No. I.—A GOOD SPECIMEN

Here is a nest of magic squares, seven of them within the four corners of one diagram:—

1491633196471974420842203571943854217
17762183522135916015161851561901052849
561472011467515522203153532620979170
16276148180831874110422195145607815064
741764124119371544818613810910222250152
2212417563861169313594127140163512025
10215691591349598126115131926715711216
219191651136971301139612990225612077
82058419187158111100128681393514221218
214341442711299133911321101141998219212
1412355106117189721784088107120171103212
20689181166143391851222043181464513720
5810117801517122462237317320025125168
118198431741316766211651417036121164108
9210193301792918218184231693218817277

[Image]

As each border is removed a fresh magic square remains, in which the numbers in the cells of each row, column, and diagonal add up to the same sum, while each of these sums is a multiple of the central 113.

No. II.—A BORDERED DIAMOND
By G. Slater

1
91 117
3 20 160
27 25 129 65
156 154 42 38 165
161 15 138 36 103 26
130 153 136 124 81 54 159
162 147 120 69 75 135 151 52
39 22 55 112 111 110 33 64 78
4 152 76 57 56 62 61 63 93 7
168 146 139 100 99 98 97 96 102 142 158
6 21 29 45 44 43 49 48 47 133 51 104
157 80 30 88 87 86 85 84 83 82 140 90 13
53 41 134 123 122 121 127 126 125 52 145 79
10 132 89 74 73 72 71 70 34 16 167
105 67 35 109 108 114 113 50 155 143
5 116 137 60 59 58 115 17 14
144 19 107 95 101 94 23 9
11 106 68 46 31 148 40
118 77 37 41 18 8
92 38 128 24 131
163 148 149 166
12 130 2
66 164
169

[Image]

It is a perfect magic diamond as it stands, and equally perfect are the diamonds that remain when each border of cells is removed, as is indicated by the lines.