IV. Geologische Zeitmessung auf Grund radioaktiver Vorgänge.
Es ist kaum mehr als ein Vierteljahrhundert vergangen, seit im physikalischen Institut der Universität Würzburg eine Entdeckung gemacht wurde, die zu den glücklichsten der ganzen Wissenschaftsgeschichte gehört und die in ihren Folgen für die Entwicklung der Physik und Chemie von der allergrößten Bedeutung werden sollte.
Im Jahr 1895 fand Professor Röntgen, daß von der Wand der Geißlerschen Röhren, mit denen er experimentierte, Strahlen auszugehen schienen, die auch undurchsichtige Körper zu durchdringen vermochten und durch die Wand der photographischen Kassette hindurch die lichtempfindliche Platte beeinflußten. Die Entdeckung dieser merkwürdigen X-Strahlen, wie er sie nannte, erregte das größte Aufsehen. Während den Laien vor allem die geheimnisvollen Möglichkeiten interessierten, mit diesen Strahlen auch undurchsichtige Körper durchdringen zu können, reizte den Gelehrten in erster Linie das wissenschaftliche Problem, und die Wissenschaft aller Länder ging voll Spannung an die neuen Aufgaben heran. Der französische Physiker Becquerel vermutete einen Zusammenhang der Erscheinung mit der Phosphoreszenz des Glases der Geißlerröhre und kam auf den Gedanken, phosphoreszierende Uransalze auf eine lichtempfindliche Platte einwirken zu lassen, mit dem Erfolg, daß auch er eine Schwärzung der Platte erhielt (1896). Der zuerst vermutete Zusammenhang mit der Phosphoreszenz, bei der immer eine Belichtung des Salzes vorausgehen muß, stellte sich bald als unrichtig heraus; es ergab sich vielmehr, daß einfach alle uranhaltigen Salze oder Erze die Eigenschaft hatten, chemisch wirksame Strahlen auszusenden. Nun galt es, an dem neuen Geheimnis der Uran- oder Becquerelstrahlen weiter zu arbeiten, und schon nach zwei Jahren (1898) konnte das Ehepaar Pierre und Marya Curie nach unendlichen Mühen aus einem Uranerz, der Uranpechblende, einen Stoff abscheiden, der die strahlenden Eigenschaften in ungeheuer verstärktem Maße aufwies und der daher von seinen Entdeckern den Namen Radium, das Strahlende, bekam.
Abb. 17. Strahlung des Radiums.
Jede neue Entdeckung gibt der Wissenschaft wieder neue Rätsel auf, und nicht leicht sind ihr jemals schwierigere Aufgaben gestellt worden als mit diesem neuentdeckten Element Radium. Eine der ersten Beobachtungen war, daß das Radium andauernd ganz bedeutende Energiemengen hervorbringt. 1 g Radium vermag in einer Stunde das 1–1,3fache seines Gewichts an Wasser vom Gefrierpunkt bis zum Siedepunkt zu erhitzen, und das geht so fort, Tag für Tag und Monat für Monat, ohne daß die Erzeugung von Wärme eine merkbare Abnahme erfährt. Diese Erscheinung widersprach in auffallender Weise dem Gesetz der Erhaltung der Energie: Hier schien tatsächlich Energie ohne nachweisbare Ursache von selbst zu entstehen, hier schien wirklich das Perpetuum mobile vorzuliegen, von dem die Physiker doch bewiesen zu haben glaubten, daß es nicht existieren könne. Es zeigte sich bald, daß die Wärmeerzeugung mit den Strahlen zusammenhängt, die das Radium fortwährend aussendet. Wenn man die Radiumstrahlen dem Einfluß eines kräftigen Elektromagneten unterwirft, so findet man, daß es drei Arten von Strahlen sind, die von dem geheimnisvollen Stoff ausgehen. Die nebenstehende [Abb. 17] soll diese Erscheinung darstellen. Das Radium sei in einem Bleiblock eingeschlossen, der die Strahlen nur nach einer Richtung austreten läßt; ein Elektromagnet sei so angebracht, daß sein Nordpol vor der Ebene des Papiers zu denken ist, der Südpol hinter ihr. Erzeugt man nun durch Einschalten des Stroms ein elektromagnetisches Feld, so trennen sich die verschiedenen Strahlenarten, die zuerst einheitlich in gleicher Richtung austreten. Nach links werden die sogenannten α-Strahlen abgelenkt; diese Art der Ablenkung beweist für sie eine positive elektrische Ladung. Sie führen wohl den größten Teil der gesamten Strahlungsenergie mit, haben aber die geringste Durchdringungskraft; in der Luft vermögen sie nur 3–7 cm weit vorzudringen. Anders verhalten sich die β-Strahlen, die sehr stark nach rechts abgelenkt werden und dadurch ihre negativ elektrische Ladung erkennen lassen. Gar nicht vom Elektromagneten beeinflußt werden die γ-Strahlen, die auf größere Entfernung hin wirken wie die anderen Strahlenarten und in ihren wesentlichen Eigenschaften durchaus den Röntgenstrahlen entsprechen.
Eine Reihe von hervorragenden Physikern und Chemikern warf sich auf die Erforschung dieser neuen, eine vollständige Umwälzung alter Anschauungen versprechenden Erscheinungen. Es war noch jene Zeit, in der die Wissenschaft international war, und wo deutsche, englische und französische Forscher von Monat zu Monat durch neue Entdeckungen sich gegenseitig weiterhalfen. So zeigte sich bald, daß in jedem Raum, in dem Radium sich befand, nach einiger Zeit auch die Luft und die Wände Strahlen aussandten, daß auch sie „radioaktiv“ wurden. Leitete man die aktiv gewordene Luft vom Radium fort, so sank allerdings die Strahlung nach einiger Zeit beträchtlich, um schließlich nach einigen Wochen oder Monaten zu verschwinden. Die Erscheinung wies darauf hin, daß die Aktivität der Luft von einem Gas herrühre, das aus dem Radium entstanden sei. Diese Annahme erwies sich tatsächlich als richtig; es konnte nachgewiesen werden, daß sich aus dem Radium ein Gas, die Radium-Emanation bildet, das seinerseits wieder radioaktive Eigenschaften aufweist, dessen Strahlung aber schon in wenigen Tagen ganz beträchtlich in ihrer Wirksamkeit sinkt. Das rührt daher, daß die Radium-Emanation verschwindet und an ihrer Stelle ein anderer fester Stoff, das Radium A, entsteht. Aber auch dieser Stoff bleibt nicht bestehen; nacheinander bilden sich noch eine ganze Reihe von Stoffen, bis die Entwicklung in einem Stoff Radium G ihr Ende findet. Die Vorgänge können nur so verstanden werden, daß sich jeder Stoff unter ganz bestimmten Strahlungserscheinungen in den nächsten umwandelt; die ganze Umwandlungsreihe, die sich so ergibt, wird durch [Abb. 18] dargestellt. Dabei stellte sich weiterhin heraus, daß bei diesen Umwandlungen auch Helium entsteht, ein Gas, das vor seiner Entdeckung auf der Erde schon durch seine Linien im Sonnenspektrum bekannt war und daher seinen Namen erhalten hat.
Wie sollten nun alle diese rätselhaften Erscheinungen gedeutet werden?
Abb. 18. Zerfallsreihe des Radiums.
Die Erklärung geschah durch die Theorie vom Zerfall der radioaktiven Elemente, die 1902 von Rutherford und Soddy begründet wurde und die sich seither in jeder Beziehung bewährt hat. Sie hängt eng zusammen mit der Atomtheorie, die in den beiden letzten Jahrzehnten zu einem vollständig gesicherten Besitz der Wissenschaft geworden ist. Wir haben in den Atomen unendlich kleine Bausteine der Materie vor uns; der Forscher vermag sie genau zu zählen und ihre Größe zu bestimmen; ihr verschiedenartiger Aufbau bedingt das Wesen und die Eigenschaften der uns bekannten chemischen Grundstoffe oder Elemente. Nun lehrt die Zerfallstheorie, daß in den Atomen der radioaktiven Elemente gewaltige Spannungen bestehen, die zu einem explosionsartigen, von rätselhaften Strahlungserscheinungen begleiteten Zerfall führen können. Damit ist auch erklärt, woher die andauernde Energieabgabe des Radiums stammt: Ein Atom müssen wir uns mit geradezu gewaltigen Energiemengen geladen denken; beim Zerfall des Atoms wird, ähnlich wie bei der Explosion eines Sprengstoffs, ein Teil dieser Energie frei.
Die Untersuchung der Atomgewichte ergab weiterhin, daß es sich um ein richtiges Auseinanderfallen der Atome in verschiedene Bruchstücke handelt. Für das Radium (Abkürzung Ra) wurde ein Atomgewicht von 226 bestimmt; das heißt, das Radiumatom ist 226 mal so schwer wie das leichteste bekannte Atom, das Wasserstoffatom. Radium-Emanation hat ein Atomgewicht von 222, Radium A von 218, Radium B und C von 214, Radium D, E und F (Polonium) von 210 und Radium G von 206. Die Atome verlieren also bei ihrem Zerfall Teile ihrer Masse, und es zeigt sich, daß regelmäßig die α-Strahlung eines Radioelements eine Verminderung des Atomgewichts um 4 hervorbringt; das Atomgewicht des neu entstandenen Stoffes ist um 4 geringer wie desjenigen, der die α-Strahlen aussandte. Der Zusammenhang gab sich durch die Entdeckung, daß die α-Strahlen nichts anderes sind als positiv elektrisch geladene Heliumatome. Helium besitzt das Atomgewicht 4; das Sinken der Atomgewichte in der Zerfallsreihe erklärt sich also daraus, daß beim Atomzerfall Heliumatome explosiv fortgeschleudert werden.
Die Umwandlung chemischer Grundstoffe ineinander war damit zur wissenschaftlichen Tatsache geworden. Das Radium wandelt sich über verschiedene Zwischenstufen hinweg unter Abspaltung von Heliumatomen in das Endprodukt Radium G um. Das bedeutete für die gesamte Chemie eine ungeheure Umwälzung; es war damit bewiesen, daß die chemischen Elemente nicht unter allen Umständen unveränderlich sind, sondern daß sie sich zum Teil in andere umwandeln können. Der Traum der Alchimisten des Mittelalters, welche die chemischen Grundstoffe ineinander verwandeln wollten, war damit in gewissem Sinne zur Wirklichkeit geworden.
Nach diesen ersten grundlegenden Entdeckungen galt es nun, den Zerfall bei den einzelnen Radioelementen in seinem zeitlichen Verlauf genau zu untersuchen. Schon bald hatte es sich nämlich gezeigt, daß sich die verschiedenen Stoffe mit ganz verschiedener Geschwindigkeit umwandeln. Das Grundgesetz, nach dem der Zerfall vor sich geht, ist jedoch bei allen Umwandlungen gleich; die [Abb. 19] soll es zunächst für die Radium-Emanation veranschaulichen.
Sind zu einem gewissen Zeitpunkt eine bestimmte Anzahl (n) Atome Radium-Emanation vorhanden, so existieren nach einer gewissen Zeit (t = 3,85 Tage) nur noch die Hälfte der Atome ( n2), nach der doppelten Zeit (2 t = 7,70 Tage) nur noch die Hälfte von diesem, also n4 Atome, nach der dreifachen Zeit (3 t) nur noch n8 Atome. Im Verlauf der Zeit von 3,85 Tagen, der „Halbwertszeit“, sinkt die Zahl der Atome regelmäßig durch Zerfall auf die Hälfte; sie wird infolgedessen immer geringer werden, das gänzliche Verschwinden tritt aber erst nach ungeheuer langer Zeit ein.[6]
[6] Würde der Zerfall der Emanation gleichmäßig mit derselben Zahl von Atomen weitergehen, wie er zu Beginn der Untersuchung einsetzt, so wäre schon nach 5,54 Tagen nichts mehr vorhanden. Diese Zahl nennt man die „mittlere Lebensdauer“ der Radium-Emanation; sie steht in einem genau berechenbaren mathematischen Verhältnis zur Halbwertszeit und ist das 1,44fache von dieser. In der bildlichen Darstellung der Zerfallskurve muß dieser gleichbleibende Zerfall durch die Berührungsgerade (Tangente) dargestellt werden, die im Beginn der Kurve an sie gelegt wird; sie trifft die Gerade im Punkt 1,44 t. Während die Kurve des tatsächlichen Zerfalls in ihrem Gefälle ständig abnimmt und sich der Geraden immer mehr anschmiegt, ohne sie ganz zu erreichen, behält die Tangente ihr Gefälle, welches im Beginn zugleich dasjenige der Zerfallskurve ist, gleichmäßig bei; sie ist daher schon nach der Zeit 1,44 t auf Null angelangt.
Abb. 19. Zerfallskurve radioaktiver Elemente.
Merkwürdig und bezeichnend ist nun, daß jedes Element seine besondere Zerfallsgeschwindigkeit besitzt. Während die Radium-Emanation nach 3,85 Tagen zur Hälfte zerfallen ist, tritt dieser Fall beim Radium selbst nach 1600 Jahren ein, beim Radium A dagegen schon nach 3 Minuten. Wenn der Wert für t in [Abb. 20] für jedes strahlende Element von anderer Größe gedacht wird, so vermag also die Kurve den Zerfall von jedem dieser Elemente zu veranschaulichen.
Wir wollen versuchen, das Wesen des Zerfallgesetzes, das im Grunde genommen ein Wahrscheinlichkeitsgesetz ist, durch einen Vergleich noch anschaulicher zu machen: Ein Regiment zieht ins Feld und verliert hier in jedem Monat die Hälfte seiner Mannschaften, ohne zunächst wieder aufgefüllt zu werden. Es wird dann nach einem Monat noch die Hälfte, nach 2 Monaten noch ¼, nach 3 Monaten noch ⅛, nach 6 Monaten noch 1⁄64 der ursprünglich ins Feld gerückten Mannschaft vorhanden sein. Die Wahrscheinlichkeit, daß Soldaten durch Tod, Krankheit oder Gefangennahme ausscheiden, ist bei diesem Regiment so groß, daß jeden Monat die Hälfte der Mannschaften davon getroffen wird, die „Halbwertszeit“ des Regiments wäre ein Monat. Ein anderes Regiment, das an weniger gefährdeter Stelle steht, verliert erst in 3 Monaten die Hälfte seiner Leute; es hat also nach 6 Monaten noch ¼, nach einem Jahr noch 1⁄16 der ursprünglichen Mannschaft. Seine Halbwertszeit ist drei Monate; sie ist größer als die des ersten Regiments, weil die Wahrscheinlichkeit des Ausscheidens seiner Soldaten geringer ist. Der Vergleich mit dem Zerfall der verschiedenen Radioelemente ergibt sich ohne weiteres. Die Atome des einen Elements sind in ihrem inneren Bau noch verhältnismäßig beständig, so daß es viele Jahre oder gar Jahrtausende dauert, bis die Hälfte der Atome zerfallen ist; bei andern führen die Spannungen im inneren Bau so häufig zu Explosionen, daß schon nach wenigen Tagen die Hälfte verschwunden ist. Beim Radium A sind die Atome schließlich so unsicher gebaut, daß dieser Fall schon nach 3 Minuten eintritt; kaum sind sie aus der vorhergehenden Stufe entstanden, so wandeln sie sich schon in die nächste um.
Die Wissenschaft hat eine Reihe von Verfahren ausgearbeitet, um die Zerfallzeit eines Radiumelements zu messen. Am einfachsten ist die Aufgabe bei einem Element mittlerer Zerfallsdauer wie der Radium-Emanation zu lösen. Mit feinen Elektrometern wird das Maß der Strahlung in bestimmten Zwischenräumen untersucht und genau bestimmt, wann es auf die Hälfte, ein Viertel, ein Achtel des ursprünglichen Werts gesunken ist. Bei Elementen mit längerer Lebensdauer wie dem Radium selbst wird die Menge des in einer bestimmten Zeit von ihm erzeugten neuen Stoffs gemessen und daraus berechnet, wann es sich bei gleich bleibendem Zerfall erschöpfen würde. Unter Umständen kann bei ganz geringen Mengen strahlender Substanz, deren Menge und damit deren Atomzahl bekannt ist, unmittelbar die Zahl der abgeschleuderten α-Teilchen einzeln gezählt werden; die Wissenschaft ist mit der Verfeinerung ihrer Apparate bereits so weit vorgeschritten, daß sie die Wirkung eines einzigen Atoms nachweisen kann.
Es ist also daran festzuhalten, daß die Zerfallserscheinungen von einer Unbeständigkeit im inneren Bau des Atoms herrühren, daß die Gefahr des Zerspringens für verschiedene Radiumelemente zwar verschieden, für ein- und dasselbe immer gleich ist. Die Zerfallsgeschwindigkeit eines Radioelements, ausgedrückt in den Begriffen „Halbwertszeit“ und „mittlere Lebensdauer“, bedeutet eine seiner bezeichnendsten Eigenschaften. Der Zerfall geht mit einer solchen inneren Notwendigkeit vor sich, daß seine Geschwindigkeit durch keinerlei äußere Einwirkungen auch nur im geringsten verändert werden kann. Man hat strahlende Substanzen einem Druck von 24400 Atmosphären ausgesetzt, den Einfluß von Temperaturen von −240° bis zu 2500° untersucht, die stärksten elektrischen und magnetischen Felder auf sie wirken lassen, ohne daß sich die Zerfallsgeschwindigkeit auch nur im mindesten verringert oder vermehrt hätte. Das bedeutet ganz andere Verhältnisse wie beim Zerfall von chemischen Verbindungen, bei dem der Einfluß der Druck- und Temperaturverhältnisse eine außerordentlich große Rolle spielt. Während es sich hier darum handelt, daß verschiedene Atome ihre gegenseitige Verbindung lösen, liegt beim radioaktiven Zerfall die Ursache tiefer, sie ruht im Bau der Atome selber.
Wir haben bis jetzt bei der Untersuchung der merkwürdigen Strahlungs- und Umwandlungserscheinungen nur das Radium und seine Folgeprodukte ins Auge gefaßt; da es aber, wie sich schon bei seiner Entdeckung zeigte, immer nur in gesetzmäßiger Verbindung mit Uran in der Natur vorkommt, so drängt sich ganz von selber die Frage auf, ob nicht auch ein ursächlicher Zusammenhang zwischen Uran und Radium besteht. Das ist tatsächlich der Fall. Es kann nachgewiesen werden, daß das Radium auf dem Weg über einige Zwischenstufen aus dem Uran entsteht. Von diesem stammen also alle genannten Elemente ab, sie bilden zusammen eine Zerfallsreihe, die Uranreihe. Vom Chemiker Ostwald stammt das witzige Wortspiel: „Der Urahn dieser Elemente ist das Uran.“ Uran hat mit 238 das höchste bekannte Atomgewicht. Sein Zerfall geht ganz außerordentlich langsam vor sich; die Halbwertszeit des Urans beträgt 5000 Millionen Jahre. Über mehrere Zwischenstufen hinweg, die auch zum Teil sehr hohe Halbwertszeiten haben, führt der Zerfall mit dreimaliger α-Strahlung, also dreimaligem Verlust von Heliumatomen zum Radium mit der Halbwertszeit von 1600 Jahren und von diesem aus in der bekannten Weise weiter. Die folgende Tabelle gibt eine Zusammenstellung der Glieder der Uran-Radiumreihe und ihrer wichtigsten Eigenschaften.
| Name des Elements |
chemisches Symbol | Atomgewicht | Strahlung | Halbwertszeit |
|---|---|---|---|---|
| Uran I | U | 238,2 | α | 5000·106 Jahre |
| Uran X1 | UX1 | 234 | β γ | 24 Tage |
| Uran X2 | UX2 | 234 | β γ | 1,15 Minuten |
| Uran II | U II | 234 | α | 2·106 Jahre |
| Jonium | Jo | 230 | α | 100000 Jahre |
| Radium | Ra | 225,97 | α | 1600 Jahre |
| Radium-Emanat. | Ra Em | 222 | α | 3,85 Tage |
| Radium A | Ra A | 218 | α | 3 Minuten |
| Radium B | Ra B | 214 | β | 26,8 Minuten |
| Radium C | Ra C | 214 | α β | 19,5 Minuten |
| Radium D | Ra D | 210 | β | 16 Jahre |
| Radium E | Ra E | 210 | β | 5 Tage |
| Radium F (Polonium) | Ra F | 210 | α | 136 Tage |
|
Radium G
(Radiumblei, Uranblei) | Ra G | 206 | — | — |
Neben dieser Reihe radioaktiver Elemente, die sich vom Uran herleiten, gibt es noch eine zweite Reihe, die von dem Element Thorium (Atomgewicht 232,15) ausgeht. Mit verschiedenen Zwischenstufen führt der Zerfall in ähnlicher Weise wie bei der Uranreihe zu einem Endprodukt, das als Thorium D (Atomgewicht 208,0) bezeichnet wird.
Eine überaus wichtige Tatsache haben wir bis jetzt noch übergangen; es ist nötig, sie jetzt näher ins Auge zu fassen. Für das Radium G, das als Endprodukt der Uranreihe auftritt, ergab sich durch genaue Untersuchung, daß es in allen physikalischen und chemischen Eigenschaften vollständig mit einem schon längst bekannten Element übereinstimmte, nämlich mit dem Blei. Nur in einer Eigenschaft zeigte sich ein Unterschied, es besaß ein anderes Atomgewicht. Moderne Methoden der Atomgewichtsbestimmung erlauben es, diese Zahl auf das allergenaueste festzustellen. Für das gewöhnliche Blei erhielt man ein Atomgewicht von 207,2, für Radium G (Uranblei, Radiumblei) ein solches von 206,0. Diese letztere Zahl paßte sehr gut zu den übrigen Tatsachen des radioaktiven Zerfalls; vom Radium (Atomgewicht 226) führt dieser mit einer fünffachen Abspaltung von α-Teilchen, deren jedes ein Heliumatom vom Atomgewicht 4 bedeutet, zum Endprodukt Radium G, das also nach theoretischer Voraussage ein Atomgewicht von 226 − 5 × 4 = 206 haben muß. Theoretisch berechnetes und experimentell bestimmtes Atomgewicht stimmten also sehr befriedigend überein. Wie nun weiterhin das Thorium D genauer untersucht wurde, da zeigte sich, daß auch dieser Stoff in jeder Beziehung die Eigenschaften des Bleis besaß, nur daß auch sein Atomgewicht von dem des Bleis abwich; für Thorium D ergab sich ein solches von 208, also ein höheres als dasjenige des normalen Bleis. Nun kannte man also drei verschiedene Bleiarten, die im wesentlichen nur durch ihre Atomgewichte voneinander zu unterscheiden waren, eine rätselhafte Sache, die großes Kopfzerbrechen hervorrufen mußte. Auf Ungenauigkeiten der Bestimmungen konnte der merkwürdige Widerspruch nicht zurückgeführt werden, denn die Methoden der Atomgewichtsbestimmung sind zu solcher Vollkommenheit geführt worden, daß auch noch die zweite Dezimale der Zahl mit ziemlicher Sicherheit angegeben werden kann. In den letzten Jahren hat sich aber die Tatsache des Vorkommens mehrerer Bleiarten mit verschiedenem Atomgewicht in allgemeine Zusammenhänge eingefügt. Es wurde nachgewiesen, daß eine Reihe von chemischen Elementen aus zwei oder mehr Stoffen besteht, die verschiedenes, dabei ganzzahliges Atomgewicht aufweisen, sich im übrigen aber kaum voneinander unterscheiden lassen. Die moderne Atomtheorie, die sich in ungeahnter Weise entwickelt hat, hat diese Erscheinung auch zu erklären vermocht. Kommende Generationen werden das verflossene Vierteljahrhundert ohne Zweifel als eines der denkwürdigsten Entdeckungszeitalter in der Wissenschaftsgeschichte verzeichnen. Die Atome, die vor 25 Jahren einer strengen Wissenschaft noch als vollkommen hypothetisch gelten mußten, haben sich als greifbare Wesenheiten entpuppt, die der Forscher zählt und wägt und die ihm wundersame Geheimnisse ihres Baus enthüllt haben. Im folgenden können nur einige Ergebnisse dieser Forschungen angegeben werden, ohne daß eine nähere Begründung möglich wäre.
Ein Atom ist nach modernen Anschauungen ein Planetensystem im Kleinen, aufgebaut aus einem Kern mit positiv elektrischer Ladung und einer Anzahl kleinster negativer Elektrizitätsteilchen (Elektronen), die in kreis- und ellipsenförmigen Bahnen um diesen Kern kreisen. Eine merkwürdige und unausdenkbare Vorstellung: Das, was wir Materie heißen, löst sich auf in positive und negative Elektrizität und ihre Bewegung! Die chemischen Eigenschaften eines Elements hängen ab von der Ladung des Kerns und der Zahl der ihn umkreisenden Elektronen, sein Atomgewicht von der Zahl der positiven Elektrizitätsteilchen im Kern. Das ist nämlich aus folgenden Gründen nicht dasselbe: Im Kern stecken positive und negative Elektrizitätsteilchen in verschiedener Anzahl; die positiven überwiegen, der Unterschied ergibt die Größe der positiven Ladung. Wenn nun aus einem Kern gleichzeitig ein positives und ein negatives Teilchen austritt, so bleibt die Ladung gleich, die Masse, das Gewicht, wird jedoch vermindert. Zwei solche Arten von Atomen werden sich chemisch vollständig gleich verhalten, weil die Ladung des Kerns und die Zahl der ihn umkreisenden Elektronen gleich ist, sie werden aber verschiedenes Atomgewicht aufweisen. Derartige Stoffe nennt die Chemie isotope Elemente,[7] weil ihnen im periodischen System der Elemente derselbe Platz zugewiesen werden muß. Es hat sich ergeben, daß eine Reihe von Elementen nichts anderes darstellt als ein Gemenge verschiedener isotoper Bestandteile. So ist z. B. das Gas Neon mit dem Atomgewicht 20,2 ein Gemenge zweier isotoper Elemente vom Atomgewicht 20 und 22, von denen das erste 90%, das zweite 10% des Gemenges bildet. Durch diese im Feinbau der Materie begründete Isotopie wird nun auch für das Rätsel der verschiedenen Atomgewichtszahlen von Uranblei, gewöhnlichem Blei und Thoriumblei eine Erklärung gegeben: Alle drei Bleiarten haben die gleiche Kernladung und die gleiche Zahl von kreisenden Elektronen, jedoch verschiedene Masse. Dabei sind Uranblei (Ra G) und Thoriumblei (Th D) zwei einheitliche Stoffe mit verschiedenem Atomgewicht, während das gewöhnliche Blei wahrscheinlich ein Gemenge gleichbleibender Zusammensetzung aus diesen zwei isotopen Bleisorten darstellt.
[7] Von griechisch: isos = gleich, topos = Lage.
Nachdem wir alles dies vorausgenommen haben, vermögen wir den ganzen Zerfallsvorgang in seinem zeitlichen Verlauf einheitlich zu verstehen und zu erklären. Haben wir ein frisch hergestelltes, reines Radiumpräparat vor uns, das frei von allen Beimengungen ist, so finden wir, daß die Stärke seiner Strahlung von Tag zu Tag zunimmt, um schließlich einen gleichbleibenden Wert zu erreichen. Das hängt folgendermaßen zusammen: Das Radium erzeugt zunächst Emanation, diese zerfällt ihrerseits wieder und erzeugt die weiteren Elemente der Zerfallsreihe bis hinab zum Radium G. Das Präparat ist also nach einiger Zeit zu einem Gemenge aller Zerfallsprodukte geworden. Da zur Strahlung des Radiums allmählich die Strahlen aller seiner Zerfallsprodukte hinzukommen, so nimmt die Gesamtstrahlung immer mehr zu; die α-Strahlung steigt zum Schluß bis auf den fünffachen Betrag. Wenn sie diesen Betrag erreicht hat, so ist das sogenannte „radioaktive Gleichgewicht“ eingetreten, das darin besteht, daß von der höheren Stufe so viel Atome der nächst niedrigen gebildet werden, wie von dieser wieder durch Zerfall verschwinden. Es kann daher von den schnell zerfallenden Stoffen jeweils immer nur eine geringe Menge vorhanden sein, von den langsamer zerfallenden Stoffen kann sich mehr halten, und wenn wir die Sache mathematisch durchdenken, so kommen wir zu dem Resultat, daß die Atomzahlen der verschiedenen Zerfallsprodukte (mit Ausnahme des Endprodukts) schließlich im Verhältnis der Zerfallsgeschwindigkeiten (der Halbwertszeiten) stehen müssen. Das hat sich tatsächlich als richtig ergeben, und ganz dasselbe ließ sich auch für das Uran feststellen. Ursprünglich chemisch reines Uran wird mit der Zeit alle seine Zerfallsprodukte einschließen müssen. Da jedoch der Zerfall verschiedener Zwischenprodukte sehr langsam vor sich geht, so wird der Gleichgewichtszustand erst nach ungeheuer langer Zeit eintreten. Es werden dann alle Zerfallsprodukte bis hinab zum Radium G innerhalb des Urans oder eines in der Natur vorkommenden Uranminerals im Verhältnis der Zerfallszeiten enthalten sein. Nehmen wir an, es sei so viel Uran vorhanden, daß in der Sekunde 1000 seiner Atome zerfallen, so muß nach dem Eintritt des Gleichgewichts von jedem der Zwischenprodukte so viel vorhanden sein, daß von ihm nach seiner eigenen Zerfallsgeschwindigkeit in der Sekunde gleichfalls 1000 Atome zerfallen. Wäre von einem Zwischenprodukt so viel anwesend, daß mehr als 1000 Atome in der Sekunde zerspringen würden, so würde der Zerfall seine Menge verringern, und es könnte sich auf die Dauer nur so viel von dem Stoff halten, daß die Zahl der von der höheren Stufe hinzukommenden Atome der Zahl der zerfallenden entspricht. Da das Radium rund 3100000mal so rasch zerfällt wie das Uran, so braucht von ihm zur sekundlichen Erzeugung von 1000 Atomexplosionen nur der 3100000ste Teil der Zahl der Uranatome vorhanden zu sein. Ein Mehr würde sich selbst aufzehren, ein Weniger würde sich durch stärkeren Zuwachs vom Uran her aufstauen. Tatsächlich hat man in sämtlichen Uranerzen und Uranmineralien der ganzen Welt immer und überall einen genau gleichbleibenden Gehalt an Radium gefunden: 0,0003 mg auf 1 g Uran.
Was aber in jeder Sekunde gleichmäßig zunimmt, weil von ihm aus nichts weiter abfließt, das ist das Endprodukt Radium G, das Uranblei. Sekunde für Sekunde strömen ihm über alle Zwischenstufen weg ebenso viele Atome zu, wie oben beim Uran zerfallen. In einem Uranmineral reichert sich auf diese Weise immer mehr das Endprodukt an; je älter es ist, um so mehr Uranblei muß es enthalten. In dem Bleigehalt eines Uranminerals ist somit ein Maß für sein Alter gegeben. Das ist das außerordentlich wichtige Ergebnis, zu dem uns die bisherigen Überlegungen geführt haben. Uran ist allerdings nicht das einzige Endprodukt des Zerfalls. Wir dürfen nicht vergessen, daß die bei den verschiedenen Strahlungen abgeschleuderten α-Teilchen nichts anderes als elektrisch geladene Heliumatome sind, die ihre Ladung abgeben und sich dann nicht weiter verändern. Bei den äußeren Partien des Erzes wird wohl das gasförmige Helium zum Teil nach außen entweichen können, in der Hauptsache werden aber die Heliumatome in dem festen Erz zwischen den andern Atomen eingeschlossen bleiben.
Mit diesen Tatsachen der Bildung von Blei und Helium in Uranmineralien ist die Grundlage einer geologischen Zeitmessung gewonnen, die hauptsächlich von englischen und amerikanischen Forschern (Boltwood, Strutt, Holmes) begründet wurde und deren Prinzip uns durch ein Bild noch klarer werden soll ([Abb. 20]). Wir denken uns einen großen mit Wasser gefüllten Behälter, aus dem in der Zeiteinheit eine bestimmte Menge ausfließt. Das Wasser fließt über eine Anzahl verschieden großer Schalen weg. Jede Schale ist gefüllt, aber jede, ob klein oder groß, spendet der nächsten dieselbe Wassermenge; soviel oben ausfließt, fließt unten einem Sammelbecken zu, dessen Wassermenge sich dadurch ständig vermehrt. Je kleiner eine der Zwischenschalen ist, um so weniger Zeit braucht das Wasser, um sie zu durchlaufen. Umgekehrt gefaßt: wenn bekannt ist, daß eine dieser Schalen in ganz kurzer Zeit ohne Zufluß entleert würde, so kann daraus geschlossen werden, daß sie sehr klein sein muß. Größe und Entleerungszeit der Schalen stehen also in gesetzmäßigem Verhältnis zueinander.
Der Vergleich springt ohne weiteres in die Augen. Der oberste Behälter soll das Uran bedeuten, die verschiedenen Zwischenschalen die mittleren Stufen des Zerfalls, von denen jede ebensoviel Atome zu gleicher Zeit empfängt wie sie weiter gibt. Schließlich bedeutet der Inhalt des letzten Behälters das Endprodukt Uranblei, das sich in seiner Menge ständig vermehrt. Die Heliumatome springen bei jedem Sturz in die nächst tiefere Schale gesondert für sich ab. Das Verhältnis von Größe und Entleerungszeit einer Schale entspricht dem Verhältnis von prozentualer Menge und Zerfallszeit der radioaktiven Zwischenprodukte. Je länger der Vorgang sich abspielt, um so mehr sammelt sich unten an. An der Menge des entstandenen Uranbleis messe ich die verflossene Zeit wie in meinem künstlichen Wasserwerk an der durchgelaufenen Wassermenge.
In einem Punkt vermag sich unser Modell allerdings nicht ganz der Wirklichkeit anzupassen. Von dem Ausgangsmaterial Uran zerfallen allmählich nach dem uns bekannten Gesetz in der Zeiteinheit immer weniger Atome. Wenn die Ausgangsmenge des Urans geringer wird, so muß sich auch allmählich die Zahl der zerfallenden Atome und die Menge der Zwischenprodukte verringern. In unserm Modell müßte sich das in der Weise geltend machen, daß mit der Abnahme der Wassermenge im obersten Behälter auch der Strahl schwächer werden, und entsprechend die Größe der Zwischenschalen sich verringern sollte. Das letzte Sammelbecken bliebe jedoch unverändert. Doch müssen wir uns klar machen, daß die Abnahme des Urans so unendlich langsam vor sich geht, daß der Zerfall für die ersten 500 Millionen Jahre ohne großen Fehler als gleichmäßig angenommen werden kann.
Das Modell, das wir uns ausgedacht haben, ergab das Bild eines reichen und kunstvollen Wasserwerks, aus dem aber das Prinzip doch klar herausleuchtet. Daß die Berechnung, die wir auf diese Weise ausführen, das denkbar schönste Beispiel für eine Zeitmessung nach dem Prinzip der Wasseruhr ist, das ist ja schon längst klar geworden. Eines steht jedoch noch aus: die mathematische Berechnung des Gangs der geologisch-mineralogischen Uranuhr. Es ist nur nötig, in einem Uranmineral die Menge des Urans und des durch den Zerfall gebildeten Uranbleis zu bestimmen, um die seit seiner Bildung verstrichene Zeit berechnen zu können.[8] Die Grundlagen hierzu sind folgende: 1 g Uran bildet in einem Jahr 17900000000 g Radioblei. Diese Zahl folgt aus der mittleren Lebensdauer des Uran, die durch genaue Einzeluntersuchungen bestimmt wurde. 100g Uran bilden also jährlich 179000000 g Radioblei, d. h. es sind 79000000 Jahre nötig, bis 100 g Uran 1 g oder 1% Uranblei gebildet haben. Das Alter eines Uranminerals wird also gefunden, indem die Zahl von 79000000 Jahren mit dem auf die erzeugende Uranmenge[9] bezogenen Prozentgehalt an Blei multipliziert wird.
[8] Die nachstehende Berechnung ist nur angenähert richtig; die exakte Berechnung würde höhere Mathematik erfordern.
[9] Die „erzeugende“ Uranmenge wird als Durchschnitt zwischen der ursprünglich und zum Schluß vorhandenen Uranmenge berechnet.
Abb. 20. Die Uranuhr.
Die Zwischenprodukte mit gleichem Atomgewicht wurden der Vereinfachung halber zusammengefaßt. Die Größe der Zwischenschalen mußte, um sie überhaupt darstellen zu können, stark übertrieben werden.
Auf ganz ähnliche Weise kann aus der gebildeten Menge Helium das Alter des Minerals berechnet werden. Es stehen dem Forscher also zwei Wege zur Altersbestimmung zur Verfügung: die Blei- und die Heliummethode.[10]
[10] Auf vollständig dieselbe Weise kann aus den Tatsachen des Zerfalls in der Thoriumreihe das Alter eines Thoriumminerals durch Bestimmung seines Gehalts an Thorium und Thoriumblei (Th D) oder Helium berechnet werden.
Die wissenschaftlichen Grundlagen der Altersbestimmung radioaktiver Mineralien haben wir damit kennen gelernt. Es ist jedoch noch nötig, die Möglichkeiten ihrer praktischen Anwendung zu überlegen. Wir können mit der neuen Methode nur das Alter von Uran- und Thoriummineralien bestimmen. Die bekannten Uranmineralien kommen in der Hauptsache in ehemals feuerflüssigen Gesteinen vor. Als ein solches Gestein einst als glutflüssiger Brei aus dem Erdinnern hervorbrach, enthielt es noch keine einzelnen Mineralien; alle Stoffe waren vielmehr gleichmäßig verteilt in dem Gesteinsbrei enthalten. Als das Gestein dann allmählich erkaltete, da fingen die verschiedenen Stoffe an, sich zusammenzufinden und auszukristallisieren. Die uranhaltigen Mineralien gehörten zu den ersten, die sich aus dem Gesteinsbrei ausschieden. Besonders schöne und große derartige Mineralien findet man auch in den sogenannten pegmatitischen Gängen, deren Stoffe sich der Geologe durch glühende, aus einem feuerflüssigen Herd entbundene Gase in Spalten des bereits erkaltenden Gesteins hergetragen denkt.
Es kann als so gut wie sicher angenommen werden, daß das Uran bei der Ausscheidung aus dem feuerflüssigen Gesteinsbrei in chemisch reiner Form, also ohne Zerfallsprodukte, in den Aufbau des Minerals eingetreten ist. Die Anforderungen, die der Forscher an die auf ihr Alter zu untersuchenden Uranmineralien stellen muß, sind außerordentlich hohe: Für die Untersuchungen sollten möglichst große und reine Stücke genommen werden, die dabei vollständig frisch und unverändert sein müssen. Es könnte sonst sein, daß durch zerstörende oder umwandelnde Einflüsse der eine oder andere wichtige Stoff fortgeführt worden wäre, so daß ein irreführendes Ergebnis die Folge sein müßte. Haben sich nun Mineralien gefunden, die allen Anforderungen entsprechen, so wird nach den Regeln der chemischen Scheidekunst der Gehalt des Minerals an Uran und an Blei bestimmt; daraus kann das Verhältnis der beiden Elemente berechnet werden, und aus dem Gehalt an Blei in Prozenten der vorhandenen Uranmenge folgt ohne weiteres das Alter des Minerals, dessen Entstehung mit dem Ausbruch des vulkanischen Gesteins, in dem es enthalten ist, nahe übereinstimmt. Damit ist die Untersuchung aber noch nicht zu Ende. Es muß festgestellt werden, ob das in dem Mineral enthaltene Blei tatsächlich reines Uranblei ist. Es könnte ja sein, daß schon bei der Entstehung des Minerals auch gewöhnliches Blei sich am Aufbau beteiligt hätte, oder daß das Uranmineral noch Thorium enthalten würde; in diesem Fall wäre in dem erhaltenen Blei auch das Endprodukt der Thoriumreihe, Thoriumblei, enthalten. Hierüber kann nur eine Atomgewichtsbestimmung von höchster Genauigkeit Aufschluß geben. Stellt sich durch sie heraus, daß das Atomgewicht des erhaltenen Bleis 206 beträgt, so hat damit der Forscher den unwiderleglichen Beweis, daß reines Uranblei vorliegt. Wir sehen hieraus, daß die Unterscheidung der verschiedenen isotopen Bleiarten von außerordentlich großer praktischer Bedeutung für die ganze Methode ist. Ohne diese Möglichkeit käme man niemals über die Unsicherheit hinweg, ob nicht am Ende eine Verunreinigung des Uranminerals durch gewöhnliches Blei oder Thoriumblei das Ergebnis verfälscht habe.
Eine solche Gefahr besteht zwar bei der Heliummethode nicht, dafür tritt aber bei ihr eine andere Schwierigkeit auf. Es ist für sie ganz besonders wichtig, möglichst frische Mineralien zur Untersuchung zu bekommen, weil das gasförmige Helium wohl zunächst im Innern des Kristalls festgehalten wird, bei der Verwitterung aber rasch entweicht. Das Mineral wird bei der Untersuchung aufgelöst; dabei muß das gasförmige Helium aufgefangen und seine Menge ganz genau bestimmt werden. Es ist nun ohne weiteres verständlich, daß bei diesen Vorgängen ein großer Teil des Heliums verloren gehen kann, daß also für gewöhnlich die Menge des gefundenen Heliums viel zu gering ist und die daraus errechneten Alterszahlen zu niedrig ausfallen müssen.
Ehe wir die Ergebnisse solcher Altersbestimmungen kennenlernen wollen, müssen wir uns aber zuerst noch darüber klar werden, was wir von ihnen auf alle Fälle verlangen müssen. Die neue Methode muß zeigen, daß sie auch vor einer strengen Kritik bestehen kann. Ihre unmittelbare Nachprüfung, die sich auf Millionen von Jahren erstrecken müßte, ist nun allerdings nicht möglich, und so muß sie in erster Linie durch die innere Folgerichtigkeit und Widerspruchslosigkeit ihrer Ergebnisse für sich sprechen. Wir müssen zuerst von den zu erhaltenden Alterszahlen verlangen, daß sie sich dem Altersrahmen, den wir aus den früher besprochenen geologischen Methoden gewonnen haben, ohne Zwang einfügen. Wenn wir z. B. für ein Gestein, das nach der geologischen Altersbestimmung im Kambrium ausgebrochen und erstarrt ist, nach der Uranmethode ein Alter von 10 Millionen Jahren finden würden, so müßten wir von vornherein die schwersten Zweifel gegen die Richtigkeit der Methode hegen, ebenso aber, wenn wir für ein Gestein aus dem Miozän etwa 100 Mill. Jahre erhalten sollten. Wir sind bei der Aufstellung der Rahmenzahlen mit größter Vorsicht vorgegangen, wir können dafür aber auch als sicher annehmen, daß die richtige Zahl innerhalb dieses Rahmens liegen muß. Weiter muß von den radioaktiven Methoden der Altersbestimmung verlangt werden, daß ihre Ergebnisse mit dem sicher festgelegten, relativen Alter der Gesteine übereinstimmen. Es darf also nicht sein, daß sich für ein zweifellos karbonisches Gestein ein höheres Alter ergibt wie für ein solches, das nach seiner Lagerung in die präkambrische Zeit versetzt werden muß. Der Prozentgehalt an Blei muß also mit dem relativen geologischen Alter der Muttergesteine zunehmen. Schließlich muß sich bei Altersbestimmungen von verschiedenen Mineralien aus ein und demselben Gestein, also etwa aus einem einheitlichen Granitstock, für alle dasselbe Alter ergeben, ihr Prozentgehalt an Blei muß derselbe sein. Würde man bei einer Untersuchung für ein Mineral das doppelte Alter errechnen wie für ein anderes, so wäre wiederum unser Glaube an die Methode schwer erschüttert. Mit diesen Gesichtspunkten wollen wir überlegend an die Ergebnisse der Altersbestimmungen nach der Bleimethode herantreten, die in der nachfolgenden Tabelle nach Lawson und Holmes zusammengestellt sind.
Gruppe | Mineral | Fundort | Gehalt an | Mittleres Aler | |
1. | Uraninit | Glastonbury | 4,1 | Mittel | Karbon |
„ | 4,3 | ||||
„ | 4,0 | ||||
„ | 4,2 | ||||
„ | 4,0 | ||||
2. | Uraninit | Nord- | 5,1*) | Mittel | Zwischen Kambrium und Tertiär, |
„ | 5,5*) | ||||
„ | 4,9*) | ||||
„ | 4,6 | ||||
Zirkon | 4,4 | ||||
„ | 4,2 | ||||
3. | Zirkon | Brevig | 4,0 | Mittel | Mitteldevon |
„ | 4,6 | ||||
Pyrochlor | 4,8 | ||||
Biotit | 4,4 | ||||
Zirkon | 4,1 | ||||
4. | Uraninit | Branchville | 5,2 | Mittel | Untersilur |
„ | 5,1 | ||||
„ | 5,2 | ||||
„ | 5,1 | ||||
5. | Uranin. u. | Geg. v. Moos | 9 Analysen mit | Mittel-Präkambrium | |
6. | Uraninit | Arendal | 17 | Mittel | Mittel-Präkambrium |
„ | 18 | ||||
„ | 18 | ||||
„ | 19*) | ||||
7. | Uraninit | Villeneuve | 17 |
| Mittel-Präkambrium |
8. | Uraninit | Morogoro | 9,4 | Mittel | Geologisches Alter unbestimmt |
„ | 9,2 | ||||
9. | Zirkon | Portugiesisch | 17 | Mittel | 1100 Mill. Jahre |
„ | 15 | ||||
Biotit | 14 | ||||
10. | Zirkon | Mozambique | 21 |
| Von den ältesten gneisähnlichen |
Die Mineralien der ersten Gruppe kommen in einem Granit vor, der nach der geologischen Altersbestimmung im Karbon aufgedrungen ist. Das Verhältnis von Blei und Uran stimmt bei allen untersuchten Mineralien in sehr befriedigender Weise überein; leider wurde keine Atomgewichtsbestimmung des Bleis ausgeführt, so daß das Alter von 320 Millionen Jahren nicht als ganz gesichert gelten kann.
Der Granit, in dem die Mineralien der zweiten Gruppe vorkommen, gehört jedenfalls auch der Karbonformation an. Der Mittelwert des Bleigehalts ergibt ein Alter von 370 Millionen Jahren. Da aber das Atomgewicht zu 206,4 bestimmt wurde, so ist anzunehmen, daß nur 70% der Gesamtbleimenge radioaktiven Ursprungs sind. Wird das berücksichtigt, so ergibt sich das Alter zu 260 Millionen Jahren.
Bei der dritten Gruppe handelt es sich um Mineralien aus Gesteinen von mitteldevonischem Alter der Umgegend von Kristiania. Der etwas wechselnde Bleigehalt läßt auf nachträgliche Veränderungen der Mineralien schließen; sein Mittelwert ergibt ein Alter von 340 Millionen Jahren.
Die Mineralien der 4. Gruppe stammen aus einem Gestein vom Alter des Untersilurs (nach nordamerikanischer Bezeichnung Ordovician). Der Bleigehalt bleibt in allen Analysen sehr befriedigend derselbe. Die Alterszahl von 400 Millionen Jahren erscheint in ihrem Verhältnis zu den Ergebnissen der 1.–3. Gruppe als sehr wahrscheinlich.
Die Analysen und Alterszahlen der Gruppe 5 dürfen als außerordentlich zuverlässig gelten: Bei neun Analysen schwankt der Bleigehalt nur zwischen 12 und 14%. Die Atomgewichtsbestimmung des Bleis (206,06) bedeutet den sicheren Beweis, daß es sich um reines Uranblei handelt.
Die Mineralien der Gruppe 6 stammen aus einem anderen Granitmassiv Norwegens; der Altersunterschied gegenüber 5 findet dadurch seine Erklärung. Die Untersuchung eines Uranminerals aus dem mittleren Präkambrium Nordamerikas (6) ergibt bezeichnenderweise dasselbe Alter, wie es für das Mittelpräkambrium Norwegens gefunden wurde.
Leider läßt sich das relative geologische Alter der in Gruppe 8 bis 10 aufgeführten ostafrikanischen Gesteine nicht mit Sicherheit angeben; die Analyse der deutsch-ostafrikanischen Mineralien läßt jedoch infolge des gleichbleibenden Gehalts an Blei vom Atomgewicht 206 die errechnete Alterszahl als sehr zuverlässig erscheinen.
Diesen Ergebnissen der Bleimethode seien in der folgenden Zusammenstellung die der Heliummethode gegenübergestellt; wo gleichzeitig für ein Mineral die Bestimmung nach beiden Methoden vorliegt, ist das Ergebnis der Bleimethode in Klammern beigesetzt.
| Geologische Zeit | Mineral | Fundort |
ccm He auf 1 g Uranoxyd |
Alter in Jahrmillionen |
|---|---|---|---|---|
| Diluvium | Zirkon | Vesuv | 0,01 | 0,1 |
| „ | „ | Eifel | 0,09 | 0,96 |
| Pliozän | „ | Neuseeland | 0,146 | 1,56 |
| Miozän | „ | Auvergne | 0,57 | 6,1 |
| Eozän | Hämatit | Irland | 2,38 | 25,5 |
| Oberkarbon | Limonit | England | 12,8 | 137 (320) |
| Mitteldevon | Zirkon | Brevig, Norwg. | 4,31 | 46,1 (340) |
| Silur | Thorianit | Ceylon | 22,6 | 242 (500) |
| Ober-Präkambrium | Zirkon | Ceylon | 25 | 267 (1200) |
| Unter-Präkambrium | „ | Kanada | 56 | 600 (1500) |
Die Heliummethode gibt demnach durchweg kleinere Zahlen als die Bleimethode, was sich aus den bereits angeführten Tatsachen leicht erklärt. Es scheint, daß im allgemeinen nur ungefähr der dritte Teil des gebildeten Heliums im Mineral festgehalten bleibt; daher erreichen auch die Alterszahlen im Durchschnitt nur ein Drittel der nach der Bleimethode bestimmten Zahlen.
Versuchen wir unsere Überlegungen zusammenzufassen, so können wir auf alle Fälle sagen: Die Ergebnisse der radioaktiven Methode der Altersbestimmung machen durchaus den Eindruck großer Zuverlässigkeit. Sie fügen sich zwanglos dem Rahmen ein, den die Geologie aufgestellt hat. Die absoluten Alterszahlen stehen mit der relativen Altersbestimmung nirgends in Widerspruch. Das gleichbleibende Verhältnis von Uran und Blei bei Mineralien desselben Vorkommens zeigt deutlich, daß ihm ein bestimmtes Gesetz zugrunde liegt.
So erfüllt tatsächlich die neue Methode alle Anforderungen, die an ihre Ergebnisse gestellt werden müssen. Die Grenzen ihrer Anwendungsmöglichkeit sollen allerdings auch nicht verschwiegen werden. Leider sind die Mineralien, die sie braucht, recht selten und nur in vollständig unverwittertem Zustand verwendbar. Mit der radioaktiven Methode kann nur das Alter von Uranmineralien, und damit der Zeitpunkt des Ausbruchs und der Erstarrung ihres Muttergesteins bestimmt werden. Nun ist es oftmals unmöglich, das relative Alter eines solchen Gesteins genau festzulegen; es kann von ihm (wie bei 2) unter Umständen nur ausgesagt werden, daß es jünger als Kambrium, aber älter als Tertiär sein müsse, und das sind sehr weit gezogene Grenzen. In einem solchen Fall ist leider auch die schönste Altersbestimmung für die Festlegung eines Punktes in der Erdgeschichte verloren. Wenn die Wissenschaft in Anwendung der neuen Methode später einmal vollständige Sicherheit erlangt hat, so besitzt sie allerdings damit die Möglichkeit, mit Hilfe des absoluten Alters eines Gesteins auch die Formation zu bestimmen, der es angehören muß. Bedauerlich ist es, daß bis jetzt noch keine ganz zuverlässige Altersbestimmung für ein jüngeres Gestein, etwa aus der Jura- oder Tertiärzeit, vorliegt. Es fehlen eben bis jetzt aus Gesteinen dieser Formationen die zur Untersuchung verwendbaren Uranmineralien. Leicht und bequem zu handhaben ist die Methode nicht. Die chemische Analyse wäre zwar an sich nicht besonders schwierig; sie fordert aber, um zuverlässig zu sein, jedesmal noch eine besondere Atomgewichtsbestimmung des Bleis, die in der notwendigen Genauigkeit nur von ganz wenigen Spezialforschern ausgeführt werden kann. Alles in allem können wir aber sagen, daß die neue Methode der Altersbestimmung einen ungeheuren Fortschritt bedeutet: das rohe Schätzen und Extrapolieren haben wir verlassen; wir sind mit ihr in den Bezirk exakter physikalisch-chemischer Forschung eingetreten. Ihre wissenschaftliche Grundlage, die Zerfallstheorie der radioaktiven Elemente, darf schon heute als gesicherter Bestand der Wissenschaft gelten, obwohl sich die einzelnen Angaben über Zerfallszeiten bei zukünftigen genaueren Bestimmungen noch etwas ändern können. Zwei grundlegende Voraussetzungen sind allerdings noch in den Berechnungen enthalten: Wir müssen einmal annehmen, daß das Uranmetall rein und ohne seine Folgeprodukte bei der Bildung des Minerals in dieses eingetreten sei. Das ist eine Annahme, die von der Mineralogie überaus wahrscheinlich gemacht wird. Das zweite muß in seiner Art bei jedem geologischen Zeitmesser zugrunde gelegt werden. Wir müssen voraussetzen, daß die „Uranuhr“, wie wir sie kurz heißen wollen, im ganzen Verlauf der geologischen Vorzeit gleich rasch gegangen sei wie heute. Wir werden auf diese Frage nochmals zurückkommen.
Mit diesen Altersbestimmungen nach radioaktiver Methode ist ein Wunsch in Erfüllung gegangen, den wir zum Schluß des zweiten Kapitels ausgesprochen haben: Wir haben durch physikalisch-chemische Messung die sichere zeitliche Festlegung mehrerer Punkte in früher geologischer Vergangenheit erreicht. Damit ergeben sich ohne weiteres auch brauchbare Werte für die dazwischenliegende Zeit. Vom Extrapolieren können wir, wie der Mathematiker sagen würde, zum Interpolieren übergehen; wir bestimmen den Verlauf der Zeitkurve zwischen zwei festen, weit auseinanderliegenden Punkten. Es ist ja nötig, durch eine größere Zahl von Altersbestimmungen die Sicherheit der Ergebnisse noch zu verstärken; aber es kann gesagt werden, daß auch schon die heute vorliegenden Zahlen infolge ihrer Widerspruchslosigkeit einen sehr hohen Grad von Wahrscheinlichkeit beanspruchen dürfen. Das ist alles, was überhaupt erwartet werden kann, sind wir doch Eintagsfliegen, denen jedes unmittelbare Herantreten an die Messung geologischer Zeiträume immer versagt bleiben wird. Stellen wir die zuverlässigsten Zahlen heraus, so sind es die für das Alter des Karbons mit 320 Millionen Jahren (vielleicht etwas zu hoch), des Untersilurs mit 400 Millionen Jahren, des Mittel-Präkambriums mit 1000 und 1300 Millionen Jahren. Es gilt nun, in diesen Rahmen die übrigen Ereignisse der Erdgeschichte schätzungsweise einzufügen, wie der Kartograph nach der genauen Festlegung seiner trigonometrischen Punkte das übrige in seine Karte einzeichnet. Einer der wichtigsten Punkte ist der Beginn des Kambriums. Nach den obigen Zeitbestimmungen können wir als wahrscheinliche Zahl etwa 500 Millionen Jahre für ihn einsetzen (Barrell nimmt 600 Millionen Jahre an). Auf diesen Zeitraum verteilen sich die zehn Formationen des Geologen, deren jede etwa 40–80 Millionen Jahre zu ihrer Bildung beansprucht haben mag. Für das Tertiär wird ein Wert in der Nähe der unteren Grenze anzusetzen sein, ein Ergebnis, das unsere frühere Schätzung aufs schönste bestätigt.
Für das Präkambrium, das noch weit über das Kambrium zurückführt, muß auf alle Fälle ein Zeitraum angenommen werden, der die Dauer aller späteren Epochen um das Mehrfache übersteigt. Alle Gesteine dieser Periode sind in ihren Mächtigkeiten verändert, in der stärksten Weise umgebildet und zum größten Teil zu kristallinen Schiefern geworden, deren Ursprung man kaum mehr zu erkennen vermag. Die Zeitdauer ihrer Bildung muß noch weit das Maß übersteigen, das schon ihre ungeheure Schichtmächtigkeit erwarten läßt. Tatsächlich ergibt ja die radioaktive Methode für das Präkambrium einen Zeitraum von weit über einer Milliarde Jahre, wenn die Zeit vom Mittelpräkambrium bis zum Beginn des Kambriums allein schon 800 Millionen Jahre beträgt. Daß ganz ungeheure Zeiträume dem Präkambrium zugrunde liegen müssen, ergeben vor allem auch entwicklungsgeschichtliche Überlegungen. Weist doch die Tierwelt des Kambriums Vertreter von außerordentlich hoher Entwicklung auf; vom Anfang des Lebens überhaupt bis zu dieser Entwicklungshöhe muß der Weg vielmal weiter gewesen sein als vom Beginn des Kambriums bis zur Jetztzeit. War er dreimal, war er zehnmal, oder gar hundertmal so weit? Niemand vermag es zu sagen. Alle Anhaltspunkte fehlen uns; die Anfänge des Lebens sind vielleicht in uralten Schichten des Präkambriums begraben, aber ihre Spuren sind bereits vollständig verwischt und es ist so gut wie aussichtslos, über sie jemals etwas Bestimmtes zu erfahren.
Noch viel unsicherer werden unsere Vermutungen, wenn wir Jahreszahlen für noch weiter zurückliegende Entwicklungszustände unserer alten Erde finden wollen. Wir haben bereits die Altersbestimmung des Ozeans aus seinem Salzgehalt abgelehnt; dasselbe wird mit gewissen physikalischen Methoden der Fall sein müssen. Eine große Rolle hat bis vor kurzer Zeit der Versuch des englischen Physikers Thomson (Lord Kelvin) gespielt, aus der Abkühlung der Erde ihr Alter zu berechnen (1897). Von den physikalischen Gesetzen der Wärmestrahlung ausgehend, kam er auf das Ergebnis, daß eine Kugel von der Größe und Beschaffenheit der Erde zur Abkühlung von einem feuerflüssigen Zustand bis zur heutigen Oberflächentemperatur etwa 40 Millionen Jahre nötig habe. Diese Zahl hatte von vornherein sehr wenig innere Wahrscheinlichkeit. Es läßt sich überzeugend nachweisen, daß im Kambrium keine wesentlich höhere Temperatur bestanden haben kann als heute. In dem großen Vorgang der Abkühlung könnte daher der Zeitspanne vom Kambrium bis zur Jetztzeit nur ein ganz geringer Prozentsatz der 40 Millionen Jahre zufallen, und daraus würden sich so geringe Zahlen für die Bildungszeiten der einzelnen geologischen Formationen ergeben, daß kein Geologe ihre Richtigkeit zugeben könnte. Nun hat sich aber weiterhin im Zusammenhang mit der radioaktiven Forschung eine Tatsache ergeben, die allein für sich genügt, die Berechnung Thomsons ungültig zu machen. Thomson kannte nämlich die Tatsachen des radioaktiven Zerfalls noch nicht und konnte daher in seine Wärmerechnung einen überaus wichtigen Aktivposten nicht einstellen: den Zuwachs an Wärme, den die Erde durch den Zerfall radioaktiver Substanzen andauernd erfährt. Es ist versucht worden, die Menge der radioaktiven Stoffe in den uns zugänglichen Teilen der Erdrinde zu bestimmen; dabei ergaben sich so erhebliche Mengen, daß ihre Wärmeerzeugung beim Zerfall vollständig genügt, um den Verlust aufzuheben, den die Erde durch Wärmeausstrahlung erleidet. Ja es ist sogar für die Wissenschaft zum Problem geworden, wie es möglich sei, daß die Erde nicht dauernd heißer werde! Es müssen besondere Annahmen über die Verteilung der radioaktiven Stoffe in größerer Tiefe gemacht werden, um die ziemlich gleichbleibende Wärme der Erdrinde verständlich zu machen. Wir sehen, dieser eine Umstand genügt vollständig, um die Berechnung Thomsons unbrauchbar zu machen. Wir tun am besten, mit unsern Versuchen absoluter Altersbestimmungen nicht weiter zurückzugehen als bis zu einem Zeitpunkt, den wir noch mit erprobten Methoden erfassen können. Die Wissenschaft vermag im heutigen Augenblick noch nicht das „Alter der Erde“ schlechthin zu bestimmen. Wir wollen bescheidener sein und uns an der Berechnung von Zahlen für das Alter des Kambriums oder des Präkambriums genügen lassen.