst weg und ersetzt ihn durch Gewichte. Die Größe dieser letzteren bestimmt das Gewicht des Körpers. Man nennt dieses Verfahren Tariren. In Haushaltungen bedient man sich jetzt häufig der sogenannten Roberval'schen Tafelwage ([Fig. 21]), die den Vorzug großer Bequemlichkeit hat, wenn sie auch keine sehr genauen Wägungen zuläßt. Bei dieser stehen die Schalen über dem Wagebalken, der gewöhnlich in einem Kasten verborgen ist. Die Träger der Schalen ruhen auf scharfen Schneiden (C und D) des Wagebalkens, sind aber zugleich unten durch ein Querstück (AB) beweglich verbunden, das sich um einen festen Stift (Q) dreht, der genau senkrecht unter dem Aufhängepunkte (O) des Wagebalkens steht. Dadurch sind die Träger gezwungen, bei den Schwankungen der Wage stets in senkrechter Stellung zu bleiben.

Fig. 22.

115. Warum kann man bei der Schnellwage mit demselben Gewichte verschiedene Lasten wägen?

Weil die Schnellwage ([Fig. 22]) ein ungleicharmiger Hebel ist, an dessen längerem Arme das Gewicht verschoben wird, welches daher in verschiedenen Abständen vom Drehpunkt auch verschiedenen Lasten am kürzeren Arme das Gleichgewicht halten muß. Ist der längere Arm mit Theilstrichen versehen, deren Abstände der Länge des kürzeren Armes gleich sind, so wird das Laufgewicht am 2ten Theilstrich der 2fachen, am 3ten der 3fachen, am 10ten der 10fachen Last am kurzen Arme das Gleichgewicht halten.

Fig. 23.

Bequemer und genauer ist die Brückenwage oder Decimalwage ([Fig. 23]), welche auf einer Verbindung von zwei einarmigen und einem zweiarmigen Hebel beruht. Bei dieser wird die Last nicht aufgehängt, sondern auf eine sogenannte Brücke (ac) gelegt, welche an einem Ende mittelst einer Stange (ch) an den Wagebalken gehängt ist, und zwar in einem Abstand vom Drehpunkte (o) desselben, der genau 1/10 von dem Abstande (og) ist, in welchem die Wagschale mit dem zur Wägung dienenden Gewichte hängt. Das andere Ende der Brücke ruht auf einem einarmigen Hebel (de), welcher mittelst einer Stange (df) ebenfalls an den Wagebalken gehängt ist. Die Aufhängepunkte an dem Wagebalken und die Stützpunkte der beiden einarmigen Hebel sind so gewählt, daß zwischen ho und fo genau dasselbe Verhältniß besteht wie zwischen me und de. Die Folge davon ist, daß die ganze Wirkung der Last in dem Punkt c vereinigt ist, gerade als ob die ganze Last an der Zugstange ch angehängt wäre. Da sie also hier an einem Hebelarme wirkt, der an Länge von dem Hebelarme, an welchem das Gewicht hängt, um das Zehnfache übertroffen wird, so wird ihr auch durch 1/10 ihres Gewichts das Gleichgewicht gehalten. Ein Gewicht von 1 Pfund wägt an dieser Wage also eine Last von 10 Pfund.

Fig. 24.

116. Warum hebt man eine auf einer Schiebkarre liegende Last leichter auf, als wenn man sie vom Boden aufheben soll?

Weil auch die Schiebkarre ein Hebel ist und zwar ein sogenannter einarmiger, dessen Stützpunkt am Ende desselben in der Axe des Rades liegt, und bei dem die Last dem Stützpunkt möglichst nahe angebracht ist, während die hebende Kraft am äußersten Ende wirkt. Auch hier beschreiben Last und Kraft bei der Drehung des Hebels in dem Maße verschiedene Bogen, als ihre Abstände vom Stützpunkt verschieden sind. Auch hier hält also die Kraft einer Last das Gleichgewicht, wenn ihr Verhältniß zu einander das umgekehrte der entsprechenden Hebelarme ist.

Fig. 25.

117. Warum darf man eine Last nicht in die Mitte einer Tragstange hängen, welche zwei Menschen auf ihren Schultern oder in den Händen zwischen sich tragen, wenn diese Träger nicht gleich an Kraft sind, der eine etwa ein Knabe, der andere ein Mann ist?

Weil jeder dieser Träger an einem einarmigen Hebel trägt, dessen Stützpunkt auf der Schulter oder in der Hand des Andern liegt, und weil also die schwächere Kraft gegen die stärkere im Nachtheil sein würde, wenn sie nicht in einer größeren Entfernung von der Last als jene anzugreifen hätte. Wenn der Mann anderthalb mal so stark ist als der Knabe, so muß an einer 2½ Meter langen Stange die Last 1 Meter von dem Manne, 1½ Meter von dem Knaben entfernt hängen, wenn die Kraft beider in gleichem Verhältniß in Anspruch genommen werden soll.

118. Warum sind an Kaffeemühlen, Kaffeetrommeln, Schleifsteinen, Drehorgeln etc. besondere Handhaben oder Kurbeln zum Drehen angebracht?

Weil diese Kurbeln nichts anderes als Hebel sind, an deren äußerstem Ende die Kraft der Hand wirkt, während sich die Last am Anfang einer Welle von kleinem Durchmesser, also sehr nahe am Drehpunkt befindet, und weil daher zur Bewegung oder Umdrehung dieser Last grade so viel weniger Kraft erforderlich ist, als die Länge der Kurbel den Durchmesser der Welle übertrifft.

Fig. 26.

119. Warum kann man mit Hülfe der Winde viel leichter einen Eimer voll Wasser aus einem Schöpfbrunnen ziehen als mit der Hand?

Weil die Winde ebenfalls ein Hebel ist, an dessen längerem Arme, der Kurbel oder den Speichen eines Rades, die Kraft wirkt, während an dem kürzeren Arme die heraufziehende Last wirkt. An Arbeit wird dabei nichts gespart; denn was an Kraft gewonnen wird, geht an Weg und Zeit verloren. Um so viel die Kraft kleiner ist als die Last, um so viel ist der Kreis, welchen die Hand an der langen Kurbel beschreibt, größer als der Umfang der Welle, um welche sich das Seil mit der daran hängenden Last aufwindet. Die Arbeit ist nur anders eingerichtet und gleichsam vertheilt, so daß sie mit geringeren Kraftmitteln ausgeführt werden kann.

120. Warum müssen die Wagen Räder haben, und warum fährt man nicht auch ohne Schnee mit Schlitten?

Weil das Rad, indem es nur mit wenigen Punkten den Boden berührt, die der Fortbewegung entgegenwirkende Reibung am Boden bedeutend vermindert, was bei Schnee nicht nöthig ist, da dieser theils die Unebenheiten des Weges ausgleicht, theils durch die Glätte, die er in Folge des Druckes annimmt, nur geringe Reibung verursacht; weil aber auch zugleich jedes Rad wie ein Hebel wirkt, da die Zugkraft der Pferde an dem Umfange der Räder wirkt, während die Last an der Axe den Widerstand leistet. Die Last, welche die Pferde zu überwinden haben, ist übrigens nicht eigentlich das Gewicht des Wagens und seiner Ladung, da dieses von dem Boden getragen wird, sondern die Reibung an der Axe, welche freilich nicht blos durch die Unebenheiten des Bodens, sondern auch durch das Gewicht des Wagens vermehrt wird.

121. Warum werden Dampfwagenzüge auf Eisenbahnen im Winter oft durch Glatteis aufgehalten?

Weil bei der Locomotive keineswegs eine ähnliche Zugkraft vorhanden ist, wie bei dem vom Pferde gezogenen Wagen, die Räder vielmehr nur eine umdrehende Bewegung erhalten und diese in eine Fortbewegung nur durch den Reibungswiderstand verwandelt wird, welchen die Räder in ihrer Umdrehung an den Schienen finden. Ist dieser Reibungswiderstand daher durch Glatteis vermindert, so fehlt auch jeder Stoß zur Fortbewegung und die Räder drehen sich nur um sich selbst.

Fig. 28.

122. Warum pflegt man zum Emporziehen der Balken auf neu errichtete Gebäude sich eines Flaschenzuges ([Fig. 28]) statt eines einfachen Seiles zu bedienen?

Fig. 27.

Weil ein solcher Flaschenzug aus mehreren Paaren fester und beweglicher Rollen besteht, und jedes solches Rollenpaar wie ein Hebel wirkt und dadurch die Hebung der Last erleichtert. Sowohl der oben befestigte Kloben, als der unten mit der Last verbundene bewegliche enthält nämlich 3 oder mehr Rollen, um welche abwechselnd das Seil geschlungen ist, an dem die Last gezogen werden soll. Eine bewegliche Rolle ([Fig. 27]) aber, wie sie jede der in dem untern Kloben befindlichen Rollen darstellt, ist gleichsam ein einarmiger Hebel, in dessen Mitte (c) die Last hängt, während die ziehende Kraft an dem einen Ende (b), der Stützpunkt am andern Ende (a) sich befindet. Jede solche Rolle gestattet also die Last mit dem halben Kraftaufwande zu heben. Sind demnach 3 solcher Rollen vorhanden, so wird nur der 6ste Theil der Kraft nöthig sein, die Last zu heben. Allerdings entspricht auch hier der Verminderung der Kraft eine Verlängerung des Weges. Für jeden Meter, um den die Last gehoben wird, muß jedes der 6 Seile, welche die Rollen umschlingen, sich um 1 Meter verkürzen, das Seil also, an welchem das Pferd zieht, sich um 6 Meter verlängern, und das Pferd die Last 6 Meter weit ziehen.