ON THE ORIGIN OF THE COLOUR-SENSE.

Throughout the preceding discussion we have accepted the subjective phenomena of colour—that is, our perception of varied hues and the mental emotions excited by them, as ultimate facts needing no explanation. Yet they present certain features well worthy of attention, a brief consideration of which will form a fitting sequel to the present essay.

The perception of colour seems, to the present writer, the most wonderful and the most mysterious of our sensations. Its extreme diversities and exquisite beauties seem out of proportion to the causes that are supposed to have produced them, or the physical needs to which they minister. If we look at pure tints of red, green, blue, and yellow, they appear so absolutely contrasted and unlike each other, that it is almost impossible to believe (what we nevertheless know to be the fact) that the rays of light producing these very distinct sensations differ only in wave-length and rate of vibration; and that there is from one to the other a continuous series and gradation of such vibrating waves. The positive diversity we see in them must then depend upon special adaptations in ourselves; and the question arises—for what purpose have our visual organs and mental perceptions become so highly specialised in this respect?

When the sense of sight was first developed in the animal kingdom, we can hardly doubt that what was perceived was light only, and its more or less complete withdrawal. As the sense became perfected, more delicate gradations of light and shade would be perceived; and there seems no reason why a visual capacity might not have been developed as perfect as our own, or even more so in respect of light and shade, but entirely insensible to differences of colour except in so far as these implied a difference in the quantity of light. The world would in that case appear somewhat as we see it in good stereoscopic photographs; and we all know how exquisitely beautiful such pictures are, and how completely they give us all requisite information as to form, surface-texture, solidity, and distance, and even to some extent as to colour; for almost all colours are distinguishable in a photograph by some differences of tint, and it is quite conceivable that visual organs might exist which would differentiate what we term colour by delicate gradations of some one characteristic neutral tint. Now such a capacity of vision would be simple as compared with that which we actually possess; which, besides distinguishing infinite gradations of the quantity of light, distinguishes also, by a totally distinct set of sensations, gradations of quality, as determined by differences of wave-lengths or rate of vibration. At what grade in animal development this new and more complex sense first began to appear we have no means of determining. The fact that the higher vertebrates, and even some insects, distinguish what are to us diversities of colour, by no means proves that their sensations of colour bear any resemblance whatever to ours. An insect’s capacity to distinguish red from blue or yellow may be (and probably is) due to perceptions of a totally distinct nature, and quite unaccompanied by any of that sense of enjoyment or even of radical distinctness which pure colours excite in us. Mammalia and birds, whose structure and emotions are so similar to our own, do probably receive somewhat similar impressions of colour; but we have no evidence to show that they experience pleasurable emotions from colour itself, when not associated with the satisfaction of their wants or the gratification of their passions.

The primary necessity which led to the development of the sense of colour, was probably the need of distinguishing objects much alike in form and size, but differing in important properties;—such as ripe and unripe, or eatable and poisonous fruits; flowers with honey or without; the sexes of the same or of closely allied species. In most cases the strongest contrast would be the most useful, especially as the colours of the objects to be distinguished would form but minute spots or points when compared with the broad masses of tint of sky, earth, or foliage against which they would be set.

Throughout the long epochs in which the sense of sight was being gradually developed in the higher animals, their visual organs would be mainly subjected to two groups of rays—the green from vegetation, and the blue from the sky. The immense preponderance of these over all other groups of rays would naturally lead the eye to become specially adapted for their perception; and it is quite possible that at first these were the only kinds of light-vibrations which could be perceived at all. When the need for differentiation of colour arose, rays of greater and of smaller wave-lengths would necessarily be made use of to excite the new sensations required; and we can thus understand why green and blue form the central portion of the visible spectrum, and are the colours which are most agreeable to us in large surfaces; while at its two extremities we find yellow, red, and violet—colours which we best appreciate in smaller masses, and when contrasted with the other two, or with light neutral tints. We have here probably the foundations of a natural theory of harmonious colouring, derived from the order in which our colour-sensations have arisen and the nature of the emotions with which the several tints have been always associated. The agreeable and soothing influence of green light may be in part due to the green rays having little heating power; but this can hardly be the chief cause, for the blue and violet, though they contain less heat, are not generally felt to be so cool and sedative. But when we consider how dependent are all the higher animals on vegetation, and that man himself has been developed in the closest relation to it, we shall find, probably, a sufficient explanation. The green mantle with which the earth is overspread caused this one colour to predominate over all others that meet our sight, and to be almost always associated with the satisfaction of human wants. Where the grass is greenest, and vegetation most abundant and varied, there has man always found his most suitable dwelling-place. In such spots hunger and thirst are unknown, and the choicest productions of nature gratify the appetite and please the eye. In the greatest heats of summer, coolness, shade, and moisture are found in the green forest glades; and we can thus understand how our visual apparatus has become especially adapted to receive pleasurable and soothing sensations from this class of rays.

Supposed increase of Colour-perception within the Historical Period.—Some writers believe that our power of distinguishing colours has increased even in historical times. The subject has attracted the attention of German philologists, and I have been furnished by a friend with some notes from a work of the late Lazarus Geiger, entitled, Zur Entwickelungsgeschichte der Menschheit (Stuttgart, 1871). According to this writer it appears that the colour of grass and foliage is never alluded to as a beauty in the Vedas or the Zendavesta, though these productions are continually extolled for other properties. Blue is described by terms denoting sometimes green, sometimes black, showing that it was hardly recognised as a distinct colour. The colour of the sky is never mentioned in the Bible, the Vedas, the Homeric poems, or even in the Koran. The first distinct allusion to it known to Geiger is in an Arabic work of the ninth century. “Hyacinthine locks” are black locks, and Homer calls iron “violet-coloured.” Yellow was often confounded with green; but, along with red, it was one of the earliest colours to receive a distinct name. Aristotle names three colours in the rainbow—red, yellow, and green. Two centuries earlier Xenophanes had described the rainbow as purple, reddish, and yellow. The Pythagoreans admitted four primary colours—white, black, red, and yellow; the Chinese the same, with the addition of green.

Simultaneously with the first publication of this essay in Macmillan’s Magazine, there appeared in the Nineteenth Century an article by Mr. Gladstone on the Colour-sense, chiefly as exhibited in the poems of Homer. He shows that the few colour-terms used by Homer are applied to such different objects that they cannot denote colours only, as we perceive and differentiate them; but seem more applicable to different intensities of light and shade. Thus, to give one example, the word porphureos is applied to clothing, to the rainbow, to blood, to a cloud, to the sea, and to death; and no one meaning will suit all these applications except comparative darkness. In other cases the same thing has many different epithets applied to it according to its different aspects or conditions; and as the colours of objects are generally indicated in ancient writings by comparative rather than by abstract terms,—as wine-colour, fire-colour, bronze-colour, &c.—it becomes still more difficult to determine in any particular case what colour was really meant. Mr. Gladstone’s general conclusion is, that the archaic man had a positive perception only of degrees of light and darkness, and that in Homer’s time he had advanced to the imperfect discrimination of red and yellow, but no further; the green of grass and foliage or the blue of the sky being never once referred to.

These curious facts cannot, however, be held to prove so recent an origin for colour-sensations as they would at first sight appear to do, because we have seen that both flowers and fruits have become diversely coloured in adaptation to the visual powers of insects, birds, and mammals. Red, being a very common colour of ripe fruits which attract birds to devour them and thus distribute their seeds, we may be sure that the contrast of red and green is to them very well marked. It is indeed just possible that birds may have a more advanced development of the colour-sense than mammals, because the teeth of the latter commonly grind up and destroy the seeds of the larger fruits and nuts which they devour, and which are not usually coloured; but the irritating effect of bright colours on some of them does not support this view. It seems most probable therefore that man’s perception of colour in the time of Homer was little if any inferior to what it is now, but that, owing to a variety of causes, no precise nomenclature of colours had become established. One of these causes probably was, that the colours of the objects of most importance, and those which were most frequently referred to in songs and poems, were uncertain and subject to variation. Blood was light or dark red, or when dry, blackish; iron was grey or dark or rusty; bronze was shining or dull; foliage was of all shades of yellow, green, or brown; and horses or cattle had no one distinctive colour. Other objects, as the sea, the sky, and wine, changed in tint according to the light, the time of day, and the mode of viewing them; and thus colour, indicated at first by reference to certain coloured objects, had no fixity. Things which had more definite and purer colours—as certain species of flowers, birds, and insects—were probably too insignificant or too much despised to serve as colour-terms; and even these often vary, either in the same or in allied species, in a manner which would render their use unsuitable. Colour-names, being abstractions, must always have been a late development in language, and their comparative unimportance in an early state of society and of the arts would still further retard their appearance; and this seems quite in accordance with the various facts set forth by Mr. Gladstone and the other writers referred to. The fact that colour-blindness is so prevalent even now, is however an indication that the fully developed colour-sense is not of primary importance to man. If it had been so, natural selection would long ago have eliminated the disease itself, and its tendency to recur would hardly be so strong as it appears to be.

Concluding Remarks on the Colour-sense.—The preceding considerations enable us to comprehend, both why a perception of difference of colour has become developed in the higher animals, and also why colours require to be presented or combined in varying proportions in order to be agreeable to us. But they hardly seem to afford a sufficient explanation, either of the wonderful contrasts and total unlikeness of the sensations produced in us by the chief primary colours, or of the exquisite charm and pleasure we derive from colour itself, as distinguished from variously-coloured objects, in the case of which association of ideas comes into play. It is hardly conceivable that the material uses of colour to animals and to ourselves, required such very distinct and powerfully-contrasted sensations; and it is still less conceivable that a sense of delight in colour per se should have been necessary for our utilization of it.

The emotions excited by colour and by music, alike, seem to rise above the level of a world developed on purely utilitarian principles.

VII.
BY-PATHS IN THE DOMAIN OF BIOLOGY:

BEING AN ADDRESS DELIVERED TO THE BIOLOGICAL SECTION OF THE BRITISH ASSOCIATION, (GLASGOW, SEPTEMBER 6TH, 1876,) AS PRESIDENT OF THE SECTION.

Introductory Remarks—On some Relations of Living Things to their Environment—The Influence of Locality on Colour in Butterflies and Birds—Sense-perception influenced by Colour of the Integuments—Relations of Insular Plants and Insects—Rise and Progress of Modern Views as to the Antiquity and Origin of Man—Indications of Man’s extreme Antiquity—Antiquity of Intellectual Man—Sculptures on Easter-Island—North American Earthworks—The Great Pyramid—Conclusion.

The range of subjects comprehended within the domain of Biology is so wide, and my own acquaintance with them so imperfect, that it is not in my power to lay before you any general outline of the recent progress of the biological sciences. Neither do I feel competent to give you a summary of the present status of any one of the great divisions of our science, such as Anatomy, Physiology, Embryology, Histology, Classification, or Evolution—Philology, Ethnology, or Prehistoric Archæology; but there are fortunately several outlying and more or less neglected subjects to which I have for some time had my attention directed, and which I hope will furnish matter for a few observations, of some interest to biologists and at the same time not unintelligible to the less scientific members of the Association who may honour us with their presence.

The subjects I first propose to consider have no general name, and are not easily grouped under a single descriptive heading; but they may be compared with that recent development of a sister science which has been termed surface-geology or Earth-sculpture. In the older geological works we learnt much about strata, and rocks, and fossils, their superposition, contortions, chemical constitution, and affinities, with some general notions of how they were formed in the remote past; but we often came to the end of the volume no whit the wiser as to how and why the surface of the earth came to be so wonderfully and beautifully diversified; we were not told why some mountains are rounded and others precipitous; why some valleys are wide and open, others narrow and rocky; why rivers so often pierce through mountain-chains; why mountain-lakes are often so enormously deep; whence came the gravel, and drift, and erratic blocks so strangely spread over wide areas while totally absent from other areas equally extensive. So long as these questions were almost ignored, geology could hardly claim to be a complete science, because, while professing to explain how the crust of the earth came to be what it is, it gave no intelligible account of many phenomena presented by its surface. But of late years these surface-phenomena have been assiduously studied; the marvellous effects of denudation and glacial action in giving the final touches to the actual contour of the earth’s surface, and their relation to climatic changes and the antiquity of man, have been clearly traced, thus investing geology with a new and popular interest, and at the same time elucidating many of the phenomena presented in the older formations.

Now just as a surface-geology was required to complete that science, so a surface-biology was wanted to make the science of living things more complete and more generally interesting, by applying the results arrived at by special workers to the interpretation of those external and prominent features whose endless variety and beauty constitute the charm which attracts us to the contemplation or to the study of nature. We have the descriptive zoologist, for example, who gives us the external characters of animals; the anatomist studies their internal structure; the histologist makes known the nature of their component tissues; the embryologist patiently watches the progress of their development; the systematist groups them into classes and orders, families, genera, and species; while the field-naturalist studies for us their food and habits and general economy. But, till quite recently, none of these earnest students nor all of them combined, could answer satisfactorily, or even attempted to answer, many of the simplest questions concerning the external characters and general relations of animals and plants. Why are flowers so wonderfully varied in form and colour? what causes the Arctic fox and the ptarmigan to turn white in winter? why are there no elephants in America and no deer in Australia? why are closely allied species rarely found together? why are male animals so frequently bright-coloured? why are extinct animals so often larger than those which are now living? what has led to the production of the gorgeous train of the peacock and of the two kinds of flower in the primrose? The solution of these and a hundred other problems of like nature was rarely approached by the old method of study, or if approached was only the subject of vague speculation. It is to the illustrious author of the Origin of Species that we are indebted for teaching us how to study nature as one great, compact, and beautifully-adjusted system. Under the touch of his magic wand the countless isolated facts of internal and external structure of living things—their habits, their colours, their development, their distribution, their geological history,—all fell into their approximate places; and although, from the intricacy of the subject and our very imperfect knowledge of the facts themselves, much still remains uncertain, yet we can no longer doubt that even the minutest and most superficial peculiarities of animals and plants either, on the one hand, are or have been useful to them, or, on the other hand, have been developed under the influence of general laws, which we may one day understand to a much greater extent than we do at present. So great is the alteration effected in our comprehension of nature by the study of variation, inheritance, cross-breeding, competition, distribution, protection, and selection—showing, as they often do, the meaning of the most obscure phenomena and the mutual dependence of the most widely-separated organisms—that it can only be fitly compared with the analogous alteration produced in our conception of the universe by Newton’s grand discovery of the law of gravitation.

I know it will be said (and is said), that Darwin is too highly rated, that some of his theories are wholly and others partially erroneous, and that he often builds a vast superstructure on a very uncertain basis of doubtfully interpreted facts. Now, even admitting this criticism to be well founded—and I myself believe that to a limited extent it is so—I nevertheless maintain that Darwin is not and cannot be too highly rated; for his greatness does not at all depend upon his being infallible, but on his having developed, with rare patience and judgment, a new system of observation and study, guided by certain general principles which are almost as simple as gravitation and as wide-reaching in their effects. And if other principles should hereafter be discovered, or if it be proved that some of his subsidiary theories are wholly or partially erroneous, this very discovery can only be made by following in Darwin’s steps, by adopting the method of research which he has taught us, and by largely using the rich stores of material which he has collected. The Origin of Species, and the grand series of works which have succeeded it, have revolutionized the study of biology; they have given us new ideas and fertile principles; they have infused life and vigour into our science, and have opened up hitherto unthought-of lines of research on which hundreds of eager students are now labouring. Whatever modifications some of his theories may require, Darwin must none the less be looked up to as the founder of philosophical biology.

As a small contribution to this great subject, I propose now to call your attention to some curious relations of organisms to their environment, which seem to me worthy of more systematic study than has hitherto been given them. The points I shall more especially deal with are—the influence of locality, or of some unknown local causes, in determining the colours of insects, and, to a less extent, of birds; and the way in which certain peculiarities in the distribution of plants may have been brought about by their dependence on insects. The latter part of my address will deal with the present state of our knowledge as to the antiquity and early history of mankind.