POURING GAS LIKE WATER
It was really a new mode of warfare that the Germans were about to launch and it called for much study. In the first place, they had to decide what sort of gas to use. It must be a gas that could be obtained in large quantities. It must be a very poisonous gas, that would act quickly on the enemy; it must be easily compressed and liquefied so that it could be carried in containers that were not too bulky; it must vaporize when the pressure was released; and it must be heavier than air, so that it would not be diluted by the atmosphere but would hug the ground. You can pour gas just as you pour water, if it is heavier than air. A heavy gas will stay in the bottom of an unstoppered bottle and can be poured from one bottle into another like water. If the gas is colored, you can see it flowing just as if it were a liquid. On the other hand, a gas which is much lighter than air can also be kept in unstoppered bottles if the bottles are turned upside down, and the gas can be poured from one bottle into another; but it flows up instead of down.
Chlorine gas was selected because it seemed to meet all requirements. For the gas attack a point was chosen where the ground sloped gently toward the opposing lines, so that the gas would actually flow down hill into them. Preparations were carried out with the utmost secrecy. Just under the parapet of the trenches deep pits were dug, about a yard apart on a front of fifteen miles, or over twenty-five thousand pits. In these pits were placed the chlorine tanks, each weighing about ninety pounds. Each pit was then closed with a plank and this was covered with a quilt filled with peat moss soaked in potash, so that in case of any leakage the chlorine would be taken up by the potash and rendered harmless. Over the quilts sandbags were piled to a considerable height, to protect the tanks from shell-fragments.
Liquid chlorine will boil even in a temperature of 28 degrees below zero Fahrenheit, but in tanks it cannot boil because there is no room for it to turn into a gas. Upon release of the pressure at ordinary temperatures, the liquid boils violently and big clouds of gas are produced. If the gas were tapped off from the top of the cylinder, it would freeze on pouring out, because any liquid that turns into a gas has to draw heat from its surroundings. The greater the expansion, the more heat the gas absorbs, and in the case of the chlorine tanks, had the nozzles been set in the top of the tank they would very quickly have been crusted with frost and choked, stopping the flow.
But the Germans had anticipated this difficulty, and instead of drawing off the gas from the top of the tank, they drew off the liquid from the bottom in small leaden tubes which passed up through the liquid in the tank and were kept as warm as the surrounding liquid. In fact, it was not gas from the top of the tank, but liquid from the bottom, that was streamed out and this did not turn into gas until it had left the nozzle.