164. Thermoelektrizität.
Stets wenn zwei verschiedene Metalle an einer Stelle zusammengelötet und an den beiden anderen Enden durch einen Leiter verbunden werden, entsteht ein Strom, wenn man die Lötstelle erwärmt.
Fig. 213.
Macht man einen rechteckigen Rahmen aus Wismut und Antimon, so daß zwei zusammenstoßende Seiten aus Wismut, die beiden anderen aus Antimon bestehen und an gegenüberliegenden Ecken sich die Lötstellen befinden, und erhitzt man nun eine Lötstelle, so entsteht in dem Rechteck ein Strom, welcher leicht eine Magnetnadel ablenkt.
Die durch Wärme hervorgebrachte Elektrizität heißt Thermoelektrizität, der Strom ein Thermostrom (Seebeck 1821). Die Thermoströme unterscheiden sich von den galvanischen Strömen nur durch die Entstehungsursache; sonst folgen sie denselben Gesetzen und bringen dieselben Wirkungen hervor. Ein Paar an einer Stelle zusammengelöteter Metallstäbe heißt ein Thermoelement.
Fig. 214.
Ein Thermostrom kommt nur zu stande, wenn die Lötstelle wärmer ist, als die anderen Teile des Stromkreises, wenn also von der warmen Lötstelle nach beiden Seiten hin die Temperatur abnimmt. Ist dies der Fall, so entsteht eine elektromotorische Kraft, deren Größe abhängig von der Temperaturdifferenz der beiden Lötstellen und derselben nahezu proportional ist.
Die elektromotorische Kraft ist aber auch abhängig von der Natur der verwendeten Metalle. Man kann alle Metalle in eine Reihe ordnen, so daß jedes Metall mit einem der folgenden verbunden negativ elektrisch wird. Diese thermoelektrische Reihe ist nach Bequerel - Wismut, Nickel, Platin, Kobalt, Mangan, Silber, Zinn, Blei, Messing, Kupfer, Gold, Zink, Eisen, Antimon +.
Die elektromotorische Kraft der Thermoelemente ist im allgemeinen nicht besonders groß; so kann ein Element aus Wismut und Antimon etwa 1⁄10 Volt haben. Ein Element aus Kupfer und Eisen hat, wenn es an der kalten Lötstelle 0°, an der warmen 100° hat, nur eine elektromotorische Kraft von 0,0011 Volt.
Der Vorteil der Thermoelemente liegt aber darin, daß sie sehr einfach konstruiert sind und daß ihr innerer Widerstand meist sehr klein ist; z. B. wenn in dem Wismut-Antimonelemente jedes Metall etwa 2 cm lang ist und 1⁄10 qcm Querschnitt hat, so ist sein innerer Widerstand = 0,0034 Ohm. Ist demnach der äußere Widerstand auch klein, so ist mit solchen Elementen ein verhältnismäßig starker Strom zu erzielen.
Fig. 215.
Um mehrere Thermoelemente zu einer Batterie zu vereinigen, verbindet (verlötet) man das freie Antimonende des ersten mit dem freien Wismutende des zweiten Elementes und so fort; man bringt dabei die Stäbe in solche Lage, daß abwechselnd die Lötstellen nach der einen und nach der anderen Seite schauen, so daß die nach der einen Seite gerichteten Lötstellen von einer gemeinsamen Wärmequelle erwärmt, die andern alle zugleich abgekühlt werden können. Die Thermoelemente sind somit auf Intensität zu einer Batterie (Thermosäule, Thermokette) verbunden, ihre elektromotorische Kraft ist gleich der Summe der elektromotorischen Kräfte der einzelnen Elemente.
Die Anwendung der Thermoelektrizität ist beschränkt. Man benützt Thermobatterien zu Schulversuchen anstatt der gewöhnlichen galvanischen Elemente, und sie sind hiezu bequem, weil sie zur Herrichtung nur das Anzünden einer Lampe erfordern.
Thermobatterien dienen zur Messung sehr kleiner Temperaturdifferenzen. Man nimmt eine Thermosäule von etwa 20-40 Elementen, ordnet das eine System der Lötstellen so an, daß sie ein Quadrat erfüllen, und verbindet die Enden mit einem sehr empfindlichen Galvanometer (von geringem Widerstande). So lange beide Flächen, welche die Lötstellen enthalten, gleich warm sind, zeigt das Galvanometer keinen Ausschlag, sobald aber die eine Fläche nur etwas stärker erwärmt wird, entsteht ein Thermostrom, der einen Ausschlag hervorbringt. Man benützt sie, nach Melloni, besonders zu Untersuchungen über strahlende Wärme, indem man auf die eine Fläche die Wärmestrahlen auffallen läßt und die andere Fläche durch ein Gehäuse gegen Wärmestrahlen schützt. Mit solchen Apparaten kann sogar die von Fixsternen ausgestrahlte Wärme nachgewiesen werden.
Zur Messung sehr hoher Temperaturen (als Pyrometer) dient ein Thermoelement aus Platin einerseits und einer Legierung aus Platin und Rhodium (9 : 1) andrerseits. Die Lötstelle wird der Hitze ausgesetzt und der entstandene Thermostrom am Galvanometer gemessen.