EXAMINATION OF ALIMENTARY AND PHARMACEUTICAL SUBSTANCES.
We will next enumerate the methods employed in the detection of the principal adulterations to which flour, bread, oils of seeds, milk, wines, vinegar and the sulphate of quinine are subjected. These researches, united with those preceding, fail to embrace all the diverse examinations which the chemical expert may be expected to execute; but we do not claim to foresee all the contingencies that may arise, and will describe the steps to be pursued in instances which are anticipated, at the same time indicating general methods applicable to cases not here included.
FLOUR AND BREAD.
The adulterations to which flour and bread are exposed usually consist in adding damaged or an inferior grade of flour to wheaten flour, or in disguising the presence of a poor quality of flour by the addition of mineral substances, such as: plaster, chalk, lime, alum, and sulphate of copper.
Good flour has a white color, possessing a slightly yellow tinge, but is entirely free from red, grey or black specks. It is soft to the touch and adheres to the fingers, acquiring, when compressed in the hand, a soft cushion-like form. If mixed with water, it forms an elastic, homogeneous, but slightly coherent dough, which can be extended out in thin layers.
Flour of an inferior quality possess a dull white color, and does not assume the cushion-like condition mentioned above, when pressed in the hand, but escapes between the fingers: the dough formed is of a poorer quality.
Flour which has been damaged by moisture has a dull or reddish-white hue, and possesses a mouldy, or even a noxious, odor, as well as a bitter and nauseous taste which produces a marked acid sensation in the throat. Occasionally the presence of moisture causes the growth of fungi, the introduction of which in the digestive organs would cause serious results.
The constituents of pure flour are:
- Gluten.
- Starch, in the proportion of 50 to 75 per cent.
- Dextrine, in the proportion of several per cent.
- Glucose, in the proportion of several per cent.
- Salts, remaining in the ash obtained by the calcination of the flour, in a proportion not exceeding 2 per cent.
- Water, of which it loses 12 to 15 per cent., at the heat of a water-bath, and 15 to 20 per cent., at a temperature of 160°.
- Bran, (ligneous and fatty matter,) in a very small proportion, when the flour has been properly bolted.
In the process of bread-making, the gluten undergoes fermentation by the action of the leaven and liberates carbonic acid, which causes the dough to become porous and swell up, or, as it is termed, to rise. Bread contains the same substances as flour, but gluten and starch are present in a state that does not admit of their separation by mechanical means, and glucose, if present at all, exists in a smaller quantity: the proportion of dextrine and water is, on the other hand, considerably increased. The bread of the Paris city bakeries contains 40 per cent. of water—the crumb, which forms 5/6 of the weight of the bread, containing 45 per cent.; the crust, which constitutes the remaining 1/6, containing 15 per cent. In army bread 43 per cent. of water are contained—the crumb, which constitutes 4/5 of the weight of the bread, holding 50 per cent.; the crust which forms the remaining 1/5, containing 15 per cent.
The addition of common salt naturally increases the proportion of ash left upon calcining bread.
Water is contained in stale bread in the same quantity as in fresh bread; but exists in a modified molecular condition: upon heating stale bread, it acquires the properties of fresh bread.
The following substances are used in the adulteration of wheaten flour:[P]
- Potato-starch.
- Meals of various grains (rice, barley, corn, oats and rye).
- Vegetable meals, (beans, horse-beans, kidney-beans, peas, vetch, lentils, etc.).
- Darnel meal.
- Buckwheat flour.
- Linseed-meal.
- Mineral substances (plaster, chalk, lime, alum, and sulphate of copper).
In order to detect these substances, the gluten, the starch, and the ash are separately examined.
a. EXAMINATION OF THE GLUTEN.
In order to separate the gluten, two parts of the flour to be examined and one part of water are mixed into a paste, and this is placed in a fine linen sack, in which it is kneaded under a stream of water so long as the washings have a turbid appearance: these are preserved. The gluten obtained from good wheaten flour possesses a light-yellow color; emits a stale odor; and spreads out, when placed in a saucer. In case the flour has been too strongly heated in the grinding, or otherwise badly prepared, the gluten is granulous, difficult to collect in the hand, and somewhat resembles flint-stone in appearance.
Gluten prepared from a mixture of equal parts of wheat and rye is adhesive, blackish, without homogeneousness, spreads out more readily than pure wheaten gluten, separates easily and adheres somewhat to the fingers.
Gluten obtained from a mixture of wheat and barley is non-adhesive, of a dirty reddish-brown color, and appears to be formed of intertwined vermicular filaments.
Gluten formed from a mixture of equal parts of wheat and oats has a blackish-yellow color and exhibits, at the surface, numerous small white specks.
The gluten from a mixture of wheat and corn has a yellowish color, is non-adhesive, but firm, and does not readily spread.
Gluten prepared from a mixture of wheat and leguminous flour is neither cohesive nor elastic, and, if the proportion of the latter present be considerable, can be separated and passed through a sieve, like starch.
The gluten obtained from a mixture of equal parts of wheat and buckwheat flour is very homogeneous, and is as easily prepared as the gluten from pure wheaten flour. It possesses when moist a dark-grey color; which changes to a deep black upon drying. The proportion of gluten in flour is exceedingly variable: good flour contains from 10 to 11 per cent. of dry gluten; poor flour from 8 to 9 per cent. of moist gluten, equal to about one-third of its weight of the dry compound.
b. EXAMINATION OF THE STARCH.
The washings of the flour are allowed to stand for some time in a conical-shaped vessel. As soon as the amylaceous matter has entirely settled to the bottom of the vessel, the greater portion of the water is decanted, and the residual mass brought upon a small filter and allowed to dry. The residue is then examined for potato and rice starch.
Potato starch. The grains of potato starch are much larger than those of wheaten starch. If a portion of the residue mentioned above is crushed in an agate mortar, the granules of potato starch present are ruptured, and their contents liberated; the wheaten starch remaining unaltered. The mass is then taken up with water, and the fluid filtered. If potato starch be present, the filtrate will acquire a blue color upon addition of an aqueous solution of iodine; otherwise, a yellow or violet-rose coloration is produced. It is necessary to avoid crushing the residue for too long a time, as the granules of wheaten starch would also become ruptured by prolonged comminution.
Besides the difference presented by potato starch in the size of the granules in comparison to those of wheaten starch, the former swell to ten or fifteen times the volume of the latter, when treated with a solution of potassa: wheaten starch granules are not affected by the treatment, if the solution used does not contain more than 2 per cent. of the salt. The results obtained by the above operation should be confirmed by a microscopic examination.
Fig. 13.
A portion of the residue is moistened with solution of iodine, then carefully dried, and placed on the slide of a microscope. The mass is next moistened with a solution containing 2 per cent. of potassa, and examined. The addition of iodine causes the potato starch granules to acquire a blue color, and renders their shape and volume more easily perceptible; thus allowing the two varieties of starch to be readily distinguished. Fig. 13 represents the relative size of the granules as observed under the microscope.[Q]
The presence of potato starch in bread is also detected by crushing a small portion of the sample under examination on the glass, and then adding a few drops of the alkaline solution.
Fig. 14.
Rice and Corn.—If rice or corn meal have been mixed with the flour, angular and translucent fragments (Fig. 14) are observed in the microscopic examination. Corn meal acquires a yellow color, if treated with dilute potassa solution.
MISCELLANEOUS TESTS.
Linseed and rye meals.—If linseed meal is moistened with an aqueous solution containing 14 per cent. of potassa and examined under the microscope, numerous minute characteristic granules, smaller than the grains of potato-starch, are observed. These possess a vitreous appearance, sometimes a reddish color, and usually form in squares or very regular rectangles. The test is equally applicable to bread. The detection of linseed and rye meals is simultaneously effected by exhausting the suspected flour with ether, then filtering the solution and allowing it to evaporate. If the flour contains rye, the oil left by the evaporation, when heated with a solution of mercury in concentrated nitric acid, is converted into a solid substance having a fine red color; but it remains unaltered, if entirely due to linseed. In case the oil becomes solidified, the mercury salt present should be removed by washing with water, the residue taken up with boiling alcohol of 36° B. and the solution filtered: upon evaporating the alcoholic filtrate, a residue is obtained consisting of the linseed oil present.
Buckwheat.—Flour adulterated with buckwheat is less soft to the touch, does not pack as easily, and passes more readily through a sieve than pure wheaten flour. It presents, here and there, blackish particles, due to the perisperm of the grain, and has a dirty-white color. As previously remarked, the gluten obtained from a mixture of buckwheat and wheaten flour possesses a grey or even a black color. The starch furnished by buckwheat flour exhibits polyhedral agglomerations, analogous to those presented by corn.
Darnel.—The use of darnel in the adulteration of wheaten flour may give rise to serious sanitary results. To effect its detection, the flour to be examined is digested with alcohol of 35° B.: if the flour be pure, the alcohol remains limpid: it acquires a straw-yellow tint, due to traces of bran present, but—although a peculiar resin may be dissolved—the solution does not possess a disagreeable taste. When, on the contrary, darnel is present, the alcohol assumes a green tint, which gradually deepens, and possesses a bitter and nauseous taste; the residue, left by the evaporation of the tincture to dryness, has a greenish-yellow color, and a still more disagreeable flavor than the alcoholic solution.
Legumens.—Leguminous meals cannot be added otherwise than in small proportions to wheaten flour, owing to the rapidity with which they change the properties of the latter, and communicate to it their characteristic odor—noticeable upon treating the flour with a little boiling water. Their presence is also easily detected by the distinctive properties of the vegetable itself, and by the appearance of the amylaceous residue in the microscopic examination. In order to decide as to the presence of legumens, the washings containing the starchy matter of the flour, after the particles of gluten present have been separated by passing the fluid through a silk sieve, are divided into two portions. One portion is allowed to undergo fermentation, at a temperature of 18° to 20°: in case leguminous substances are not present, lactic fermentation occurs and the odor of sour milk is alone perceptible; if, on the other hand, legumens are contained in the fluid, rancid fermentation takes place, and an odor is emitted resembling that of decayed cheese. The remaining portion of the washings, after being decanted from the residue of amylaceous matter, is filtered and evaporated until a yellowish translucent pellicle appears upon its surface. The fluid is then again filtered from the coagulated albumen common to all flours, and the leguminous substances present coagulated by the addition, drop by drop, of acetic acid.
The leguminous deposit produced appears white and flaky; when examined under the microscope, it presents lamilla emarginated at the border; it is odorless and tasteless; when dried, it assumes a horny appearance; it is insoluble, both in water and alcohol, and does not become gelatinous when treated with boiling water; it is readily soluble in potassa and other alkaline solutions, from which it is precipitated upon addition of nitric, hydrochloric, acetic, oxalic, and citric acids; upon protracted boiling in water, it loses its property of being soluble in ammonia. The above tests having been applied, the residue containing the starch is next examined. For this purpose, a small portion is moistened with a little water, a few drops of iodine solution added, and the mixture placed on the side of the microscope: the bluish grains contained in the polyhedral and cellular envelope (Fig. 15) are easily recognized. The mixture on the glass may also be treated with an aqueous solution of potassa (containing 10 per cent. of the salt), or with dilute hydrochloric acid: these reagents dissolve the starch present, leaving the reticulated tissue intact. Should this examination fail to give a definite result, the remaining portion of the amylaceous residue is subjected to a sort of levigation, and the part most slowly deposited separated. In this portion the reticulated tissues of the leguminous substances present are contained, and, as they are comparatively free from foreign matters, their identification is a matter of comparative ease. In case the presence of reticulated tissue is indicated, it is still necessary to apply confirmatory chemical tests.
Fig. 15.
Meals prepared from beans, horse-beans, and lentils, contain a tannin which imparts a green or black color to salts of iron. The coloration is rendered very sensitive if a rather considerable quantity of the flour to be examined is passed through a silk sieve, and the remaining bran treated with a solution of sulphate of iron (ferrico-ferrous sulphate): the reaction immediately occurs, even if the sample contains but 10 per cent. of bean meal. The meals of horse-beans and of vetches acquire a red color, when exposed to the successive action of nitric acid and of ammonia vapors. In order to apply this test, the suspected flour is placed upon the edge of a capsule containing nitric acid, the latter heated, and, as a yellow coloration appears, the acid removed and replaced by ammonia. The capsule is then set aside: if the flour is adulterated with either of the above vegetables, reddish spots, which are easily perceptible by aid of a magnifying glass, are soon produced.
In case bread is to be examined, it is exhausted with water, the fluid passed through a sieve, the upper layer decanted, then evaporated, and the residue taken up with alcohol. The tincture so obtained is evaporated, and the second residuum treated with nitric acid and ammonia, as directed above. When meals prepared from beans, vetches, or lentils are heated on a water-bath with hydrochloric acid, diluted with three to four times its volume of water, a cellular tissue, possessing the color of wine-dregs, remains behind; flours of wheat, peas, and kidney-beans leave a colorless residue, when subjected to the same treatment.
Finally; the grains of the starch (fecula) of legumens possess a volume about equal to that of potato granules, and exhibit either a longitudinal furrow in the direction of their longer axis, or a double furrow arranged in a star-like form.
c. EXAMINATION OF THE ASH.
Leguminous substances, and more particularly mineral salts, are detected by the examination of the ash left upon the incineration of the flour.
Detection of Legumens.—Pure wheaten flour furnishes an ash consisting of about 2 per cent. of its weight; whereas meals of legumens leave from 3 to 4 per cent. of their weight in ash. This difference is, however, too slight to furnish conclusive results; the analysis of the ash is also necessary. The ash of wheaten flour is non-deliquescent, dry, semi-fused, and chiefly consists of phosphates of potassa, soda, magnesia and lime, of sulphates, and of silica. The solution obtained by treating the ash with water has an alkaline reaction. The phosphates of the alkalies, present in the ash of wheat, exist in the state of pyrophosphates, and, as chlorides are absent, the addition of nitrate of silver to the aqueous solution of the ash produces a white precipitate, consisting entirely of pyrophosphate of silver, which is not affected by exposure to the light.
The ash of leguminous meals is deliquescent and soluble in water, forming a strongly alkaline solution, which contains both chlorides and neutral phosphates. The latter give a clear yellow precipitate with nitrate of silver. Upon adding a solution of this salt to the aqueous solution of the ash, a pale yellow precipitate, which turns violet if exposed to the light, is therefore produced.
Detection of mineral substances.—The principal mineral substances, that are fraudulently added to flour, are ground calcined bones, sand, lime, plaster, alum, and sulphate of copper. The two last named salts are almost invariably added in small quantities; alum renders the flour white, even when used in the proportion of one per cent.; sulphate of copper is added to impart a good appearance to bread made from a damaged flour.
a. Ground bones (carbonate and phosphate of lime).—The washings of the gluten are placed in a conical vessel, and, after some time has elapsed, the clear supernatant fluid is removed by means of a syphon, a conical shaped deposit remaining on the bottom of the vessel: two hours later, the fresh layer of fluid that has formed is removed with a pipette. As soon as the residue becomes nearly solid, it is detached from the vessel, placed upon a fragment of plaster, and allowed to dry. The bones, being heavier than the amylaceous substances, are to be found in the apex of the cone formed by the residue. This is detached, and incinerated: in case the ash obtained contains phosphate and carbonate of lime, the addition of hydrochloric acid will cause effervescence, and, upon adding ammonia to the acid solution, a white precipitate will be formed. If the solution is then filtered and oxalate of ammonia added to the filtrate, a precipitate will be produced which, when heated to redness, leaves a residue of caustic lime possessing an alkaline reaction.
b. Sand.—As this substance possesses a much greater specific gravity than the usual constituents of flour, it is only necessary, in order to accomplish its separation, to repeatedly stir the flour with water, and remove the deposit at first formed, which, if consisting of sand, will be insoluble in acids, and will grate, when placed between the teeth.
c. Carbonates of lime and magnesia; vegetable ashes.—Carbonic acid is always evolved, upon treating flour with hydrochloric acid. If the base present be calcium, upon adding oxalate of ammonia to the filtered solution—which has previously been neutralized with ammonia—a white precipitate, possessing the properties mentioned above, will be formed; in case the base is magnesia, the addition of oxalate of ammonia will fail to cause a precipitate, but upon adding solution of phosphate of ammonia to the fluid a granular precipitate of phosphate of ammonia and magnesia is produced; if, finally, the flour contains vegetable ashes—i. e. carbonates of the alkalies—bichloride of platinum will produce in the acid solution a yellow precipitate: the addition of vegetable ashes, moreover, would render the ash of the flour deliquescent and very strongly alkaline.
d. Lime.—In presence of lime, carbonic acid produces a white precipitate, when conducted into the filtered aqueous extract of the flour.
e. Plaster.—The flour is boiled with water acidulated with hydrochloric acid, the fluid filtered, and lime detected in the filtrate by means of ammonia and oxalate of ammonia. The presence of sulphuric acid is indicated by the formation of a precipitate insoluble in acids, upon addition of solution of chloride of barium. Upon calcining the flour without access of air, sulphate of lime is converted into the corresponding sulphide: the residue of the calcination, when treated with hydrochloric acid, evolves sulphuretted hydrogen, and the lime present in the filtered acid solution is likewise precipitated by the addition of ammonia and oxalate of ammonia.
f. Alum.—A portion of the flour to be examined is treated with water, the fluid filtered, and the filtrate divided in two portions: in one, sulphuric acid is detected by means of chloride of barium; in the other, alumina by adding a solution of potassa, which gives with its salts a white gelatinous precipitate, soluble in an excess of the reagent.[R]
g. Sulphate of copper.—About 200 grammes of the bread under examination are incinerated; the ash treated with nitric acid; the mixture evaporated until it acquires a sticky consistence, and the mass then taken up with water. The aqueous solution is next filtered; an excess of ammonia and several drops of solution of carbonate of ammonia added; the fluid again filtered, the filtrate slightly acidulated with nitric acid, and divided into two parts. It is then ascertained if sulphuretted hydrogen produces in one portion of the solution a brown precipitate of sulphide of copper, and if solution of ferrocyanide of potassium produces in the other a reddish-brown precipitate of ferrocyanide of copper.[S]
FIXED OILS.
Olive oil designed for table use is frequently adulterated with the oils of poppy, sesamé, cotton-seed, pea-nuts, and other nuts; olive oil, intended for manufacturing purposes, is often mixed with colza and nut oils.
The tests used are of a rather unsatisfactory character. In all instances, when the chemist is called upon to pronounce as to the adulteration of an oil, it is necessary to execute comparative experiments with the pure oil, and with admixtures arbitrarily prepared: it is only when this is done that the indications obtained are of value.
EXAMINATION OF OLIVE OIL INTENDED FOR TABLE USE.
a. The density of the oil is determined by means of a hydrometer (oleometer) provided with a scale giving the densities from 0.8 to 0.94, for the temperature of 15.° Pure olive oil possesses a specific gravity of 0.917; poppy oil one of 0.925; a mixture of the two, an intermediate density. Since the fixed oils are not definite chemical compounds, this test is seldom conclusive.
b. Two or three cubic centimetres of concentrated nitric acid, containing nitric peroxide in solution (or a solution of mercury in strong nitric acid), are added to the oil to be examined, as well as to a sample of pure olive oil. The two samples are then allowed to stand in a room where the temperature does not exceed 10.° The oleine of the olive oil is converted into solid elaidine, and the mixture after some time becomes sufficiently thick to remain in the vessel upon inversion. If the sample under examination is free from adulteration, it will solidify at the same time as the pure oil; whereas, the presence of one per cent. of poppy oil, or of other drying oils, suffices to retard the solidification for forty minutes.
c. Fifteen grammes of the oil are mixed in a glass vessel with the same amount of strong sulphuric acid, the temperature of the two liquids being previously observed. The mixture is stirred with a thermometer, and the maximum temperature noted: pure olive oil produces an elevation of temperature of 37.°7; pure poppy oil, an elevation of 70.°5; and a mixture of the two an elevation of temperature intermediate between 37.°7 and 70.°5.
d. One volume of nitric acid of sp. gr. 1.33 is agitated with 5 grammes of the oil, and notice taken of the coloration produced after the lapse of five minutes. If the olive oil is pure, it acquires a pale green color; in case it is mixed with sesamé or nut oil, a deep-red color appears: poppy oil also communicates a reddish coloration, but one less deep than the preceding.
If an acid of sp. gr. 1.22 is taken, it is still less difficult to distinguish between sesamé, nut and poppy oils; the latter assumes, in this case, a pale yellowish-red color.
Pea-nut oil fails to exhibit a coloration; but can be recognized by its conversion into a white solid, when mixed with 1/5 of its volume of a solution of caustic soda of sp. gr. 1.34.
EXAMINATION OF OLIVE OIL INTENDED FOR MANUFACTURING PURPOSES.
The chief adulterations are colza and nut oils. The latter is detected by means of the reaction with nitric acid, as described above. Colza oil is recognized by mixing 5 volumes of the sample to be examined, with 1 volume of sulphuric acid of sp. gr. 1.655: if colza or nut oils are present, a brown coloration ensues; under the same circumstances, pure olive oil assumes a pale greenish hue. In case the sample acquires a brown color when treated with sulphuric acid, and a red coloration is produced by the addition of nitric acid, it contains nut oil; if sulphuric acid produces a brown coloration, and nitric acid fails to change it, the presence of oil of colza is indicated.
EXAMINATION OF HEMPSEED OIL.
This oil is frequently adulterated with linseed oil. The reactions exhibited by these oils are nearly identical, and the detection of the admixture is extremely difficult. It is advisable to mix the suspected oil with sulphuric acid, notice being taken of the elevation of temperature produced, and to treat it with nitric acid and with dilute potassa solution, subjecting, at the same time, an artificial mixture of the two pure oils to the same treatment, and comparing the results obtained.
TEA AND ITS ADULTERATION.
Among alimentary substances probably no article is subjected to more adulteration than tea. The sophistications practised may be conveniently divided into three classes:
1. Additions made for the purpose of giving increased bulk and weight, which include foreign leaves and exhausted tea-leaves, and also certain mineral substances, such as metallic iron, sand, brick-dust, etc.
2. Substances added in order to produce an artificial appearance of strength in the tea decoction, catechu, or other bodies rich in tannin, and iron salts being chiefly resorted to for this purpose.
3. The imparting of a bright and shining appearance to the tea by means of various coloring mixtures or "facings," which adulteration, while sometimes practised upon black tea, is much more common with the green variety. This sophistication involves the use of steatite (soap-stone), sulphate of lime, China clay, Prussian blue, indigo, turmeric, and graphite; chromate of lead and copper salts being but very rarely employed. The compound most frequently used consists of a mixture of soap-stone (or gypsum) with Prussian blue, to which a little turmeric is sometimes added.
Genuine tea is the prepared leaf of Thea sinensis. It contains: moisture, 6% to 10%; theine, 0.4% to 4.0%; tannin, (green) 20%, (black) 10%; ash, 5% to 6%; soluble extractive matters, 32% to 50%; and insoluble leaf, 47% to 54%.
Fig. 16.
TEA
Fig. 17.
WILLOW
Fig. 18.
SLOE
Fig. 19.
BEECH
The presence of foreign leaves, and, in some instances, of mineral adulterants, in tea is best detected by means of a microscopic examination of the suspected sample. The genuine tea-leaf is characterized by its peculiar serrations and venations. Its border exhibits serrations which stop a little short of the stalk, while the venations extend from the central rib, nearly parallel to one another, but turn just before reaching the border of the leaf (see Fig. 16). The Chinese are said to employ ash, plum, camellia, velonia, and dog-rose leaves for admixture with tea, and the product is stated to be often subjected in England to the addition of the leaves of willow, sloe, beech, hawthorn, elm, box-poplar, horse-chestnut, and fancy oak (see Figs. 17, 18, and 19). For scenting purposes chulan flowers, rose, jasmine, and orange leaves are frequently employed. In the microscopic examination the sample should be moistened with hot water, spread out upon a glass plate, and then submitted to a careful inspection, especial attention being given to the general outline of the leaf and its serrations and venations. Most foreign leaves will, in this way, be identified by their botanical character. The presence of exhausted tea-leaves may also often be detected by their soft and disintegrated appearance. If a considerable quantity of the tea be placed in a long glass cylinder and agitated with water, the coloring and other abnormal bodies present frequently become detached, and either rise to the surface of the liquid as a sort of scum or fall to the bottom as a deposit. In this way Prussian blue, indigo, soap-stone, gypsum, sand, and turmeric can sometimes be separated and subsequently recognized by their characteristic microscopic appearance. The separated substances should also be chemically tested. Prussian blue is detected by heating with a solution of caustic soda, filtering, and acidulating the filtrate with acid, and then adding chloride of iron, when, in its presence, a blue color will be produced. Indigo is best discovered by its appearance under the microscope; it is not decolorized by caustic alkali, but it dissolves in sulphuric acid to a blue liquid. Soap-stone, gypsum, sand, metallic iron, etc., are identified by means of the usual chemical tests. A compound, very aptly termed "Lie-tea," is often met with. It forms little pellets consisting of tea-dust mixed with foreign leaves, sand, etc., and held together by means of gum or starch. This, when treated with boiling water, falls to powder. In the presence of catechu the tea infusion usually becomes muddy upon cooling; in case iron salts have been employed to deepen the color of the liquor, they can be detected by treating the ground tea-leaves with acetic acid and testing the solution with ferrocyanide of potassium. Tea should not turn black upon immersion in hydrosulphuric acid water, nor should it impart a blue color to ammonia solution. The infusion should be amber-colored, and not become reddened by the addition of an acid.
TEA ASSAY.
In the following tea assay proper the estimation of theine is not included. The processes suggested for this determination are rather unsatisfactory; and there appears, moreover, to exist no direct relation between the quality of tea and the proportion of theine contained. The tests here mentioned, in connection with those already given, will, it is believed, usually suffice to indicate to the analyst the presence of spent leaves, inorganic coloring matters, and other mineral adulterations.
Tannin.—A good process for the estimation of tannin in tea has been published by Allen (Chem. News, vol. xxix. p. 169 et seq.) A standard solution of lead acetate is prepared by dissolving 5 grammes of the salt in distilled water and diluting the liquid to 1,000 c.c. As an indicator, 5 milligrammes of potassic ferricyanide are dissolved in 5 c.c. of water, and an equal volume of strong ammonia-water added. The exact strength of the lead solution is to be determined by means of a solution of pure tannin of known strength. Two grammes of the tea to be tested are powdered, boiled with water, and, after filtering and thorough washing, the decoction is made up to a volume of 250 c.c.; 10 c.c. of the lead solution are now diluted with 90 c.c. of boiling water, and the tea infusion is gradually added from a burette until a few drops of the liquid, when filtered and added to a little of the indicator placed upon a porcelain slab, causes a pink coloration to appear; 125, divided by the number of c.c. of tea infusion found to be necessary to produce the pink color, will give directly the percentage of tannin in the sample examined. As previously stated, green tea contains 20% of tannin, and black tea 10%. In spent tea, however, only about 2% of tannin is present; and, although any tea deficient in this constituent could be fortified by the addition of catechu, its determination often affords indications of value.
The Ash—a. Total Ash.—5 grammes of the sample are placed in a platinum vessel and heated over a Bunsen burner until complete incineration has been accomplished. The vessel is allowed to cool in a desiccator, and is then weighed as quickly as possible. In genuine tea the total ash should not be much below 5% or much above 6%, and it should not be magnetic; in "faced" teas the proportion of total ash is often 10% or 15%; in "lie-tea" it may reach 30%, and in spent leaves it may fall as low as 3%, the ash in this case being abnormally rich in lime salts and poor in potash salts. Tea-dust sometimes contains 10% of total ash without necessarily being considered bad in quality. In the proposed United States tea-adulteration law (1884) a maximum of 8% of total ash is allowed for tea-leaf.
b. Ash insoluble in water.—The total ash obtained in a is washed into a beaker and boiled with water for a considerable time. It is then brought upon a filter and the insoluble residue washed, dried, ignited, and weighed. In unadulterated tea it will not exceed 3% of the sample taken.
c. Ash soluble in water.—This proportion is obtained by deducting ash insoluble in water from the total ash. Genuine tea contains from 3% to 3.5% of soluble ash, or at least 50% of the total ash, whereas in spent or exhausted tea the amount is often but 0.5%.
d. Ash insoluble in acid.—The ash insoluble in water is boiled with dilute hydrochloric acid and the residue separated by filtration, washed, ignited, and weighed. In pure tea the remaining ash ranges between 0.3% and 0.8%; in "faced" teas, or in teas adulterated by the addition of sand, etc., it may reach the proportion of 2% to 5%. Fragments of silica and brick-dust are occasionally to be found in the ash insoluble in acid.
The Extract.—Two grammes of the carefully-sampled tea are boiled with water until all soluble matter is dissolved, water being added from time to time to prevent the solution becoming too concentrated. The solution is poured upon a tared filter, and the remaining insoluble leaf repeatedly washed with hot water until the filtered liquid becomes colorless. The filtrate is now diluted to a volume of 200 c.c., and of this 50 c.c. are taken and evaporated in a weighed dish over the steam-bath until the weight of the extract remains constant; its weight is then determined. Genuine tea affords from 32% to 50% of extract, according to its age and quality; in spent tea the proportion of extract will be greatly reduced.
Insoluble Leaf.—The insoluble leaf obtained in the preceding operation, together with the weighed filter, is placed in an air-bath and dried for at least eight hours at a temperature of 110° C.; its weight is then determined. In unadulterated tea the amount of insoluble leaf ranges between 47% and 54%; in exhausted tea it may reach a proportion of 75%.
It should be noted that in the foregoing estimations the tea is taken in its ordinary air-dried condition. If it be desired to reduce the results obtained to a dry basis, an allowance for the moisture present in the sample (an average of 8%), or a direct determination of the same, must be made.
The following tabulation gives the constituents of genuine tea so far as the ash, extract, and insoluble leaf are involved:
- Total ash—ranges between 4.7% and 6.2%.
- Ash soluble in water—ranges between 3% and 3.5%; should equal 50% of total ash.
- Ash insoluble in water—not over 2.75%.
- Ash insoluble in acid—ranges between 0.3% and 0.8%.
- Extract—ranges between 32% and 48%.
- Insoluble leaf—ranges between 43% and 58%.
The table below may prove useful as indicating the requirements to be exacted when the chemist is asked to give an opinion concerning the presence of facing admixtures or of exhausted or foreign leaves in a sample of tea:
- Total ash—should not be under 4.5% or over 7%.
- Ash soluble in water—should not be under 40% of total ash.
- Ash insoluble in water—should not be over 3%.
- Ash insoluble in acid—should not be over 1%.
- Extract—should not be under 30%.
- Insoluble leaf—should not be over 60%.
Note.—The British Society of Public Analysts adopt:
- Total Ash (dry basis)—not over 8% (at least 3% should be soluble in water).
- Extract (tea as sold)—not under 30%.
MILK.
The chief constituents of milk are water, butter, caseine, lactose (milk-sugar), traces of albumen and mineral salts. Butter is present in the form of minute globules, held in suspension; the caseine, for the greater part, is in solution, only a small portion being present in an insoluble suspended condition. In milk only a few days old, the colostrum (the milk secreted during the first few days after parturition) consists largely of rather voluminous cellular conglomerations, containing a sufficient quantity of albumen to coagulate upon heating.
The normal density of milk is 1.030, water being 1.000; the density rising to 1.036, if the fluid has been skimmed.
Good milk contains, on an average, 3.7 per cent. of butter; 5.7 per cent. of lactose, and leaves upon evaporation 12 to 14 per cent. of solid matters.[T] The most common adulteration of milk consists in the addition of water. This fraud is detected by means of an areometer (lactodensimeter) which gives directly the specific gravity of the fluid under examination. Should the density be much below 1.030, it is certain that water has been added. It does not, however, necessarily follow if it is about 1.030 that the milk is pure, since the gravity of the fluid, which would be increased upon skimming, could be subsequently reduced to 1.030 by the addition of water. The lactodensimeter, therefore, although useful in the detection of a simple admixture, fails to give reliable results if the fraud perpetrated is a double one; and a determination of the proportion of butter present is also usually necessary. Numerous methods have been proposed to accomplish this estimation. The most preferable of these, owing to the rapidity with which the operation is executed, is the use of the lactoscope (galactoscope). This instrument consists of a tube provided with a glass plate fitted at one end, and with a movable glass plate at the other extremity. A few drops of the milk to be tested are placed between the two plates, and the tube lengthened, by screwing out the movable plate, until the fluid no longer transmits the light of a candle placed at a distance of one metre. As the opacity of milk is due to the butter present, it is evident that the proportion of this substance contained in the sample can be estimated by the relative distance which the plates have been separated.
The lactoscope possesses, however, but a limited degree of precision. M. Marchand substitutes to its use the following tests: A test-tube is graduated in three equal divisions, the upper one being subdivided into hundredths extending above, in order to determine accurately the correct volume of the fluid, expanded, as it is, by the temperature of 40°, at which the examination is executed. The first division of the tube is filled with milk, a drop, or two of strong potassa lye added, and the mixture well shaken: the second portion is then filled with ether, and the third with alcohol. The mixture is next again thoroughly agitated, and then exposed to a temperature of 40° in a water-bath. After standing for several hours, a layer of fatty matter becomes sufficiently separated to allow of measurement: but, as it contains some ether and as a small amount of butter may still be retained in the lower aqueous fluid, a correction of the results obtained is necessary. M. Marchand has compiled a table, which facilitates this correction (vide: Journ. de Pharm., Novembre 1854, and Bulletin de l'Académie de Médecine, Paris, 1854, xix., p. 1101).
Previously to the introduction of Marchand's apparatus, use was made of the lactometer, which consists simply of a graduated glass tube, in which the suspected milk is allowed to remain for 24 hours, at a temperature of 15°. After the lapse of this time, the cream present completely separates as a supernatant layer, the thickness of which indicates the quality of the sample taken.
M. Lacomte recommends the addition of glacial acetic acid, in order to cause the more rapid separation of the cream.
The estimation of the butter being accomplished, it is frequently needful to determine the amount of lactose present. For this purpose, recourse is had to Barreswil's method, based upon the reduction of cupro-potassic tartrate by milk-sugar in the presence of alkalies. A solution is prepared containing 40 grammes of pure crystallized sulphate of copper, 600 or 700 grammes of caustic soda lye of sp. gr. 1.12, and 160 grammes of neutral tartrate of potassa. The sulphate of copper and tartrate of potassa are previously dissolved separately in a little water, the three solutions united, and water added until the fluid acquires a volume of 1154.4 cubic centimetres. In order to standardize this test solution, a known weight of pure lactose is dissolved in water and the fluid added, drop by drop, from a graduated burette, to a small flask containing 10 cubic centimetres of the copper solution, diluted with 40 cubic centimetres of distilled water, and heated to boiling. At first a yellow precipitate forms, which gradually turns red, and is deposited on the bottom of the flask, leaving the solution colorless. As soon as the test solution is completely decolorized, the addition of the lactose solution is discontinued, and the weight of lactose corresponding to 10 cubic centimetres of the test fluid calculated from the quantity used. The standard of the test solution having been determined, the above operation is repeated, the milk under examination being substituted for the solution of pure lactose. The quantity of milk necessary to decolorize 10 cubic centimetres of the copper solution will evidently contain the same amount of lactose as the quantity of solution used in the preliminary test, and the actual amount of lactose present is very easily calculated. When an estimation of the solid matter contained in the milk is required, a known weight is evaporated to dryness over a water-bath, and the residue weighed. In performing this evaporation, the addition of a known amount of sand, or ground glass, is advisable. The amount of ash present is determined by incinerating the residue left by the evaporation.
Foreign substances are sometimes added to milk, for the purpose of disguising the presence of an abnormal quantity of water, the principal of which are: chalk, bicarbonate of soda, emulsion of almonds, gum tragacanth, gum arabic, starch, flour, decoction of barley or rice, sugar, and cerebral substances. These bodies are detected as follows:
Chalk.—If chalk is contained in the milk, it readily subsides upon allowing the sample to remain at rest for some time in a flask, forming a deposit which effervesces when heated with hydrochloric acid, and dissolves to a solution, in which the characteristic properties of a lime salt can be recognized.
Bicarbonate of soda.—In presence of this compound the milk possesses a strongly alkaline reaction, furnishes a serum having a sharp and bitter taste, and leaves a residue of the salt upon evaporation.
Emulsion of almonds.—The milk has a specific gravity of at least, 1.033. If it is passed through a gauze, small opaque lumps are separated. When examined under the microscope, numerous minute globules, having a diameter of 1/400 of a millimetre, are observed, and, upon adding a few centigrammes of amygdaline to one or two grammes of the milk, the characteristic odor of bitter almonds is produced.
Gum tragacanth.—When shaken in a glass flask and allowed to rest, the milk deposits on the sides small transparent lumps, which usually present a slightly elongated or angular form.
Gum arabic.—The addition of alcohol produces an abundant white opaque precipitate.
Starch, flour, decoction of barley, rice, etc.—Upon boiling the suspected milk, and adding tincture of iodine, the amylaceous substances present produce a blue coloration in the fluid.
Sugar.—If yeast is added, and the mixture allowed to stand for some time at a temperature of 30°, alcoholic fermentation ensues; under these circumstances, lactose does not undergo fermentation.
Cerebral substances.—Adulteration by these substances is probably of much less frequent occurrence than was formerly supposed. The admixture is detected by evaporating the milk to dryness, dissolving the residue in ether, evaporating the etherial solution, and fusing the second residue, which consists of fatty matters, with nitrate of potassa in a platinum crucible. The mass is then taken up with water, and chloride of barium added to the solution. If cerebral substances were contained in the milk, ether will dissolve the fatty matters present, the phosphorus of which is converted into a soluble phosphate by the calcination with nitrate of potassa and is thrown down as a white precipitate, upon the addition of a solution of chloride of barium. This test may be confirmed by a microscopic examination of the milk, when the peculiar appearance of cerebral matter will be detected.[U]
WINE.
The most common adulteration to which wines are subjected is the addition of water: wines having a rich color are frequently mixed by the dealer with lighter wines, and the fraud consummated by adding water. The detection of this adulteration is somewhat difficult, as water is a normal constituent of wine. In Paris the following method is usually employed: As soon as the wine is confiscated, it is ascertained what kinds of wine are manufactured by the inculpated dealer, and a statement obtained from him, giving the proportions of alcohol, etc., contained in the various brands. A wine is then prepared, according to the information received, an estimation of the alcohol contained in the prepared sample made, and the results compared with those furnished by a similar examination of the suspected wine. In case the proportion of alcohol is less in the suspected wine than in the prepared sample, it is evident that a fraudulent adulteration has been committed. If, however, the quantity of alcohol is the same in both wines, it does not necessarily follow that the wine has escaped admixture, since this body may have been added after the adulteration with water. In addition to the estimation of alcohol, it is also necessary to determine the amount of cream of tartar (bitartrate of potassa) present, as the proportion of this salt would be sensibly decreased by the addition of alcohol and water to the wine. This fraud could, however, be disguised by subsequently adding the proper amount of cream of tartar.
It is also well to ascertain if two equal quantities of the prepared sample and the wine under examination require the same amount of solution of hypochlorite of lime for decolorization. In case the suspected wine has been adulterated, the quantity of hypochlorite solution used will be less than the amount necessary to decolorize the prepared wine. Foreign coloring matter may be added by the adulterator, but this fraud is easily detected by adding potassa to the sample: if its coloration is natural, a green tint is produced; whereas, if foreign matter has been introduced, the wine assumes various other colors upon the addition of the alkali.[V]
The indications furnished by the above test are rendered valueless, if the wine has been artificially colored by the addition of the coloring matter of grape-skins; but the execution of this fraud would require some knowledge of chemistry, and fortunately adulterators, as a class, are deficient in this branch of science.
Another method for detecting the addition of water is based upon the fact that fermented liquors do not contain air in solution, but only carbonic acid; whereas, water dissolves oxygen and nitrogen. It is executed as follows:
The wine to be tested is placed in a flask, the delivery-tube of which is also filled, and heated; the evolved gas being collected in a tube filled with mercury. In case the wine is pure, the disengaged gas will be completely absorbed by potassa; if, on the other hand, water has been added, an unabsorbed residue, consisting of oxygen and nitrogen, will remain.
This test is useless in case water, through which a current of carbonic acid gas has been passed for a considerable time, has been employed. Under these circumstances, however, the presence of the gas would probably be detected by the taste of the wine, as well as by the estimation just mentioned, since the sample would invariably contain a larger proportion of the gas than the standard with which it is compared; indeed, it would be almost impossible to prepare a solution which contained exactly the proportion of carbonic acid ordinarily present in wine.
It remains to mention the methods employed in determining the amount of alcohol and cream of tartar contained in wine.
The alcometrical method usually employed is based upon the difference in density possessed by pure alcohol and by mixtures of alcohol and water. Gay-Lussac has proposed an areometer (alcoholmeter), provided with a scale which directly indicates the proportion of alcohol contained in a mixture. As the indications furnished by this instrument vary with the temperature, and the scale is constructed on the basis of a temperature of 15°, a correction of the results obtained is necessary if the determination is made at other temperatures. Gay-Lussac has compiled a table which indicates at once the required correction; the following formula can also be used: x = c ± 0.4 t, where x is the quantity of alcohol present in the sample; c the degree indicated by the alcoholmeter, and t the number of degrees differing from the temperature of 15°: the second member of the formula is subtracted from, or added to the first, as the temperature at which the estimation is made is greater or less than 15°.[W]
In case the wine to be examined contains substances other than water and alcohol, which would affect its density, it is necessary, before making use of the alcoholmeter, to distil the sample and subsequently examine the distillate, which will consist of a simple mixture of water and alcohol. Usually the distillation is discontinued as soon as one-third of the sample has passed over, and a quantity of distilled water, sufficient to render the volume of the mixture equal to the original volume of the wine, added to the distillate: the fluid remaining in the flask will be entirely free from alcohol. The addition of water to the distillate is not indispensable, but otherwise it is necessary to divide the degrees indicated by the alcoholmeter by 3, in order to reduce the result to the original volume of the wine taken.
M. Salleron offers for sale a small apparatus (Fig. 20) used in examinations of this character, consisting of a flask, closed with a gutta-percha cork, containing a tube which connects with a worm passing through a cooler. The flask is supported by an iron stand, and heated with a gas or spirit lamp.
Fig. 20.
In order to estimate the cream of tartar, the wine is evaporated to the consistency of an extract, alcohol of 82° B. added, and the residue obtained calcined in a crucible. The amount of salt present in the fused mass is then determined by the alkalimetric method, as directed in all works on quantitative analysis. The carbonate obtained from 1 gr. of cream of tartar exactly saturates 9.75 cubic centimetres of a solution containing 100 grammes of sulphuric acid of 66° B., and 1800 grammes of distilled water.
The detection of toxical substances, often contained in wine, is accomplished by the methods described under the head of detection of poisons.
VINEGAR.
Vinegar is frequently adulterated with water, and occasionally sulphuric acid is added to artificially increase its acidity.
The ordinary reagents—such as chloride of barium, or nitrate of silver—are not adapted to the direct detection of sulphuric acid, or of other mineral acids, as sulphates and chlorides, which are as readily precipitated as the free acids, may also be present.
The following method, proposed by M. Payen, is usually employed:
Five centigrammes of starch (fecula) are added to a decilitre of table vinegar, the mixture boiled for 12 or 15 minutes, and, after the fluid has become completely cooled, a few drops of iodine solution added: dilute acetic acid does not affect starch, and, in case the vinegar is pure, a blue coloration is produced; if, on the other hand, even a minute quantity of a mineral acid be present, the starch is converted into dextrine, and the addition of iodine fails to cause a blue coloration.
The water present is indirectly estimated by determining the amount of acetic acid contained in the vinegar. This can be accomplished in different ways: either the quantity of a standard solution of an alkali, necessary to exactly neutralize a measured quantity of the vinegar, is ascertained, or the vinegar is supersaturated with solution of baryta, the excess of the salt eliminated by conducting carbonic acid through the fluid, the precipitate removed by filtration, and the baryta salt in the filtrate precipitated by the addition of sulphuric acid. The second precipitate is then collected on a filter, washed, weighed, and the amount of acetic acid present calculated: this is done by multiplying its weight by 0.515.
SULPHATE OF QUININE.
Owing to the high price of this salt, it is frequently adulterated. The substances used for this purpose are: crystalline sulphate of lime, boric acid, mannite, sugar, starch, salicine, stearic acid, and the sulphates of cinchonine and quinidine. These bodies are detected as follows:
a. Upon slightly warming 2 grammes of sulphate of quinine with 120 grammes of alcohol of 21° B., the pure salt completely dissolves; if, however, starch, magnesia, mineral salts, or various other foreign substances are present, they are left as insoluble residues.
b. Those mineral substances that are soluble in alcohol are detected by calcining the suspected sample: pure sulphate of quinine is completely consumed; whereas, the mineral substances present remain behind as a residue.
c. In presence of salicine, the salt acquires a deep red color, when treated with concentrated sulphuric acid.
d. Stearic acid remains undissolved upon treating sulphate of quinine with acidulated water.
e. To detect sugar and mannite, the sample is dissolved in acidulated water, and an excess of hydrate of baryta added: a precipitate, consisting of quinine and sulphate of baryta, is produced. Carbonic acid is then passed through the fluid, in order to precipitate the excess of baryta as insoluble carbonate, the fluid saturated with ammonia, to throw down the quinine which may have been re-dissolved by the carbonic acid, and the mixture filtered. If the salt be pure, no residue will be obtained upon evaporating the filtrate; a residue of sugar or mannite is formed, if these substances are present.
f. Sulphate of quinine invariably contains 2 or 3 per cent. of cinchonine, originating, not from a fraudulent admixture, but from an incomplete purification of the salt. One of the best methods for detecting the respective quantities of quinine and cinchonine, present in a sample of the sulphate, is the following: Several grammes of ammonia and ether (which has previously been washed with water) are added to one or two grammes of the salt under examination, the mixture thoroughly agitated, and then allowed to remain at rest. The supernatant etherial solution contains all of the quinine; the cinchonine, which is almost completely insoluble, both in water and ether, remaining suspended between the layers of the two fluids. The ether is next removed by means of a stop-cock funnel, evaporated to dryness, and the weight of the residue obtained determined. The operation is then repeated, the ether being replaced by chloroform in which both quinine and cinchonine are soluble. The residue, formed by the evaporation of the second solution, will be heavier than the first residue: the difference between the two weighings gives the weight of the cinchonine present.
g. The detection of the presence of sulphate of quinidine is based upon the difference in the solubilities of the oxalates of quinine and quinidine. Oxalate of quinidine is sufficiently soluble in cold water not to be precipitated by double decomposition when solutions of oxalate of ammonia and sulphate of quinidine are mixed. Under the same circumstances, quinine is almost completely thrown down. The test is applied as follows:
The suspected salt is dissolved in water, a slight excess of oxalate of ammonia added, and the precipitate formed separated by filtration. If the salt be pure, the filtrate is scarcely rendered turbid by the addition of ammonia; when, however, sulphate of quinidine is present, it will be entirely contained in the filtrate, in which ammonia will produce an abundant precipitate.