AMERICAN CHEMISTS TO THE RESCUE
Just before the war it was discovered that there is a considerable amount of helium in the natural gas of Oklahoma, Texas, and Kansas, and Sir William Ramsey suggested that our chemists might study some method of getting helium from this source. The only way of separating it out was to liquefy the gases by subjecting them to extreme cold. All gases turn to liquid if they are cooled sufficiently, and then further cold will freeze them solid. But helium can stand more cold than any other and this fact gave the clue to its recovery from natural gas. The latter was frozen and one after another the different elements condensed into liquid, until finally only helium was left. This sounds simple, but it is a difficult matter to get such low temperature as that on a large scale and do it economically. To be of any real service in aëronautics helium would have to be reduced in cost from fifteen hundred dollars to less than ten cents per cubic foot. Several different kinds of refrigerating-machinery were tried and finally just before the war was brought to a close by the armistice we had succeeded in producing helium at the rate of eight cents per cubic foot, with the prospect of reducing its cost still further. A large plant for recovering helium was being built. The plant will have been completed before this book is published, and it will be turning out helium for peaceful instead of military airships.
The reduction in the cost of helium is really one of the most important developments of this war. By removing the fire risk from airships we can safely use these craft for aërial cruises or for quick long-distance travel over land and sea. For, even in time of peace, sailing under millions of cubic feet of hydrogen is a serious matter. Although no incendiary bullets are to be feared, there is always the danger of setting fire to the gas within the exhaust of the engines. Engines have had to be hung in cars well below the balloon proper. But with helium in the gas-bags the engines can be placed inside the balloon envelop and the propellers can operate on the center line of the car.
In the case of one Zeppelin, the hydrogen was set on fire by an electric spark produced by friction on the fabric of one of the gas-bags, and so even with the engine exhausts properly screened there is danger. The helium airship, however, would be perfectly safe from fire and passengers could smoke on deck or in their cabins within the balloon itself without any more fear of fire than they would have on shipboard. Wonderful possibilities have been opened by the production of helium on a large and economical scale, and the airship seems destined to play an important part in transportation very soon. As this book is going to press, we learn of enormous dirigibles about to be built in England for passenger service, which will have half again as great a lifting-power as the largest Zeppelins. The final chapter of the story of dirigibles is yet to be written, but in concluding this chapter it is interesting to note that the world's greatest aëronautic expert got his first inspiration from America and finally that America has now furnished the one element which was lacking to make the dirigible balloon a real success.
[CHAPTER IX]
Getting the Range
Every person with a good pair of eyes in his head is a range-finder. He may not know it, but he is, just the same, and the way to prove it is to try a little range-finding on a small scale.
Use the top of a table for your field of operations, and pick out some spot within easy reach of your hand for the target whose range you wish to find. The target may be a penny or a small circle drawn on a piece of white paper. Take a pencil in your hand and imagine it is a shell which you are going to land on the target. It is not quite fair to have a bird's-eye view of the field, so get down on your knees and bring your eyes within a few inches of the top of the table. Now close one eye and making your hand describe an arc through the air, like the arc that a shell would describe, see how nearly you can bring the pencil-point down on the center of the target. Do it slowly, so that your eye may guide the hand throughout its course. You will be surprised to find out how far you come short, or overreach the mark. You will have actually to grope for the target. If by any chance you should score a hit on the first try, you may be sure that it is an accident.
Have a friend move the target around to a different position, and try again. Evidently, with one eye you are not a good range-finder; but now use two eyes and you will score a hit every time. Not only can you land the pencil on the penny, but you will be able to bring it down on the very center of the target.
The explanation of this is that when you bring your eyes to bear upon any object that is near by, they have to be turned in slightly, so that both of them shall be aimed directly at that object. The nearer the object, the more they are turned in, and the farther the object, the more nearly parallel are the eyes. Long experience has taught you to gage the distance of an object by the feel of the eyes—that is, by the effort your muscles have to make to pull the eyes to a focus—and in this way the eyes give you the range of an object. You do not know what the distance is in feet or inches, but you can tell when the pencil-point has moved out until it is at the same focus as the target.
The experiment can be tried on a larger scale with the end of a fishing-rod, but here you will probably have to use a larger target. However, there is a limit to which you can gage the range. At a distance of, say, fifteen or twenty feet, a variation of a few inches beyond or this side of the target makes scarcely any change in the focus of the eyes. That is because the eyes are so close together. If they were farther apart, they could tell the range at much greater distances.