III. DARSTELLUNG DER GELÄNDEFLÄCHEN

§ 35. Hauptschichtlinien. In der Einleitung wurde bereits von der Darstellung einer Geländefläche durch ihre Schichtlinien, die Schnittkurven mit wagerechten Ebenen, gesprochen, und in den vorhergehenden vorbereitenden Abschnitten ist davon auch schon bei der Darstellung der einfachen Flächen – Ebene, Zylinder, Kegel, Kugel – Gebrauch gemacht worden.

Im folgenden sei nun die Gestalt der Geländefläche willkürlich angenommen, jedoch vorausgesetzt, daß sie im allgemeinen glatt genug verlaufe, so daß man sie durch die gezeichneten Schichtlinien als hinreichend gegeben ansehen kann. Diese Schichtlinien, die gewöhnlich Schichten gleicher Dicke entsprechen, und deren Höhenzahlen auch gewöhnlich runde Zahlen sind, werden bisweilen Hauptschichtlinien der Fläche genannt.

Die kotierte Projektion der Hauptschichtlinien eines Geländes auf eine wagerechte Zeichenebene liefert bei nötiger Verkleinerung eine Karte oder einen Plan des Geländes. Allen folgenden Betrachtungen wird ein solcher Schichtenplan zugrunde gelegt; an ihm können alle Konstruktionen usw. ausgeführt werden. Daher werden im Folgenden auch unter Schichtlinien, Fallinien usw. schlechtweg ihre Abbildungen (d. h. verkleinerten Projektionen) auf einer Karte verstanden, wenn nicht etwa aus dem Zusammenhange hervorgeht, daß die Originale des Geländes selbst gemeint sind.

§ 36. Zeichnerische Bemerkungen. Zunächst mögen einige Bemerkungen über die zeichnerische Ausführung der Konstruktionen eingeflochten werden, von denen im folgenden die Rede sein wird. In den beiden vorhergehenden Abschnitten war fast alles mit dem Lineal, dem Zirkel, Maßstab und Transporteur ausführbar. Diese elementaren Geräte werden im folgenden nicht immer genügen, wie das in der Natur der Sache liegt, wenn sich die Konstruktionen nicht auf gerade Linien und Kreise beschränken sollen.

Oft wird es von Vorteil oder geboten sein, die Konstruktionen nicht an der vorhandenen Karte selbst auszuführen. Dann zeichnet man sich den erforderlichen Teil des Geländes auf ein besonderes Zeichenblatt ab, entweder mittels Pauspapiers, nachdem man eine Anzahl wichtiger Punkte und etwa das Gradnetz des Geländes besonders festgelegt hat, oder besser und genauer mit einem Storchschnabel (Pantographen).

Man kann damit zugleich die herauszuzeichnenden Teile der Karte in vergrößertem Maßstabe wiedergeben, was oft sehr nützlich ist.

Fig. 38.

§ 37. Der Storchschnabel (Pantograph; Christoph Scheiner, † 1650) besteht ([Fig. 38]) aus zwei durch eine Parallelogrammführung (CD = ES, CE = DS) verbundenen Stangen AC und BC mit gemeinsamem Drehpunkt C; aus der Ähnlichkeit der Dreiecke ADS und ACB folgt AS : AB = AD : AC. Wenn also der Punkt A des Apparates am Zeichentisch oder Reißbrett festgemacht wird, bei S sich ein über der abzuzeichnenden Karte beweglicher Fahrstift (scharfe Spitze, die durch eine daneben angebrachte ein wenig längere Stütze dicht über der Karte geführt wird), bei B der auf dem Papier zeichnende Bleistift befindet, so liefert der letztere eine Vergrößerung im Verhältnis AD : AC. Ist SB' = AC, so beschreibt B' dieselbe Figur wie S.

Für die hier in Frage kommenden Zwecke genügt meist ein ganz einfacher Apparat, wie er für weniges Geld zu haben ist. Man wird ihn nötigenfalls ein wenig ausrichten und seine Vergrößerung prüfen müssen. Dies geschieht, indem man mit dem Fahrstift eine bekannte Strecke durchläuft und sie mit der vom Bleistift gezeichneten Strecke vergleicht.

§ 38. Glatte Kurve. Oft wird verlangt, durch eine Reihe passend gegebener Punkte eine glatte Kurve zu legen. Diese Aufgabe ist bis zu einem gewissen Grade willkürlich, weil der Begriff der »glatten Kurve« nicht bestimmt genug ist. Man zieht eine solche Kurve mit Benutzung des Kurvenlineals. Auch die Schichtlinien sind so zu zeichnen, aber nicht, wie es manchmal zu sehen ist, mit willkürlichen Wellen und Zacken dazwischen, die viele Konstruktionen ganz unausführbar machen würden.

§ 39. Spiegellineal. Um an eine durch Zeichnung gegebene ebene Kurve in einem gegebenen Punkte die Tangente oder Normale zu konstruieren, bedient man sich zweckmäßig eines Spiegellineals, d. h. eines Lineals, das an einer zur Zeichenebene senkrechten ebenen Seitenfläche das Spiegelbild der gezeichneten Kurve erkennen läßt. Dreht man es so lange um den gegebenen Punkt, bis Spiegelbild und gezeichnete Kurve ohne merklichen Knick ineinander überzugehen scheinen, so ist die Schnittgerade der Spiegel- und Zeichenebene Normale der Kurve, ihre Senkrechte im gegebenen Berührungspunkte also die Tangente.

Als Spiegellineal läßt sich ein mit einer geraden Kante versehener, und, damit die Vorderfläche, nicht die Hinterfläche spiegelt, schwarz hinterlegter Spiegelglasstreifen verwenden; für viele Zwecke genügt auch ein mitten auf die nicht abgeschrägte Zentimeterteilung eines gewöhnlichen Rechenschiebers geklebtes geglättetes und mit dem Ballen der Hand poliertes Stück Stanniol.

§ 40. Tangente. Von einem geeignet gegebenen Punkte, der nicht auf einer gegebenen Kurve liegt, läßt sich zwar recht genau an diese eine Tangente mit dem Lineal legen; doch bleibt dabei die Lage des Berührungspunktes unscharf. Man findet ihn durch eine Korrektions- oder Fehlerkurve, die man z. B. erhält, indem man eine Reihe von Sekanten zieht, entweder durch den gegebenen Punkt, oder der gezeichneten Tangente parallel, deren zwischen der Kurve gelegene Sehnen man halbiert ([Fig. 39]).

Fig. 39.

§ 41. Hüllkurve. Statt daß eine Kurve zeichnerisch durch eine genügende Anzahl Punkte bestimmt wird, kommt es auch oft vor, sie zu zeichnen, wenn eine hinreichende Anzahl Tangenten von ihr gegeben sind; das wird ebenfalls durch passendes Anlegen des Kurvenlineals ausgeführt.

Man spricht in diesem Falle davon, daß die Tangenten die Kurve einhüllen, letztere die Hüllkurve (Enveloppe) der Tangenten ist. Vgl. z. B. die [Fig. 26].

Fig. 40.

§ 42. Evolute. Zeichnet man zu einer gegebenen Kurve, die von einem Kreise oder einer Geraden verschieden ist, (mit dem Spiegellineal) genügend viele Normalen, so hüllen sie im allgemeinen eine zweite Kurve ein, die Evolute der ursprünglichen ([Fig. 40]). Der Punkt M, in dem diese eine bestimmte, durch den Kurvenpunkt P gehende Normale berührt, heißt der zu P gehörige Krümmungsmittelpunkt der ursprünglichen Kurve, so daß also die Evolute der Ort der Krümmungsmittelpunkte ist. Der Kreis mit dem Zentrum M und dem Radius PM heißt Krümmungskreis und schmiegt sich an die gegebene Kurve in P inniger an als jeder andere Kreis, obwohl er im allgemeinen die Kurve durchschneidet.

§ 43. Parallelkurven. Trägt man auf den Normalen einer Kurve von dieser aus nach derselben Seite gleiche Stücke ab, so erhält man eine äquidistante oder parallele Kurve. Alle Parallelkurven haben also dieselben Normalen und demnach eine gemeinsame Evolute. Sie heißen auch die zu der Evolute gehörigen Evolventen.

Auch andere Kurven, z. B. Kreise, können – natürlich ebenfalls nur bei gewissen Anordnungen – einhüllende Kurven besitzen. Davon macht man unter anderm zweckmäßig Gebrauch, um noch auf eine zweite Art zu einer gegebenen eine parallele Kurve im gegebenen Abstand zu zeichnen. Man zieht um eine genügende Anzahl von Punkten der gegebenen Kurve Kreise, deren Radius der gegebene Abstand ist, und zeichnet die beiden Hüllkurven dieser Kreise.

§ 44. Berührungen im Raum. Von den folgenden leicht nachzuweisenden Sätzen, die über die Darstellung einer Berührung im Raume gelten, wird in Zukunft oft stillschweigend Gebrauch gemacht, wenn Berührungskonstruktionen statt auf der Geländefläche auf einem Plan von ihr ausgeführt werden.

Eine beliebige Raumkurve, eine Tangente an ihr und der Berührungspunkt gehen im allgemeinen bei der Projektion in eine ebene Kurve, eine Tangente an dieser und den Berührungspunkt über, und zwar entsprechen die beiden Kurven, die beiden Tangenten und die beiden Berührungspunkte einander.

Daraus folgt: wenn zwei Raumkurven sich in einem Punkte berühren, so berühren sich auch ihre Projektionen in einem Punkte, der die Projektion jenes ist.

§ 45. Relief eines Geländes. Die topographische Aufnahme eines Geländes geschieht meist durch Höhenmessung einer ausreichenden Anzahl einzelner Punkte, deren geographische Lage (etwa Länge und Breite, oder andere Koordinaten) bekannt ist. Danach werden dann die Schichtlinien konstruiert, wovon nachher im [§ 48] noch die Rede sein wird.

Wenn man für jede Hauptschichtlinie gleich starke Lagen von Pappe oder Holz, deren Dicke der Schichtendicke entspricht, so ausschneidet, wie die Schichtlinie angibt, und sie dann richtig aufeinanderlegt, so erhält man ein terrassenförmiges Gebilde, das angenähert ein Relief des Geländes darstellt. Auf diese Weise werden nach Ausfüllung der Terrassen meist Reliefs von gebirgigen Gegenden wirklich hergestellt.

§ 46. Kurven auf einer Geländefläche. Außer den Schichtlinien sind natürlich noch eine ganze Reihe anderer Kurven im Zusammenhang mit einer Geländefläche zu betrachten, die teils auf ihr gelegen sind, teils sie durchdringen oder berühren: Wege auf dem Gelände, Eisenbahnlinien, Schnittkurven mit anderen Flächen, scheinbare Horizonte usw. Auch diese alle hat man sich in den Plan eingezeichnet zu denken. Es wird zweckmäßig sein, zunächst die hauptsächlichsten Eigenschaften solcher Raumkurven kennen zu lernen, da sie naturgemäß bei den Konstruktionen an Geländeflächen fortgesetzt vorkommen.

§ 47. Darstellung einer Raumkurve. Eine beliebige Raumkurve ist durch ihre Projektion gegeben, wenn zugleich für eine genügende Anzahl ihrer Punkte die Höhenzahlen bekannt sind. Man denke etwa an die Darstellung des Weges, den ein Luftschiff durchmessen hat.

Alle, die Punkte einer Raumkurve projizierenden lotrechten Strahlen bilden einen Zylinder, den projizierenden Zylinder, und seine Abwickelung gibt das Profil längs der Raumkurve, das Längenprofil. Man zeichnet diese Abwickelung, indem man mittels einer genügend kleinen Zirkelöffnung die Kurve in so kleine Stücke teilt, daß sie innerhalb der Zeichengenauigkeit als geradlinig (vgl. [§ 85]) betrachtet werden können, trägt diese Stücke mittels derselben Zirkelöffnung längs einer Geraden ab, bezeichnet dabei die kotierten Punkte und trägt in ihnen die entsprechenden Höhen lotrecht auf. Die Endpunkte dieser Lote bilden das erwähnte Längenprofil ([Fig. 41] u. [41 a]).

Fig. 41.

Fig. 41 a.

§ 48. Einschalten von Punkten und Konstruktion von Schichtlinien. Man benutzt ein solches Längenprofil, um in die Kurve Punkte gegebener Kote einzuschalten, z. B. die Punkte mit runden Höhenzahlen (Hauptpunkte), wodurch dann eine Stufung der gegebenen Kurve in ähnlicher Weise ausgeführt wird, wie das früher ([§ 4]) bei der geraden Linie geschehen ist.

Davon macht man z. B. Gebrauch, um aus den vermessenen Punkten eines Geländes seine Hauptschichtlinien zu konstruieren (vgl. [§ 45]). Man verbindet zu diesem Zwecke geeignete vermessene Punkte der Fläche durch eine glatte Kurve, zeichnet deren Längenprofil, aus dem man dann leicht die Zwischenpunkte mit runden Höhenzahlen entnehmen kann. Das ist in der [Fig. 41] z. B. an der Linie AB näher ausgeführt. Die Verbindungskurven sind möglichst quer zu den zu erwartenden Schichtlinien zu wählen.

Ein derartiges Längenprofil wird ferner in praktischen Fällen oft benutzt, um z. B. das Steigen und Fallen eines Weges oder einer Eisenbahnstrecke unabhängig von den Krümmungen der Linienführung darzustellen, oder um die geologische Gestaltung des Erdinnern längs eines Tunnels oder Stollens zu verfolgen.

§ 49. Böschung einer Raumkurve. Unter dem Anstieg (Böschung) einer Raumkurve in einem ihrer Punkte versteht man den Anstieg der Tangente in diesem Punkte. Die Projektion der Tangente fällt nach [§ 44] zusammen mit der Tangente der Projektion der Raumkurve. Da sie bei der Abwickelung des projizierenden Zylinders auch in die Tangente des Längenprofils übergeht, so kann damit ihre Stufung nach [§ 4] leicht ausgeführt werden (vgl. [Fig. 42]).

Fig. 42.

Fig. 43.

§ 50. Böschungslinie. Unter dem Intervall einer Raumkurve in einem ihrer Punkte versteht man das Intervall der zugehörigen Tangente. Im allgemeinen ändert es seine Größe längs der Kurve: je kleiner es ist, um so steiler, je größer, um so flacher verläuft die Kurve in der Nähe der betreffenden Stelle. Ist das Intervall längs der ganzen Kurve von derselben Länge, so hat die Kurve konstante Steigung; sie heißt dann eine Böschungslinie; ihr Längenprofil ist eine Gerade, wie das in [Fig. 43] gezeigt ist.

Bei genügend enger Graduierung ist das Intervall einer Raumkurve in einem Punkte näherungsweise gleich der Entfernung der beiden benachbarten Hauptpunkte.

§ 51. Normalebene, Planierungsfläche. Die auf der Tangente im Berührungspunkte senkrechte Ebene heißt Normalebene der Kurve; ihr Gefällemaßstab ist nach [§ 6] zu konstruieren als die in einer lotrechten Ebene gelegene Senkrechte zur Tangente im Berührungspunkte (vgl. [Fig. 44]): das Intervall ist entgegengesetzt gerichtet und reziprok zu dem der Tangente, wozu in der Figur das rechtwinklige Dreieck mit der Höhe 1 (Einheit des Höhenmaßstabes) dient. Jede in der Normalebene gelegene, die Kurve schneidende Gerade heißt Normale der Kurve.

Fig. 44.

Fig. 45.

Sämtliche horizontalen Normalen bilden eine im allgemeinen windschiefe Fläche, die die Kurve enthält, die Planierungsfläche. Die Projektionen dieser Normalen sind die mittels des Spiegellineals leicht in die Karte zu zeichnenden Normalen der gegebenen Projektion der Kurve. Trägt man auf ihnen von der Kurve aus beiderseits dasselbe Stück ab, so erhält man die Darstellung eines Weges, dessen Mittellinie die gegebene Kurve ist ([Fig. 45]).

Im allgemeinen besteht die Planierungsfläche aus zwei Flügeln, die längs derjenigen Raumkurve aneinanderstoßen, deren Projektion die Evolute der gegebenen Projektion der Kurve ist. Längs dieser Raumkurve durchdringt die Planierungsfläche sich selbst. Zum Beispiel ist die Planierungsfläche einer gewöhnlichen zylindrischen Schraubenlinie mit lotrechter Achse die gemeine Schraubenfläche, ihre Selbstdurchdringungskurve die lotrechte Achse selbst.

§ 52. Schmiegungsebene. Ebenso wie die Tangente einer Kurve die Grenzlage der Sekante ist für den Fall, daß der eine Kurvenpunkt sich dem anderen mehr und mehr nähert, so ist die Schmiegungsebene die Grenzlage aller durch drei Punkte der Kurve gehenden Ebenen für den Fall, daß zwei der Punkte sich dem dritten mehr und mehr nähern, übrigens, wenn von einer Schmiegungsebene überhaupt die Rede sein soll, gleichgültig, in welcher Weise diese Annäherung ausgeführt wird. Daher ist die Tangente in der Schmiegungsebene gelegen.

Um die Schmiegungsebene in einem gegebenen Punkte der Kurve zu konstruieren, wird man demnach zuerst die zugehörige Tangente zu ziehen und nach [§ 49] zu graduieren haben. Die Schmiegungsebene wird alsdann eindeutig bestimmt sein, sobald man die Richtung einer ihrer Streichlinien kennt, z. B. derjenigen, die durch den gegebenen Kurvenpunkt geht. Die Hauptstreichlinien sind zu dieser parallel und gehen durch die Hauptpunkte der Tangente.

Fig. 46.

Bei der Konstruktion der Schmiegungsebene muß man natürlich von ihrer Erklärung Gebrauch machen und also eine Reihe von Ebenen zeichnen, deren Grenzlage sie ist. Zum Beispiel kann man zweckmäßig solche Ebenen wählen, deren einer Punkt der gegebene ist, während die beiden anderen entgegengesetzt gleiche Höhenabstände von ihm haben. Das ist in [Fig. 46] ausgeführt, indem jedesmal die Verbindungsgerade der beiden letztgenannten Punkte graduiert ist. Diese Ebenen hüllen eine Fläche ein, auf der die gegebene Kurve gelegen ist, und auf der sich leicht die Höhenlinien als Verbindungskurven der Punkte gleicher Höhenzahlen zeichnen lassen, insbesondere auch die durch den gegebenen Kurvenpunkt gehende. Irgendeine durch diesen Punkt gehende Sekante der Höhenlinie ist in einer der besagten Ebenen als Schichtlinie enthalten. In dem Grenzfall der Schmiegungsebene geht also diese Sekante in die Tangente der erwähnten Schichtlinie im gegebenen Punkte über und wird zugleich Schichtlinie der Schmiegungsebene. Danach ist diese leicht zu zeichnen.

§ 53. Hauptnormale, Binormale. Die Schmiegungsebene und die Normalebene schneiden sich in der Hauptnormalen der Kurve. Das Lot auf der Schmiegungsebene im Berührungspunkte heißt Binormale der Kurve. Beide Geraden lassen sich nach [§ 12] und [§ 6] konstruieren.

Wer die angegebene Konstruktion der Tangente, Schmiegungsebene usw. wirklich ausgeführt hat, wird unschwer bemerkt haben, daß dabei die Genauigkeit der Zeichnung geringer ist als bei den bisherigen Konstruktionen. Der Grund dafür liegt in den Erklärungen der Tangente usw. als Grenzlagen gewisser Geraden usw. Diese Bemerkung gilt auch für eine ganze Reihe von Konstruktionen an Kurven und Flächen, wie sie im folgenden mitgeteilt werden.

Fig. 47.

§ 54. Schnitt einer Fläche mit einer Ebene. Um die Schnittkurve einer Fläche mit einer gegebenen Ebene zu konstruieren, bringt man die Schichtlinien der Fläche mit den gleichkotierten Streichlinien der Ebene zum Schnitt und verbindet die erhaltenen Punkte durch eine glatte Kurve. Diese wird Ausschnittlinie, Ausbißlinie, Verschneidung der Ebene genannt ([Fig. 47]).

Fig. 48.

Fig. 48 a.

Wenn man die gegebene Fläche längs einer gegebenen Richtung durch eine lotrechte Ebene schneidet und diese samt der Schnittfigur in die Zeichenebene umklappt, so erhält man ein Querprofil der Fläche längs der gegebenen Richtung ([Fig. 48]). Oft ist es zweckmäßig, um die Zeichnung nicht zu verwirren, oder bei Benutzung einer Karte, das Querprofil auf eine besondere Zeichnung zu übertragen: das geschieht längs der gegebenen Richtung mittels des Zirkels oder einfacher mittels eines angelegten geraden Papierstreifens ([Fig. 48 a]).

§ 55. Anwendung. Die Konstruktion von Ausschnittlinien und Querprofilen kommt sehr oft bei Aufgaben des Tiefbaues, bei geologischen oder bergmännischen Fragen vor. Zum Beispiel, wenn man an irgendeiner Stelle des Geländes das Streichen und Fallen einer (in erster Annäherung als eben angenommen) geologischen Schicht beobachtet hat, so ist es von Wichtigkeit, die (mutmaßliche) Ausbißlinie dieser Schicht zu kennen, um dadurch zu wissen, an welchen Stellen des Geländes man mit einiger Aussicht auf Erfolg durch Schürfarbeit die Schicht bloßlegen und vielleicht abbauen kann; oder wie tief ein Schacht, der an einer gegebenen, dem Verkehr zugänglichen Stelle anzulegen ist, niedergebracht werden muß, bis er die Schicht erreicht.

Fig. 49.

Man hat dann zunächst aus dem beobachteten Einfallen und Streichen die Schichtlinien der Ebene und damit ihren Gefällemaßstab nach [§ 11] zu konstruieren, alsdann, wie im vorigen Paragraphen angegeben, ihre Ausbißlinie (in der Figur gestrichelt) mit der Fläche herzustellen, schließlich durch den Schacht in der durch die Fallinie der Ebene gegebenen Richtung ein Querprofil durch das ganze Gelände zu legen. Daraus ist dann die Teufe des Schachtes zu entnehmen. Dies ist in der [Fig. 49] ausgeführt.

§ 56. Einschalten von Höhenlinien. Für manche konstruktiven Zwecke reichen oft die vorhandenen Höhenlinien nicht an allen Stellen der Karte aus, um die verlangten Konstruktionen mit genügender Genauigkeit auszuführen. Dann wird es erforderlich, zwischen die vorhandenen noch andere Höhenlinien einzuschalten. Zweckmäßig kann das mit Hilfe von Querprofilen geschehen, die man an den betreffenden Stellen der Karte in genügender Anzahl legt, und aus denen man die erforderlichen Punkte für die zu konstruierenden Zwischenschichtlinien entnimmt (vgl. [Fig. 50]).

Fig. 50.

Fig. 51.

Wenn die Höhenlinien nur schwach gekrümmt sind, kann man mittels eines einfach anzulegenden Maßstabes Punkte der einzuschaltenden Schichtlinien mit genügender Annäherung auffinden, wie das aus der [Fig. 51] hervorgeht; bei geradlinigen Schichtlinien wäre dieses Verfahren streng richtig.

Am genauesten und in jedem Falle anzuwenden sind die Längenprofile quer zu den Schichtlinien (längs der Fallinien, vgl. [§ 58]), und zwar so, wie es im [§ 48] gezeigt worden ist.

§ 57. Berührungsebene und Normale einer Fläche. Um in einem gegebenen Punkte der Fläche die Berührungsebene zu konstruieren, bedenke man, daß diese von einer durch den Punkt gehenden wagerechten Ebene in einer wagerechten Geraden geschnitten wird; diese Gerade ist eine Tangente der Fläche in dem gegebenen Punkte, also auch eine Tangente an die durch den Punkt gehende Höhenlinie der Fläche. Da den Berührungen auf der Fläche auch Berührungen in der Karte entsprechen ([§ 44]), so ist demnach auf dem Plane die Normale der Höhenlinie in dem gegebenen Punkte (mit dem Spiegellineal zu zeichnen) die Projektion einer Fallinie der gesuchten Berührungsebene. Konstruiert man das durch die Richtung dieser Fallinie bestimmte Querprofil der Fläche nach [§ 54], so ist die Fallinie an ihm in dem gegebenen Punkte Tangente. Ihr Böschungsmaßstab ist also auch der Gefällemaßstab der gesuchten Berührungsebene (vgl. [Fig. 52] u. [52 a]).

Fig. 52.

Fig. 52 a.

Die Flächennormale ist das Lot auf der Berührungsebene im Berührungspunkte. Da es in der eben erwähnten Profilebene liegt, fällt seine Projektion mit der der Fallinie der Berührungsebene zusammen. Sein Gefällemaßstab hat nach [§ 6] das reziproke Intervall desjenigen der Berührungsebene, ist ihm entgegengesetzt gerichtet und daher wie dort angegeben zu bestimmen.

§ 58. Normalebene, Fallinien einer Fläche. Irgendeine die Flächennormale enthaltende Ebene heißt Normalebene der Fläche; sie schneidet die Fläche in einem Normalschnitt, die Berührungsebene in einer Tangente der Fläche. Durch jeden Flächenpunkt gehen also unzählig viele Tangenten, von denen im allgemeinen nur eine, die zugleich Tangente der durch den Berührungspunkt gehenden Schichtlinie der Fläche ist, horizontal läuft. Die anderen verlaufen paarweise mit demselben Anstieg, bis auf eine, deren Gefälle mit dem der Ebene übereinstimmt. Es ist zugleich das größte unter allen betrachteten und wird Gefälle der Fläche in dem betreffenden Punkte genannt. Geht man von einem Punkte der Fläche in Richtung des eben erwähnten größten Gefälles, der Fallrichtung, also senkrecht zur Schichtlinie, weiter zu einem Punkte der nächsten Schichtlinie, von da in derselben Weise weiter und so fort, so durchläuft man eine Fallinie der Fläche.

Die Fallinien stehen auf den Schichtlinien senkrecht. Um sie zu konstruieren ([Fig. 53] u. [54]), bedient man sich zweckmäßig des Spiegellineals: man errichtet, von einem Punkte einer Schichtlinie ausgehend, auf ihr mittels des Spiegellineals die Normale, setzt an sie in einem Punkte, der etwa mitten bis zur nächstfolgenden Schichtlinie gelegen ist, die Normale zu dieser an, usw. Diese Normalen hüllen die gesuchte Fallinie ein, deren Tangenten sie sind ([§ 41]). Dabei ist es erforderlich, daß genügend viele Schichtlinien zu Verfügung stehen; nötigenfalls werden zuvor einige einzuschalten sein ([§ 56]).

Fig. 53.

Fig. 54.

§ 59. Schraffur einer Karte. Die Fallinien einer Geländefläche geben die Richtung des langsam herabfließenden Wassers an. Im allgemeinen geht durch jeden Punkt der Fläche genau eine Fallinie; über die besonders zu erwähnenden Ausnahmen s. weiter unten [§ 61].

Der Anstieg längs der Fallinien einer Fläche ist im allgemeinen veränderlich; man pflegt in der Kartenkunde das stärkere oder schwächere Gefälle des Geländes durch stärkeres oder schwächeres Ausziehen der Fallinien kenntlich zu machen, um dadurch einen erhabenen Eindruck der Karte hervorzurufen. Dazu benutzt man meistens eine dem Gefälle entsprechend abgetönte Schraffur. Die Richtung der Schraffenstriche stimmt mit der Richtung der Fallinien überein.

§ 60. Krümmung einer Fläche. Hinsichtlich der Punkte, die eine Fläche außer dem Berührungspunkte in seiner Nachbarschaft mit der Berührungsebene gemeinschaftlich haben kann, sind drei verschiedene Fälle möglich, wenn man von besonderen Ausnahmen absieht.

Entweder hat die Oberfläche mit ihrer Berührungsebene in der Umgebung des Berührungspunktes weiter gar keinen Punkt gemeinsam; die Berührungsebene verläuft dort dann also ganz auf einer Seite der Fläche. Dann heißt die Fläche in dem betrachteten Berührungspunkte bauchig (positiv oder elliptisch gekrümmt). Vgl. 55 und 55 a. Das Ellipsoid gibt dafür ein Beispiel in jedem seiner Punkte.

Fig. 55.

Fig. 55 a.

Oder zweitens die Berührungsebene durchdringt in der Nähe des Berührungspunktes die Fläche so, daß die Schnittkurve beider im Berührungspunkte einen Doppelpunkt besitzt. Dann heißt die Fläche daselbst sattelförmig (negativ oder hyperbolisch gekrümmt). Vgl. [Fig. 56] und [56 a]. Das einschalige Hyperboloid oder das hyperbolische Paraboloid ist in jedem seiner Punkte sattelförmig; die Schnittkurve besteht hier aus den beiden, sich im Berührungspunkte schneidenden erzeugenden Geraden.

Fig. 56.

Fig. 56 a.

Oder drittens: die Berührungsebene dringt zwar ebenfalls in der Nähe des Berührungspunktes in die Fläche ein, aber so, daß die Schnittkurve beider nur einmal durch den Berührungspunkt geht. Dann heißt die Fläche in dem betreffenden Punkte parabolisch gekrümmt. Vgl. [Fig. 57] und [57 a]. Ein Kegel mit beliebiger Basis ist in jedem seiner Punkte parabolisch gekrümmt. Flächenstücke, deren sämtliche Punkte parabolisch gekrümmt sind, lassen sich ohne Dehnung und Faltung derartig verbiegen, daß sie Teile einer Ebene werden, oder, was dasselbe besagt, man kann sie auf eine Ebene abwickeln; daher heißen solche Flächen abwickelbar.

Fig. 57.

Fig. 57 a.

Es kann vorkommen, daß auf einer und derselben Fläche sowohl bauchige wie sattelförmige Teile vorhanden sind. Sie werden dann getrennt durch eine Kurve, die Krümmungsgrenze (Demarkationslinie, parabolische Kurve), in deren Punkten die Fläche parabolisch gekrümmt ist. Ein Beispiel dafür ist die in der [Fig. 27] auf [S. 18] abgebildete glockenförmige Umdrehungsfläche: DD bezeichnet die Krümmungsgrenze, der obere Teil ist bauchig, der untere sattelförmig.

§ 61. Der Verlauf der Schicht- und Fallinien längs einer Geländefläche ist äußerst mannigfaltig und scheinbar sehr regellos. Jedoch kann man oft aus dem bloßen Anblick dieser Linien in der Karte geometrische Eigenschaften der Fläche an der betrachteten Stelle herauslesen; und es ist für die Beschäftigung mit der Kartenkunde sehr wichtig, sich darin eine gewisse Übung zu verschaffen.

Da die Schichtlinien als Linien gleichen Wasserstandes aufgefaßt werden können, müssen sie auf einer nicht willkürlich begrenzten Geländefläche stets geschlossen sein. Keine zwei Schichtlinien verschiedener Höhen können sich schneiden. Bei Ausschluß überhängender Teile des Geländes gilt dies auch von den Projektionen der Schichtlinien in der Karte. Im allgemeinen geht durch jeden Punkt des Planes genau eine Schichtlinie; es gibt jedoch gewisse Ausnahmepunkte.

§ 62. Gipfel-, Mulden- und Jochpunkt. Zunächst gibt es solche Punkte, durch die keine Schichtlinie geht oder, genauer gesagt, deren zugehörige Höhenlinie auf den Punkt selbst zusammengeschrumpft ist. Es sind die Punkte, die höher oder tiefer liegen als sämtliche Punkte ihrer Umgebung. Sie heißen Gipfel- oder Muldenpunkte, je nachdem die benachbarten Schichtlinien, von ellipsenähnlicher Gestalt, kleinere oder größere Höhenzahlen haben ([Fig. 58]).

Fig. 58.

Fig. 59.

Sodann gibt es solche Punkte, durch die zwei, vielleicht auch mehrere Schichtlinien (derselben Höhenzahl) hindurchgehen. Der gewöhnlichste dieser Punkte ist der Jochpunkt, die tiefste Stelle zwischen zwei Erhebungen und Ausgangsstelle zweier durch einen Bergrücken getrennter Täler, oder auch, was dasselbe bedeutet, die höchste Stelle zwischen zwei Tälern und Ausgangsstelle zweier durch ein Tal getrennter Bergrücken ([Fig. 59]). Besondere Fälle treten ein, wenn mehrere Täler und mehrere Bergrücken von einem gemeinsamen Punkte entspringen, wovon die [Fig. 60] ein Beispiel gibt.

Fig. 60.

Die Berührungsebene in einem Gipfel- oder Mulden- oder Jochpunkte ist wagerecht, wie sich auch aus einer Betrachtung der Querprofile sogleich ergibt. Da sie in der Umgebung eines Gipfelpunktes ganz oberhalb der Fläche, in der Umgebung eines Muldenpunktes ganz unterhalb liegt, so ist die Fläche in diesen Punkten bauchig ([§ 60]). In einem Jochpunkt ist sie dagegen sattelförmig.

§ 63. Wasserscheide und Talweg. Im allgemeinen geht durch jeden Punkt einer Geländefläche genau eine Fallinie; aber auch hiervon gibt es Ausnahmen. Durch jeden Gipfel- und jeden Muldenpunkt gehen unzählig viele Fallinien, ebendie, welche die benachbarten elliptischen Schichtlinien der Umgebung senkrecht durchschneiden. Die [Fig. 61] zeigt den Verlauf dieser Fallinien, wie ihn eine genauere Betrachtung, die hier zu weit führen wurde, erkennen ließe: die Fallinien berühren nämlich sämtlich die gemeinsame große Achse der Ellipsen im Mittelpunkt, dem in Rede stehenden Gipfel- oder Muldenpunkt, bis auf eine, die in Richtung der kleinen Achse verläuft. Wenn die Schichtlinien in der Umgebung eines Gipfel- oder Muldenpunktes angenähert konzentrische Kreise sind, wie es z. B. bei einer Umdrehungsfläche mit senkrechter Drehachse (vgl. [Fig. 27] [Seite 18]) eintreten kann, dann verlaufen natürlich die Fallinien radial, und keine von ihnen ist bevorzugt (Kreispunkt oder Nabelpunkt).

Fig. 61.

In der Nähe eines Jochpunktes verlaufen die Schichtlinien der Fläche angenähert wie Hyperbeln mit gemeinsamen Hauptachsenrichtungen und gemeinsamem Mittelpunkt. Den Verlauf der Fallinien zeigt die [Fig. 62]: durch den Jochpunkt selbst gehen zwei Fallinien in Richtung der Hauptachsen.

Fig. 62.

Auf manchen Flächen treten Fallinien auf, in deren Umgebung sich die benachbarten um so enger zusammendrängen, je näher sie an jenen liegen. Solche Fallinien sollen ausgezeichnete Fallinien heißen. Es kann ferner vorkommen, daß auf einer solchen ausgezeichneten Fallinie ein oder mehrere Punkte liegen, in denen benachbarte Fallinien wirklich einmünden oder aus denen sie entspringen, oder daß sich ihr die benachbarten Fallinien asymptotisch nähern (in einem sehr fernen Punkte einmünden). Eine derartige ausgezeichnete Fallinie mit Mündungspunkten (einschließlich asymptotischen Einmündens) heißt Talweg, falls die benachbarten Fallinien im Sinne abnehmender Höhen einmünden oder sich ihr im absteigenden Sinne asymptotisch nähern. Dagegen heißt sie Kammweg (Rückenlinie, Wasserscheide), falls die Fallinien im Sinne aufsteigender Höhen einmünden, d. h. aus ihnen entspringen. Eine ausgezeichnete Fallinie kann in ihrem Verlauf teils Talweg, teils Wasserscheide, teils keins von beiden sein. Der Name Talweg, der übrigens als deutsches Fremdwort in die französische Sprache eingedrungen ist (le thalweg), rührt von dem deutschen Wasserbaumeister Wiebeking († 1842) her. Die Begriffe des Talwegs und der Wasserscheide spielen bei der Festsetzung politischer Grenzen eine Rolle.

§ 64. Fortsetzung. Für jeden Gipfelpunkt, der kein Kreispunkt ist, bildet die in der Längsrichtung des Gipfels hindurchgehende Fallinie einen Kammweg; denn die benachbarten Fallinien entspringen, sie berührend, aus ihr im Gipfelpunkte (vgl. [Fig. 61]). Und für jeden Muldenpunkt, der nicht zugleich Kreispunkt ist, bildet die in der Längsrichtung die Mulde durchziehende Fallinie einen Talweg. Die [Fig. 63] gibt den Verlauf eines Kammwegs K und eines Talwegs T mit sehr fernen Ursprungs- und Mündungspunkten wieder. Einem solchen Talweg entspricht in der Natur der Weg eines genügend langsam fließenden und schmalen Baches, der durch allmähliche Vereinigung kleinerer Wasseradern entsteht. Ein Kammweg bildet die Grenze zwischen zwei Abflußgebieten des Geländes.

Fig. 63.

Von einem Jochpunkte ([Fig. 62]) gehen zwei ausgezeichnete Fallinien aus; der einen nähern sich benachbarte Fallinien im aufsteigenden, der anderen im absteigenden Sinne. Man darf aber im allgemeinen weder die erste als Kammweg noch die zweite als Talweg bezeichnen. Wenn die von einem Jochpunkte nach einer Mulde herabführende ausgezeichnete Fallinie die Mulde nicht in der Längsrichtung, sondern in der Querrichtung durchläuft, ist sie gewiß in diesem Stücke des Geländes kein Talweg. Die [Fig. 64] gibt dies an; und die [Fig. 65] das Gegenstück dazu, wo wirklich die Joch und Mulde verbindende Fallinie ein Talweg ist.

Fig. 64.

Auch wenn das von einem Joch herabziehende Tal sich so verflacht, daß die Fallinien sich zwar der durch den Jochpunkt gehenden ausgezeichneten Fallinie nähern, aber doch nicht in asymptotischer Weise, kann diese nicht Talweg sein. In der Natur würde dem etwa ein Tal entsprechen, das nicht zur Entstehung eines Wasserlaufes, sondern zu einer Art Sumpfbildung Anlaß gibt. Umgekehrt können aus einem Hochmoore Wasseradern abgehen, ohne daß dort von einer eigentlichen Wasserscheide gesprochen werden kann ([Fig. 66]).

Fig. 65.

Bemerkenswert ist noch der Fall, wenn auf einer ausgezeichneten Fallinie ein parabolischer Punkt der Geländefläche gelegen ist ([§ 60]). Die [Fig. 67] gibt davon ein Beispiel. In dem parabolischen Punkte hat hier die Schichtlinie, auf der er liegt, eine Spitze, und in ihr endigen alle Fallinien, die – wie in der Figur angegeben – aus größeren Höhen kommen. Die ausgezeichnete, durch den parabolischen Punkt gehende Fallinie ist also in ihrem oberen Teile gewiß ein Talweg. Ob sie es dagegen auch in ihrem unteren Teile ist, hängt davon ab, ob sich dort ebenfalls ein Mündungspunkt befindet (in der Figur ist das nicht der Fall).

Fig. 66.

Da durch eine Karte immer nur ein beschränkter Teil des Geländes gegeben sein kann, so wird es praktisch unmöglich sein, bei Geländeflächen ein asymptotisches Einmünden genau festzustellen, und man wird daher auch in dem Falle von einem Talweg und einem Kammweg reden, wenn genügend viele benachbarte Fallinien der Zeichnung innerhalb der Zeichengenauigkeit in die ausgezeichnete Fallinie übergehen.

Fig. 67.

Fig. 68.

Um in einer Geländekarte alle Talwege und Wasserscheiden zu finden, wird man unter den Fallinien zunächst die ausgezeichneten aufsuchen, d. h. diejenigen, in deren Nähe sich die übrigen mehr und mehr zusammendrängen. Unter ihnen hat man aber nur diejenigen beizubehalten, auf denen Mündungspunkte der übrigen gelegen sind, oder in die genügend viele benachbarte Fallinien innerhalb der Zeichengenauigkeit übergehen. Talweg und Kammweg sind durch die Art der Annäherung, ob bei fallender oder steigender Höhe, leicht zu unterscheiden.

Die Schichtlinien sowohl wie die Fallinien verlaufen immer stetig, können aber Ecken, Doppelpunkte und dergleichen Ausnahmestellen haben. Ecken treten ein, wenn das Gelände Grate oder scharf ausgeschnittene Rinnen besitzt. Da in jedem Punkte eines einfachen Grates zwei verschiedene Berührungsebenen an die Geländefläche möglich sind, gehen durch diesen Punkt auch zwei verschiedene Fallinien; ein Grat enthält daher die Ursprungspunkte von Fallinien und wird demnach zu den Wasserscheiden zu rechnen sein, obwohl er im allgemeinen selbst keine Fallinie ist. Dasselbe gilt entsprechend von einer Rinne (vgl. [Fig. 68]). Die allgemeine Untersuchung solcher Stellen einer Geländefläche ist schwierig, erfordert weitergehende Hilfsmittel und würde daher hier zu weit führen.

Fig. 69.

§ 65. Böschungsfläche. Eine Fläche, auf der sämtliche Fallinien Geraden sind, heißt Böschungsfläche. Es genügt dazu offenbar nicht, daß die Projektionen der Fallinien sämtlich gerade Linien sind, sondern es ist weiter notwendig, daß die Schichtlinien auf jeder einzelnen von ihnen jedesmal gleiche Stücke ausschneiden. Daraus folgt, daß die Schichtlinien äquidistante Kurven sind ([Fig. 69]).

Alle Punkte derselben geradlinigen Fallinie haben dieselbe Berührungsebene. Eine Böschungsfläche ist daher in jedem ihrer Punkte parabolisch gekrümmt ([§ 60]). Sie ist demnach eine abwickelbare Fläche, d. h. man kann eine bewegliche Ebene so auf ihr ohne Gleiten abrollen, daß sie sie immer längs einer Geraden berührt; umgekehrt kann man daher auch die Fläche auf einer Ebene so abwickeln, daß immer Berührung längs einer Geraden besteht.

Von den Böschungsflächen macht man sehr häufig bei der Aufführung von Erdarbeiten, bei der Aufschüttung von Dämmen, Halden u. dgl. Gebrauch. Davon wird in den Aufgaben noch wiederholt die Rede sein.

§ 66. Böschungsstreifen. Bei der zeichnerischen Darstellung einer Geländefläche durch ihre Schichtlinien ist es oft zweckmäßig, diese nötigenfalls durch Einschalten nach [§ 56] so dicht nebeneinander verlaufen zu lassen, daß jeder zwischen zwei aufeinanderfolgenden Schichtlinien enthaltene Teil einer Fallinie innerhalb der Zeichengenauigkeit als geradlinig zu betrachten ist. Das bedeutet dann also, daß jeder zwischen zwei aufeinanderfolgenden Schichtlinien enthaltene Streifen einer Geländefläche als Teil einer Böschungsfläche anzusehen ist: Böschungsstreifen. Man kann demnach sagen, daß eine Geländefläche durch ihre Schichtlinien »mit genügender Genauigkeit« gegeben ist, wenn ein jeder innerhalb zweier aufeinanderfolgenden Schichtlinien gelegene Streifen durch den zugehörigen Böschungsstreifen ohne merklichen Fehler ersetzt werden kann.

§ 67. Gratlinie. Eine Böschungsfläche ist vollständig bestimmt, wenn der Böschungswinkel und eine ihrer Höhenlinien gegeben ist; denn die Fallinien sind die Normalen der gegebenen Höhenlinie, der Böschungswinkel bestimmt ihre Stufung, und die Schichtlinien lassen sich sodann als Parallelkurven zu der gegebenen Höhenlinie konstruieren ([§ 65]). Alle ebenen Parallelkurven haben eine gemeinsame Evolute ([§ 43]), die Hüllkurve ihrer gemeinsamen Normalen; faßt man also die Parallelkurven und ihre Normalen als die Projektionen der Schicht- und Fallinien einer Böschungsfläche auf, so entspricht der Evolute eine auf der Fläche gelegene Raumkurve, längs der sich benachbarte Fallinien schneiden. Sie bildet also einen scharfen Grat der Fläche und heißt daher ihre Gratlinie. Eine aufgewehte Schneewächte gibt oft ein Bild einer Böschungsfläche und ihrer Gratlinie ([Fig. 69] bei g).

Fig. 70.

§ 68. Ebene Raumkurven. Wenn eine Raumkurve und eine Fläche gegeben sind, so ist leicht festzustellen, ob die Kurve auf der Fläche gelegen ist. Denn dies ist nur der Fall, wenn die Punkte der Kurve auf den gleichkotierten Schichtlinien der Fläche liegen.

Raumkurven, deren sämtliche Punkte derselben Ebene angehören, heißen eben. Um von einer gegebenen Raumkurve festzustellen, ob sie eben ist, hat man durch drei ihrer Punkte nach [§ 9] eine Ebene zu legen und nachzusehen, ob ihre Streichgeraden die Kurve in Punkten schneiden, deren Höhenzahlen mit denen der zugehörigen Schichtlinien übereinstimmen ([Fig. 70]). Die Schmiegungsebene ([§ 52]) einer ebenen Raumkurve fällt mit der Ebene der Kurve zusammen. Wenn die Ebene der Kurve lotrecht steht, wird die Projektion der Kurve durch eine Gerade mit im allgemeinen ungleichmäßiger Stufung dargestellt.

§ 69. Böschungsfläche einer Raumkurve. Zu jedem Punkte einer gegebenen Raumkurve läßt sich ein Kegel gegebener Böschung konstruieren, der den Punkt als Spitze hat. Sämtliche so konstruierten Böschungskegel derselben Böschung hüllen eine Fläche ein, eine Böschungsfläche der Raumkurve; sie besteht aus zwei Teilen, die sich längs der Raumkurve durchschneiden. Jede ihrer Schichtlinien ergibt sich als Hüllkurve gleichkotierter Kreise, nämlich der Schichtkreise jener Böschungskegel. In der Karte der Fläche liegen die Mittelpunkte dieser Kreise auf der Projektion der Raumkurve, und ihre Radien erhält man aus dem Höhenunterschiede zwischen Mittelpunkt und zu konstruierender Schichtlinie durch Multiplikation mit dem gegebenen Böschungsverhältnis ([Fig. 71]).

Fig. 71.

Von jedem Punkte der Raumkurve geht nach beiden Seiten eine Fallinie der Böschungsfläche aus; die beiden zugehörigen Berührungsebenen (vgl. [§ 65]) schneiden sich in der zugehörigen Tangente der Raumkurve, und die Projektion dieser Tangente halbiert den Winkel der Projektionen der beiden Fallinien. Man beachte übrigens, daß im allgemeinen ein die Projektion der Raumkurve normal durchsetzendes Querprofil der Böschungsfläche nicht ein Dreieck ergibt, sondern eine krummlinige Schnittfigur. Die Figur bringt das zum Ausdruck.

Fig. 72.

§ 70. Böschungslinien auf einer Fläche. Auf einer durch ihre Schichtlinien gegebenen Geländefläche lassen sich von jedem Punkte aus zwei Kurven von konstantem Gefälle (Böschungslinien, [§ 50]) ziehen, wenn nur das Gefälle nicht größer ist als das der Fallinien der Fläche in den Punkten der beiden Kurven. Um diese zu konstruieren, ermittle man zunächst aus dem gegebenen Böschungsverhältnis das Intervall der Böschungslinie. Unter der Voraussetzung, daß die Schichtlinien genügend nahe gezeichnet sind, zieht man mit dem Intervall als Radius um den gegebenen Punkt als Mittelpunkt einen Kreis. Entweder schneidet dieser eine der beiden nächstfolgenden Hauptschichtlinien in zwei Punkten, die auch zusammenfallen können, oder er schneidet sie nicht; im letzteren Falle ist das gegebene Gefälle zu groß, im ersteren sind reelle Böschungslinien der vorgeschriebenen Böschung von dem gegebenen Flächenpunkte aus möglich, und man erhält weitere Punkte von ihnen, indem man dieselbe Konstruktion von jedem der beiden Schnittpunkte aus fortsetzt. Wenn man die erhaltenen Punkte in geeigneter Weise verbindet, bekommt man die gesuchten Böschungslinien mit oder ohne Kehren ([Fig. 72]). Im allgemeinen gehen von jedem Flächenpunkte zwei verschiedene Böschungslinien aus, längs deren das Gefälle einen gegebenen Wert hat.

Die auf einer Geländefläche angelegten Wege, Eisenbahnlinien u. dgl. verlaufen in der Regel auf längere Strecken mit unveränderlichem Gefälle. Die Konstruktion von Böschungslinien hat daher ein gewisses praktisches Interesse. Wenn auch durch Aufschüttung und Abtrag des Geländes größere Krümmungen eines anzulegenden Weges vermieden werden, so wird seine Führung doch im allgemeinen durch eine Böschungslinie bestimmt. Dabei wird besonders die im folgenden Paragraphen erörterte Aufgabe benutzt.

Fig. 73.

§ 71. Aufgabe. Bei der Lösung der Aufgabe, zwei gegebene Punkte einer Fläche durch eine Kurve von konstanter Steigung zu verbinden, hat man sich eines geometrischen Näherungsverfahrens zu bedienen. Man konstruiert zunächst, von dem einen der gegebenen Punkte A ([Fig. 73]) ausgehend, eine solche Böschungslinie, die in der Nähe des andern gegebenen Punktes B die durch diesen gehende Schichtlinie schneidet. Die Ausführung der Konstruktion zeigt, ob das benutzte Intervall zu groß oder zu klein ist, wonach man es zu verbessern hat. Mit dem verbesserten Intervall wiederholt man dieselbe Konstruktion usw., und nähert sich auf diese Weise mehr und mehr dem passenden Werte des Intervalls. Zweckmäßig ist es dabei, den Punkt B zwischen zwei der gezeichneten Böschungslinien einzuschließen; AB1, AB2, … seien solche Näherungskurven, B1'B1 und B2'B2 … seien die zugehörigen Intervalle. Man trage in den Punkten B1, B2, B3 usw. diese zugehörigen Intervalle normal zur Schichtlinie, also längs der Fallinien auf und verbinde die erhaltenen Endpunkte durch eine glatte Kurve ([§ 38]); diese gestattet das gesuchte Intervall zu entnehmen.

§ 72. Schnitt zweier Flächen. Das Verfahren, nach dem die Schnittlinie einer Geländefläche mit einer Ebene konstruiert wird, läßt sich genau ebenso anwenden auf die Bestimmung der Schnittkurve zweier beliebiger Flächen miteinander. Denn die Punkte dieser Schnittkurve gehören beiden Flächen gemeinsam an, müssen also auf den gleichhohen Schichtlinien der beiden Flächen gelegen sein: man erhält sie als Schnittpunkte gleichkotierter Schichtlinien.

Davon macht man sehr häufig Gebrauch bei der Bestimmung der Grenzlinie einer Böschungsfläche mit der gegebenen Geländefläche. Darauf bezieht sich die [Fig. 74], in der die Aufschüttung einer Halde oder eines Dammes mit wagerechter Krone dargestellt ist. Die wagerechte Verbindungslinie der beiden Punkte A und B (Höhe 20) kann etwa als Führungslinie eines auf einem Gestänge angelegten Schienengeleises für Kippwagen aufgefaßt werden, von dem aus die Halde aufgestürzt wird. Kennt man den Böschungswinkel, unter dem das Fördergut der Halde sich ablagert, so kann man nach [§ 65] ihre Schichtlinien als Parallelkurven der Geleisführung konstruieren. Die Schnittpunkte dieser Parallelkurven mit den gleichkotierten Schichtlinien des Geländes bestimmen alsdann nach dem oben Gesagten die Schnittkurve der Halde mit dem Gelände. – Die damit gelöste Aufgabe ist eine Erweiterung der in [§ 32] besprochenen.

Fig. 74.

§ 73. Durchdringungspunkte einer Raumkurve mit einer Geländefläche. Man legt durch die gegebene Raumkurve eine beliebige Fläche, bestimmt deren Schnittkurve mit dem Gelände, wie in [§ 72] angegeben, und konstruiert schließlich die gemeinsamen Punkte dieser Schnittkurve mit der gegebenen Raumkurve. Offenbar wird man die Hilfsfläche selber nur in der Nähe der Durchdringungspunkte benötigen.

Fig. 75.

Als Hilfsfläche nimmt man zweckmäßig die windschiefe Planierungsfläche ([§ 51]), weil ihre Schnittkurve mit dem Gelände, die Nullinie, am besten darüber Aufschluß gibt, welche Teile der Raumkurve oberhalb des Geländes und welche unterhalb gelegen sind ([Fig. 75]; die Nullinie ist ganz gestrichelt).

Die Bestimmung der Durchstoßpunkte einer Kurve mit dem Gelände ist oft bei der Linienführung einer Eisenbahnlinie oder dgl. in gebirgigem Gelände auszuführen. Sie zeigt dann, an welchen Stellen die Bahnlinie in den Erdkörper eindringt, welche Erdbewegungen, Tunnelanlagen u. dgl. vorzunehmen sind.

Um zu bestimmen, ob ein Punkt des Geländes von irgendeinem anderen Punkte aus sichtbar ist, braucht man nur festzustellen, ob die Verbindungsgerade das Gelände nicht trifft. Es genügt dazu, diese Gerade zu graduieren und nachzusehen, ob in der Projektion für jeden Punkt der Geraden die Höhenzahl auch nicht kleiner ist als für denselben Punkt auf dem Gelände.