FOOTNOTES:

[1] See page [330].

[2] Similar records for the classes of 1915 and 1916 were not preserved.

[3] As the physical examinations are made during the time of the Annual Conference, in order to shorten the time as much as possible the Board requested that the tests of endurance be omitted.

CHAPTER II
HYDROTHERAPY

Description of the Skin; Functions of the Skin; the Physiologic Effects of Water, Hot and Cold; the Chief Varieties of Baths; Ablutions; the Tub Bath; the Alcohol Rub; the Cold Dip; Alkaline and Saline Baths; the Rain Douche or Shower Bath; the Hot Foot-bath; the Sitz Bath; Salt Ablution; the Turkish Bath; the Electric-light Bath; Indications for the Use of Turkish Bath, and Contraindications; the Douche; Rationale of the Douche; Contraindications.

The Internal Use of Water; Its Action on the Heart and Blood, on the Digestion; Therapeutic Indications for the Use of Water; Contraindications for Drinking Cold Water.

Enemas; Vaginal Douche; Douching the Ear.

The term hydrotherapy will be used here in its broadest sense, and may be defined as the hygienic and systematic use of water, both externally and internally, for the preservation and restoration of health and the prevention of disease.

The hygienic and therapeutic value of the systematic use of water is just beginning to be appreciated by the medical profession. When this newly acquired knowledge is put to practical use by the great masses of the people, there will be a greatly diminished necessity for the use of drugs. Indeed, water has been pronounced by a high medical authority to be, and probably is, more nearly a panacea for all human ills than any other known agent.

The bath is generally considered merely as a cleansing procedure, whereas this is only one of its beneficial effects. There is, in addition, the stimulation of all the functions and organs of the body obtained through the temperature of the water, and the mechanical stimulation which is obtained by the mode of application.

Again, the skin is not a mere covering for the body, but one of its most important organs, with well-defined functions; so that, in order to obtain a clear understanding of the subject, it is necessary first to consider briefly the functions of the skin; and, secondly, the physiologic action of water.

Description of the Skin.—The skin is a very sensitive and complex organ, and upon the condition of the skin and the vicissitudes to which it is exposed the health of the individual is dependent to a very great degree.

Fig. 1.—Vertical section of skin. sbg, Sebaceous glands; ep, epidermis; h, hair; d, derma (Fox).

The skin is composed of three distinct layers—the epidermis, the corium or true skin, and the subcutaneous connective tissue. The appendages of the skin are the hair, nails, the sebaceous and sweat-glands. This complicated structure is supplied with blood-vessels, lymphatics, and nerves.

The Epidermis.—The outer layer of this is the horny layer; when a blister is formed, its fluid raises the entire epidermis from the true skin. The flat scales forming the horny layer are continually being thrown off; this process of desquamation is increased by the friction of the clothes, of bathing, massage, and so forth, and is as constantly being replaced by new cells from underneath.

The corium, or true skin, is the most important part of the integument. This is a thick, felt-like tissue which is pierced in all directions for the passage of the blood-vessels, lymphatics, sweat-ducts, and nerves, and affords lodgment for the hair follicles and sebaceous glands. The tension of the skin is produced by its muscular structure and elastic network, and is subject to temperature changes. This power of contractility is known as the tone of the skin.

The skin has two kinds of glands, the sebaceous and sweat-glands. The sebaceous glands consist of a gland structure, with a short excretory duct, which opens upon the epidermis or into the hair follicles. These glands secrete an oily substance, which keeps the hair and skin soft and protects them from the sweat.

There exists in the sebaceous glands of the skin an infinite number of vulnerable points for infection, and the greater part of the process of cleanliness is directed toward their protection. If in any part of the skin there is an accumulation of bacilli, their toxins, or excretions, and, at the same point, a collection of sebum, the friction of the clothes, caused by the movements of the body, becomes an active agent in effecting their absorption by the skin. Hence, the scientific basis for the necessity of the daily bath.

In the subcutaneous tissue we find the fat; it is this part of the skin that contributes to the roundness and beauty of the body. It is increased by abundant fatty food, sedentary habits, and freedom from care.

Functions of the Skin.—The skin exercises three distinct functions; first, as an organ of sense; second, as an organ of excretion; and third, as an organ of heat regulation.

Next to sight, the sense of touch is the most important of all the senses. Through this sense the human organism is made conscious of its contact with the outer world. The cutaneous nerve-endings stand guard, as it were, over most of the functions of the human body.

The importance of the action of the skin as an organ of excretion will be better understood from the well-known fact that the skin is one of the most important aids to the kidneys. That the perspiration and the urine are to a certain extent vicarious excretions has been proved.

The blood is the circulating medium which not only serves to convey nutritive materials from the stomach to the tissues, and the excrementitious materials from the tissues to the excretory glands, but also to equalize the body temperature. It conveys the surplus heat from the interior of the body to the surface, where it may be dissipated by conduction, radiation, and evaporation. Nearly nine-tenths of the daily heat-loss takes place through the skin; and of this, one-seventh is due to evaporation, which is enormously increased by perspiration.

The amount of perspiration produced daily is about two pints, or in the neighborhood of 1/64 the body weight. This is double the amount of water thrown off by the lungs. The watery portions of the perspiration are readily evaporated, and the solid constituents are deposited upon the skin. Urea and uric acid, together with more subtle poisons, are found in the sweat.

Animal Heat.—The heat of the body is wholly derived from foods, which, when completely oxidized within the body, produce practically the same amount of heat and energy that would be generated by their combustion outside the body.

But it is essential, in order to keep the body of warm-blooded animals at a constant or normal temperature, that an increase in the heat-production should be accompanied by a corresponding increase in the heat dissipation; the functions are reciprocal, and this equilibrium is regulated and maintained by a special nervous and functional mechanism.

The automatic protective measures against the effects of heat are:

First.—Dilatation of the cutaneous vessels and an acceleration of the circulation through the skin and the subcutaneous tissue. By this means the dissipation of heat is increased; the sweat at the temperature of the blood, deposited upon the surface of the body, evaporates under favorable circumstances, and in this way considerable amounts of heat are abstracted from the body. In consequence of sweating and its evaporation, the blood circulating through the skin is cooled, and returning to the internal organs at a lowered temperature, prevents their overheating.

Second.—Should the action of heat be continued for a greater length of time, a large amount of blood will be retained in the skin in consequence of the loss of tonicity of the cutaneous vessels; the cutaneous circulation will be slowed, and thereby the blood, heated at the surface of the body, is prevented from returning to the internal organs and so overheating them.

Third.—In consequence of the accumulated amount of blood in the skin, a diminished amount of blood will remain in the internal organs; thus their activity, and thereby also the production of heat, will be lessened.

In these processes will be found a safeguard against the excessively rapid penetration of heat to the internal organs, and against the unduly rapid elevation of the body temperature through thermic influences.

As a result of the stimulating influence of cold, there first occurs contraction of the skin and its vessels. This, by restricting the dissipation of heat, brings about perfect compensation if the abstraction of heat be but slight; and but partial compensation, if the abstraction of heat is more marked. In the latter event the body temperature will continue to decline, to a greater or less degree; in the former it will remain constant.

The rôle played by the skin in maintenance of the normal temperature of the body is indispensable.

The normal temperature of the adult human body is 98.6° F. in the mouth, and that of the rectum and vagina is one degree higher.

Fasting, sleep, and short applications of heat all decrease heat-production; during sleep the temperature of the body falls half a degree or more.

Respiration by the skin varies from ½ to 1 per cent. of the total amount of oxygen taken into the body, and a somewhat lower percentage of carbonic acid is thrown off through this channel.

The skin absorbs substances in watery solutions with difficulty, on account of the oil lying upon and in the epidermis; substances dissolved in oil and rubbed in are more rapidly absorbed; absorption takes place rapidly after the skin has been washed with ether, chloroform, or alcohol.

The Physiologic Effects of Water.—These depend on whether the water is taken internally or applied externally. If applied externally, the effects will depend upon the temperature, whether hot, tepid, or cold; also on the manner of application, but, most of all, on the length of time which it is applied and the state of health of the individual.

The temperature of water is classified as very cold, from 32° to 55° F.; as cold, from 55° to 65° F.; cool, from 65° to 80° F.; tepid, 80° to 92° F.; warm, 92° to 98° F.; hot, 98° to 104° F.; very hot, 104° F. and above.

Heat.—A general hot bath produces dilatation of the vessels of the skin and contraction of the vessels of the brain; a general activity of the glands of the skin, both perspiratory and sebaceous. Perspiration may be produced, either to the degree of slight moisture or of profuse sweating, according to the length of time and the intensity of the application made. In a very hot bath the rate of perspiration may be increased from fifty to sixty times the ordinary amount. The most pronounced effect possible may be secured by either the electric light or sun bath.

Loss of fluids from the body has a depressing effect similar to, though somewhat less marked than, that produced by bleeding, so that there is a vital necessity for administering water internally before, during, and after the bath.

Prolonged and repeated perspirations induced by artificial means weaken the skin, and thus lessen its power to resist cold impressions, unless counteracted by frequent cold applications.

The general and usual reactions following the applications of heat are atonic and depressing in character. For the most part, the reactions following cold applications are to be preferred to those following hot ones.

The three great vascular areas of the body are the muscles, the portal system, and the skin. Each of these parts may be regarded as a great reservoir, capable of retaining a large part of the entire amount of blood of the body. When one of these areas is in a state of congestion, the others must be in a comparative state of anemia.

The restorative effects due to the application of heat are due partly to the elimination of fatigue poisons which is thereby encouraged, as well as by the reflex stimulation of the nerve-centers. The good effects are much more decided and lasting, and the exhausting effects neutralized, if the hot application is followed by a short cold one.

The effects of a neutral bath, 92° to 95° F., is sedative, diminishing nervous irritability.

A hot-water bottle or fomentations, placed over the stomach for an hour or two after eating, increase the gastric secretions, and, when placed over the liver, increase the flow of bile.

The Physiologic Effects of Cold.—In suitable cases a short general application of cold is a powerful heart tonic. Cold causes a contraction of the vessels of the skin and of those of the brain, with a dilatation of the internal vessels. There are pallor and coldness of the skin, and an almost instantaneous suspension of perspiration, which is dangerous only when the body is in a state of fatigue.

If the application of cold is long continued, the surface becomes blue, the temperature of the muscles beneath the skin is lowered, thus checking heat-production in these muscles; the circulation is slowed, and the heart’s action is diminished in frequency. There is a goose-flesh appearance of the skin; a sensation of chilliness, trembling, shivering, chattering of the teeth; at first a quickening and then slowing of the pulse, and deep gasping respiration.

When the cold application is considerably prolonged, the tendency to reaction is suppressed. There is an exhaustion of the nerve-centers as well as of the heat-producing powers of the body. Thus, the system gradually loses its power to resist the depressing effects of cold. The repeated chillings of the body increase the length of time required to return to the normal temperature. Applications of water below the temperature of the body always lower the temperature.

Reaction.—If the application of cold is of very short duration, of very low temperature, and given under high pressure, the phenomena of reaction begin immediately on its cessation.

The reaction consists in a dilatation of the surface capillaries, with contraction of the internal vessels; redness of the skin; the skin is smooth, soft, and supple; there is a sensation of warmth, comfort, and well-being; respiration is slower and deeper; there are a fall of the internal temperature and increase of perspiration.

Certain measures to favor reaction should be taken before the bath, such as exposure to the air of a warm room, drinking hot water, and short exercise of a rather vigorous kind.

During the bath the measures which favor reaction are short, sudden applications of cold, friction while in the bath with the hand, and pressure effects in the douche.

After the bath reaction is favored by vigorous rubbing, a thorough drying of the body, warm clothing, warm air of the room, and as vigorous exercise as the strength of the individual will permit.

Conditions which are unfavorable to healthy reaction are: old age, infancy, exhaustion, either temporary or from an excessive loss of sleep, or extreme nervous exhaustion, obesity, rheumatic diathesis, unhealthy or inactive skin, profuse perspiration when accompanied by a state of fatigue, extreme nervous irritability, a very low temperature of the skin, an immediately preceding or impending chill, and extreme aversion to cold applications.

The average temperature of the human nude skin is in the neighborhood of 90° F. The difference between the temperature of the skin and water is the chief element in determining the reaction of the individual. It is evident that water at a temperature of 90° F. would be neutral or indifferent; the difference of intensity of effect is in proportion to the difference of temperature of the water and skin. The duration of the cold procedure is an important element in the production of reaction. It may be laid down as a rule never to give any cold-water application without friction. The physical and psychic state of the individual exerts more or less influence upon his reactive capacity. An anemic, or otherwise depressed individual must be managed with great circumspection, because she bears heat abstraction badly. The hydriatic procedure must always be adapted to the reactive capacity of the bather.

The woman must be thoroughly rubbed after the bath until a good reaction has occurred. Especial attention must be paid to the feet and legs. The bather should first be rubbed with a warm towel or sheet, and then with the bare hands of the attendant, as the warm hand greatly facilitates the reaction. The bather is by no means dry when the skin ceases to feel wet. So long as the skin is soft and spongy, it still contains moisture which has been absorbed by the superficial layers of the epidermis. The absorbed moisture, being left to evaporate after the bath, the individual is liable to become chilly and contract a cold, which is erroneously attributed to the bath itself.

Other injurious effects following imperfect reaction after the cold bath are secondary chills or a continuous chill lasting for several hours. The hands and feet are cold, there is headache, not infrequently diarrhea, and other evidences of internal congestion, such as abdominal or ovarian pain, vertigo, etc.

Reaction may be favored by covering the patient with blankets, surrounding her with hot-water bottles, and giving her hot tea to drink. Exercise should follow the bath. Walking for from twenty minutes to an hour is the most usual form of exercise. Very vigorous exercise for a short time cannot be substituted for moderate exercise for a longer time.

The Tonic Effect of Cold Upon the System.—The effect of cold upon the muscles, when given in the form of a cold bath, douche, or spray, is to augment muscular energy and tone to a very great extent; this increased muscular tonicity is the cause of the slight shivering. The cold douche, if short,—one or two seconds,—and given with a pressure of from 25 to 30 pounds, is a powerful restorative in fatigue resulting from severe muscular effort, but it must be immediately preceded by a short hot bath, and must be followed by vigorous rubbing and wrapping in a hot blanket.

Short cold applications cause elevation of temperature and increased metabolism, while prolonged cold applications cause a fall of temperature and decrease of metabolism.

The tonic effect of cold water is believed to be due to the stimulation of the sympathetic nerve-centers. The sympathetic nervous system controls the blood-vessels, heart, the functions of secretion and excretion; and, indeed, all the vital functions of the body.

The sensation of well-being which accompanies the reaction following a general cold application is largely due to an increased activity of the cerebral circulation. Cold water is a physiologic tonic, and the cold bath, properly employed, increases the vital resistance to pathologic processes.

All applications of water at a temperature low enough to provoke vital resistance are tonic; hence, tonic effects are produced by all temperatures below 90° F., but the most certain and pronounced results are obtained from the douche in every form, which adds mechanical impact to the thermic effects of cold. The most durable tonic effects are produced by the frequent use of very cold and very short baths.

A tepid bath causes a lowering of the body temperature.

The Chief Varieties of Baths.—These, in the order of frequency with which they are used, are: ablutions; tub; foot-tub; sitz; salt sponge; shower; Turkish; horizontal jet; needle; fan douche; Scotch douche; Roman and electric-light baths.

Ablutions or Sponge Baths.—These baths are of universal use. The sponge is one of the dirtiest and most impossible articles of the toilet to clean and to keep clean. It is a collector of dirt and germs, and should be banished from every bath-room and from every house. It is not sufficient that each member of the family should have her own sponge; it is quite possible for the individual to become infected or reinfected from her own sponge. Incidentally, it does not afford sufficient friction, and thus does not favor reaction. In taking ablutions, the application of water may be made with the hand, though it is best made by means of a wash towel. The good effects of the simple ablution will be greatly enhanced by the use of the hat tub, and this especially where there is no bath-tub in the house.

When the bath is taken for the purpose of cleanliness, the water should be warm or hot, and pure Castile soap is one of the best that can be used. If the skin is rough, a good sand soap will be more beneficial. The bath should be completed by dashing cold water over the body with the wash-towel.

The body must be quickly and thoroughly dried by means of a rough bath-towel. After this, the skin may be still further toned up by a good alcohol rub.

If the ablution is taken simply for the tonic effect, it is generally taken on rising in the morning, and the water used is cold. The ablution may be confined to the upper part of the body, that is, the chest and back; and consists in friction with a rough wash-towel, followed by dashing the water over the body; followed by brisk friction with a rough bath-towel. This procedure causes a marked stimulation of the heart and lungs, and is followed by a rise of temperature.

In winter all baths must be taken in a warm room.

There is a decided increase of muscular and mental capacity after the cold ablution, demonstrating the tonic effect it has produced.

The cold ablution may also serve as an introductory to other and more heroic hydriatic procedures. If the reaction is not good, water at a higher temperature should be used, and only small portions of the body should be attacked each day, followed always by brisk friction. As the reaction becomes better, the temperature of the water should be gradually lowered from day to day.

There must be a decided sensation of warmth of the body before proceeding to take any form of cold bath. This may be induced by sipping a cupful of hot water before rising, and then being well covered with the bed-clothes until the body is in a glow. In conditions of anemia or neurasthenia, where the circulation is markedly poor, in addition to drinking the hot water, the bather may stand on hot blankets while taking the cold ablution, and after it be rubbed briskly with hot towels.

Nothing is gained, and a great deal of harm is done, by trying to persevere in the daily cold ablution when it is followed by a pallor of the skin, chilliness, etc.

The Tub Bath.—This is much more refreshing, more salutary, and may be used to produce a much greater variety of effects than the simple ablution. Tub baths may be classified according to the amount of water in the tub as half or full tubs; and again, according to the temperature of the water, as warm, tepid, hot, and cold. The half tub contains about 30 gallons of water.

In a general way it may be said that the half tub of warm water is used for the purpose of cleanliness; the hot baths for breaking up colds, for rheumatism, etc.; the tepid bath to allay nervousness; and the full cold tub, for the tonic morning dip.

For cleansing purposes the so-called half tub, that is, the tub contains a sufficient amount of water to reach above the pelvis when one is seated in the tub, is used. The temperature ranges from 98° to 102° F. Five minutes is as long as the bather should remain in the tub, as all hot baths are more or less exhausting. After an initial immersion in the water, the scrub takes place by means of the Turkish bath-towel, or, better, by the use of the flesh brush. If there is a shower attached, the hot bath should always be followed by a brief cold shower; if not, the cold water should be turned on and dashed over the body by means of the wash-towel. This closes up the pores of the skin, prevents the profuse perspiration from taking place that so often follows a hot bath, and greatly diminishes the susceptibility to taking cold. An alcohol rub completes the procedure. This insures a further toning up of the cutaneous vessels. A small quantity of alcohol is poured into the hand and applied to a limited area of the body. It is well rubbed in with friction until the alcohol has wholly evaporated. Beginning with the arms, the legs, chest, and back are successively gone over.

The hot bath is best taken immediately before retiring, and should not be repeated oftener than twice a week. Retiring to bed at once, the bed acts as the cooling chamber of the Turkish bath. The hot bath is most restful, and, except in rare cases, tends to the production of refreshing sleep.

If the bather has a weak heart, suffers from shortness of breath, or is weak from any cause whatever, she should only take a half tub bath, since it has been learned from experience that when the water covers the entire body, there is increased difficulty in the respiration, and the heart’s action often becomes embarrassed, palpitation of the heart is experienced, with a feeling of impending suffocation. There is sometimes also a feeling of faintness. On getting into the tub, the temperature of the room should never be above 68° to 70° F.

The Full Tub or Immersion Bath.—In this form of bath there is a complete submersion of the body in the water, so that the water reaches the under surface of the chin, the head of the bather resting on a cross strap, being the only portion of the body uncovered by the water.

If the bath is tepid, that is, has a temperature of from 80° to 90° F., great care should be taken to have the chest covered, in order to prevent pulmonary congestion. This is best accomplished by placing a Turkish towel, wrung out of hot water, about the chest and shoulders of the bather just after she enters the tub.

If the bath is hot, from 98° to 104° F., before entering the bath the face and neck are rubbed with cold water, in order to relax the vessels of the brain and so prevent cerebral anemia. Except when the hot bath is given for especial therapeutic purposes, as for rheumatism, cystitis, colic, etc., it should always be followed by a cold application.

The Cold Dip.—For the dip, the tub is filled with water at a temperature of from 65° to 55° F. The duration of the dip varies from two or four seconds to one or two minutes. The bather should wet the face and chest before entering the water. It is best to enter the bath suddenly, as the sensation of cold is thus far less noticeable than when the bath is entered gradually. If the stay in the tub is more than momentary, vigorous rubbing must be kept up during the entire time spent in the tub.

For persons in good health a cold dip on rising in the morning is excellent. It creates an appetite, accelerates the circulation, arouses the nervous system, and produces decided exhilarating effects in those who are strong enough to react after it. When employed for this purpose, the immersion should not be more than from three to fifteen seconds. The bather must rub herself vigorously while in the tub, and follow the bath with brisk toweling and plenty of friction. She should then take moderately active exercise for fifteen to twenty minutes.

For any one just beginning to take the cold dips, the temperature of the water should be just 1 degree below that of the body, and gradually lowered by a drop of 1 degree every morning or two. Or, the dip may be preceded by a preliminary warm bath or warm shower.

The salient point in connection with bathing is not to allow the skin to lose heat too rapidly. To apply this as a warning in the case of cold baths: it has been estimated that the heat loss from the body immersed in cold water at the temperature of 86° F. is double the normal; at 77° F., three times, and at 68° F., five times, the normal.

The daily use of the cold dip for those who are able to react after it is one of the best means of fortifying the system against both acute and chronic diseases.

Contraindications.—The use of the cold dip is contraindicated for young children, the aged, and in run-down conditions of the system; in all cases where the action of the heart is weak, in Bright’s disease, or in any acute or chronic congestion of the kidneys; in all acute inflammations, as inflammation of the bowels, peritonitis, or inflammation of the uterus and ovaries.

Alkaline Baths.—For these baths from 4 to 12 ounces of the carbonate of soda should be used to 30 gallons of water. The water should have a temperature of from 92° to 96° F. This bath is useful in many forms of skin disease, and relieves the itching of jaundice and urticaria.

Saline Baths.—The typical saline bath is the salt-water bath. Sea-water contains in solution from ⅓ to ¼ pound of solids to the gallon of water. The principal ingredients are common salt, magnesium chlorid, and magnesium sulphate. These substances have a decidedly stimulating effect upon the skin and encourage reaction. For an artificial sea-water bath, 8 pounds of sea-salt should be used to 30 gallons of water.

Ordinary coarse salt is purer, contains from 97 to 98 per cent. of the chlorid of sodium, is cleaner, and makes a clearer solution, and it dissolves in about one-third of the time required for sea salt, and can be obtained for about one-third of the cost.

As a cleansing agent, a 5 per cent. brine is equal or superior to soap. Further, the axilla and hairy parts remain clean and sweet for a much longer time than after the use of soap. These brine baths, taken three times a week, are followed by a great improvement in the general health.

The Rain Douche or Shower Bath.—The shower is the most tonic of all the baths that can be taken at home, and no bath-room should be considered complete without it. In this form of douche the water is projected through a perforated disc, falling upon the bather in a number of fine streams. It is necessary for the bather to wear a rubber cap in order to keep the hair dry. In taking the shower bath the bather stands up; the disc is generally placed about 3 feet above the head. The water should be allowed to fall first upon the feet, then the hands, arms, shoulders, back, and, lastly, upon the chest and abdomen. The bather should keep in active motion during the application, flexing the limbs, and rubbing the chest with the hands. At the beginning of the shower the hands should be placed over the chest, in order to protect the precordial region from the impact of the water.

The cold shower should be preceded by some kind of a heating process—either a hot plunge or a hot shower bath. A shower of from 100° to 104° F. may be applied for one to three minutes before the cold application. A cool shower of 75° to 65° F. is an excellent training for persons who are sensitive to cold. The neutral shower, 92° to 97° F., given for three to five minutes, is sedative in its effects.

The cold shower, 60° to 70° F., duration from five to thirty seconds, is useful in phlegmatic neurasthenics and dyspeptics; sedentary people in whom the general metabolic activity is diminished; also in obesity and in all cases after a sweating process. By standing in hot water the bather is much more tolerant of cold.

The neutral shower is one of the most effective measures for the relief of insomnia; especial attention should be given to the back and legs. The action is quicker than that of the neutral immersion bath.

As a hygienic measure, the shower bath offers a most agreeable and rapid means of cleansing the whole surface of the body.

Since the effect of the douche depends on the pressure, it will be readily understood that the hose attached to the faucet of the domestic bath-tub is merely a sprinkler, and not a douche, in the proper sense of the word. Such a procedure can only be tolerated by the most robust. In the upper stories of most city houses the pressure is probably not more than from 3 to 10 pounds; the stream of water from the sprinkler is really only a drizzle; the mechanical effects being so slight, there is no reaction produced; the result is that its use is followed by a feeling of chilliness and depression.

The Hot Foot-bath.—The temperature of this bath should be at the beginning from 102° to 104° F., and the duration from three minutes to half an hour. The pail is nearly filled with water, care being taken that it shall not be so full as to overrun when the feet and legs of the bather are put in. A blanket, closely wrapped about the patient and the pail, should come up above the knees. As the water cools off, hot water should be added.

This form of bath is most commonly used to relieve congestion and inflammation. The dilatation produced in the blood-vessels of the feet and legs relieves congestion of the brain and the organs of the upper half of the body, as well as of the pelvic viscera. It should be taken immediately before retiring.

The Sitz Bath.—The sitz or hip bath requires a tub made for that particular purpose. The back of the tub, which is most commonly made of tin, is cut high, while the front must be sufficiently low for the patient to sit comfortably in it, without undue pressure being made on the under side of the knees.

The tub is half filled with water of the prescribed temperature. It is well to begin with water at a temperature of 102° F., and increase the temperature while the patient is in the tub, making it as hot as is comfortable.

Fig. 2.—Sitz-bath tub made of tin (Ashton).

In giving all hot baths a thermometer must be used, and a word of warning must be given about adding hot water in case of sickness, as well-authenticated cases of paralysis are recorded in which the temperature sense of the patient was lost, and, in adding hot water, it was raised to such a temperature that the legs and feet of the patient were scalded.

During the sitz bath the patient keeps on her stockings and bedroom slippers, and, unless friction is ordered, the entire body, as well as the feet and legs, are enveloped in blankets.

The duration of this bath is from three to ten minutes. This bath is especially useful in restoring the menstrual function when it has been suspended as the result of chill or other causes; also, for relieving hemorrhoids, uterine colic, neuralgia of the ovaries, and inflammation of the bladder.

To prolong the effect of the bath the patient may be put to bed wrapped up in her blankets. In cold weather it is a good precautionary measure to have the bed heated with hot-water bottles, in order to prevent chilling.

Salt Ablution.—As the name indicates, this is a salt-water bath, and the best results are obtained by using a saturated solution, which is in the proportion of 1 pint of salt to 1 gallon of water. Sea-salt is the best, but, if that cannot be obtained, ordinary salt may be used.

If there is no bath-tub in the house an ordinary wash-bowl may be used, but the bath is most effective when taken in the tub. The salt and water are put in a papier-mâché pail, which is placed at the foot of the tub. The chilliness which might be caused by sitting on the cold porcelain is avoided by placing a heavy folded bath-towel on the bottom of the tub. In cold weather the tub should be previously heated by allowing the hot water to run in.

The salt water feels very much colder than plain water at the same temperature. It is well to begin with a temperature of from 90° to 85° F., and gradually lower the temperature until 70° F. is reached.

The water is applied by means of a Turkish wash-towel, accompanied by vigorous friction, beginning with the face and neck, arms, legs, back, and, lastly, the chest and abdomen are gone over. After that, the water is dashed over the entire body, and is followed by a brisk toweling and friction with the hands or hair glove. The salt water should not be washed off, except in those rare cases where it causes a disagreeable sensation; it is then removed by the use of the hot followed by the cold shower, as previously directed.

Indications for Its Use.—It is an excellent nerve tonic in cases of depression with loss of appetite, insomnia, etc., also in anemia and neurasthenia. In this class of cases it is best taken in the afternoon, on rising from the siesta, and just before dressing for dinner. It is especially refreshing in the hot weather.

Its use is contraindicated under the same conditions that other cold baths are, and must never be taken when the bather has a tendency to chilliness.

The various kinds of baths previously described can all be obtained in the home, but the Turkish bath, with its various accessories, can only be taken in a properly equipped bathing establishment.

The Turkish Bath.—This form of bath dates back to the time of the Romans. The essential features of a modern establishment are: dressing-rooms; a warm room, with a temperature of from 110° to 130° F.; a hot room, temperature of 150° to 170° F.; a steam room; a shampoo room; a douche apparatus; a plunge bath, and a cooling room. In many establishments there is only one hot, dry-air room. The air of the room may be heated by steam-coils.

The bather, having disrobed, is enveloped in a sheet, and enters the hot room, where she reclines on a steamer-chair. A towel wrung out of cold water is placed on the forehead and changed as often as it becomes hot. The bather should drink a glass of cold water immediately before or on entering the hot room, and several glasses should be taken at intervals during her stay in this room.

The skin is highly stimulated and profuse perspiration results. The profuse sweating promotes absorption from the alimentary canal, and so is a powerful stimulant to nutrition. It also emphasizes the necessity for copious water-drinking.

Great harm often results from a too prolonged stay in this room. Ordinarily, the bather should leave the room as soon as free perspiration is established; that is, in from fifteen minutes to half an hour.

From this room the bather next enters the Russian bath or steam room. It is very much more agreeable to have very little steam in the room on entering; when the steam is very dense, a feeling of suffocation may occur. Any one with a weak heart should avoid the steam room altogether, as it is apt to cause a sense of great oppression. For the complexion, bronchitis, or laryngitis, it is excellent.

From the hot room the bather goes to the shampoo-room, where, lying upon a marble slab, she is first gone over from head to feet by the wet hands of the attendant. This manipulation removes the layer of cuticle which has been loosened by the free perspiration. These rubbings and strokings are continued until the skin feels smooth and polished.

The bather is next shampooed with soap and water, applied with a bath-brush. This may in turn be followed by a salt rub. After this comes a douche, given with a horizontal jet, at a temperature of 104° to 106° F., followed by a cold douche.

If the bather is a strong woman, she may now enter the cold plunge. The temperature of this should be from 70° to 60° F.; this must only be a quick dip. She is then vigorously rubbed and dried. After this she lies down in the cooling room and has an alcohol rub, which completes the procedure. She should rest here for half an hour at least before dressing. The pulse should be normal and the skin perfectly dry before she dresses and goes out on the street.

In winter, instead of the ordinary alcohol rub which is given, it is much better to have a thorough massage with cocoa-butter or almond oil—the so-called Roman bath. Just following the Turkish bath much of this oil will be absorbed, which is beneficial for thin people, and, in any case, it will lessen the danger of getting chilled on going out into the cold air.

The woman unaccustomed to these baths should under no circumstances go to a Turkish bath without consulting her physician, as great harm might result. The bath should not be taken oftener than twice a week, unless by special orders of the physician. Care must be taken not to overuse them, as frequent and prolonged exposures to the sedative influence of heat is very debilitating. The wise woman will provide her own bathing cap, bath-brush, and straw sandals.

The use of the Turkish bath is indicated in rheumatism, toxemia, chronic dyspepsia, biliousness, obesity, sciatica, and lumbago.

The contraindications to its use are, in Bright’s disease of the kidneys, in most pulmonary affections, in the advanced stages of arteriosclerosis, and in diabetes with emaciation.

The Electric-light Bath.—This is now frequently used instead of the hot-air room of the Turkish bath, and possesses many advantages. A cabinet is lined on three sides with mirrors, on which are arranged 50 or 60 electric-light bulbs; the mirrors multiply the number of lights by reflection. A stool is placed in the cabinet for the patient to sit on, while the head protrudes above the top, which is closed. By means of switches and a proper, grouping of the lamps in wiring, the number of lights, and so the temperature, can be instantly and perfectly controlled. The heat is derived by radiation, so that it is not necessary to have the air confined. In this form of light bath the body is directly exposed to the effects of radiant light and heat.

The incandescent electric-light bath is superior to every other form of heating procedure in which the only object is the preparation for the cold bath. The time required is not more than from three to five minutes. When it is desired to produce profuse perspiration, the patient may remain in from eight to fifteen minutes. A longer stay than this is apt to produce an overstimulation of the nervous system and an excessive elevation of temperature.

The electric-light bath possesses the distinct advantages that, while the body is exposed to a high degree of heat, the air of the room in which the head is, and which one is breathing, may be cool, and unique advantages in the exactness of the dosage as regards time and intensity. It can also be used in a much greater number of diseases than the hot-air room of the Turkish bath.

The finishing treatment on leaving the cabinet is identically the same as that for the ordinary Turkish bath.

Indications for Its Use.—While the electric-light bath is not a complete substitute for sweating produced by exercise, it comes nearer to that than any other heating procedure, and, when followed by some vigorous cold application, it possesses a hygienic value which cannot be overestimated.

It is especially valuable in cardiac disease and diabetes. It stimulates oxidation, and is thus valuable in obesity and the toxemia of chronic dyspepsia; also in malarial cachexia, syphilis, neuritis, neuralgia, sciatica, habit chorea, hysteria, rheumatism, and anemia.

It is superior to all other treatment in chronic rheumatism and all diseases dependent on uric-acid diathesis or diminished metabolism, by the combined action of the elevation of temperature and the vigorous cutaneous activity. The elevated temperature stimulates the oxidation of the proteid wastes and augments vital combustion, while the increased skin activity carries off all waste-products prepared for elimination.

As a prophylactic, this form of bath is especially valuable for all persons leading a sedentary life; it is the best substitute for exercise in the open air, and, where there are no contraindications to its use, should be taken once a week.

In cases of obesity, sweating may be used to reduce the weight; but, in order to obtain the best effects, it must be combined with exercise, and it must be borne in mind, that in obesity there is great danger of overheating the blood, in consequence of the obstacles to heat elimination presented by the thick layers of non-conducting fat. Therefore, these hot applications for the reduction of fat should never be too much prolonged, and the bath should always be finished by vigorous applications of cold. These cold applications have also a tonic effect upon the nervous system, and increase the muscular disposition for exercise, and this is the most rational treatment for obesity.

Loss of Weight.—There are many cases in which metabolism has been so sluggish, allowing an accumulation of imperfectly oxidized matters in the body, that the first active stimulation of the nutritive processes is in disproportion to the increased destructive metabolism. Under these circumstances there is necessarily a decrease in weight. The rubbish must first be removed and old defective structures before new and highly organized tissues can be deposited. A slight loss of weight need, therefore, give rise to no apprehension, but if the loss is considerable, or continues for some time, especially if accompanied by loss of strength or appetite, it is a matter for investigation.

Palpitation of the heart and fulness of the head are an indication that the applications have been too hot or too long continued. Vertigo and fainting are apt to occur when hot applications have been continued too long, but they are quickly relieved by cold applications, especially by cold affusions to the chest and shoulders. Headache may result, either from excessively hot or cold procedures. Deficient reaction is generally the result of a too prolonged application of cold.

On entering the electric-light cabinet, a wet towel wrung out of ice-water is placed around the neck and another around the forehead; or an ice-bag may be placed on the top of the head.

The Douche.—A douche consists of a single or multiple columns of water directed against some portion of the body. The apparatus is complicated, and it is essential that an accurate pressure-gauge and thermometer should be introduced into the circuit of the douche. It can only be properly administered in a hydriatic establishment. In the employment of the douche three factors must be considered—the temperature, pressure, and the mass.

The range of temperature employed varies from 45° to 125° F. The pressure ordinarily employed varies from 10 to 60 pounds. The mass varies according to the effect desired, and may be regulated by means of the finger, placed in the water column near the nozzle.

The douche is applied by means of the rubber hose, which is connected at its proximal end with the water-supply, and at its distal end is attached a nozzle, the average diameter of which varies from 2 inches to ⅜ inch. From these a fine or coarse jet or a fan douche may be produced. The latter is formed by placing the index-finger of the hand holding the nozzle upon the lower border of the outlet, producing an expansion of the otherwise solid jet into a fan-shaped stream.

The mechanical effects of the douche are derived from atmospheric pressure, and this is of more importance in the effects produced than the temperature.

The Scotch douche consists of alternate streams of hot and cold water. The general cold douche is the most powerful of all the tonics; the warm or neutral douche is sedative; the very hot douche is frequently followed by atonic reactions.

Rationale of the Douche.—The douche is a thermic massage. Since the douche is a sorbefacient of pathologic products, the French have availed themselves of its use to aid the body to throw off an excess of uric acid, fatigue toxins, etc.

It has been demonstrated that a rain douche of 50° F., under a pressure of two atmospheres, increases threefold the work that the muscles are capable of doing, while the Scotch douche, oscillating between 98° and 53° F., doubles the working capacity of the muscles. Even tepid douches increase the working capacity of the muscles, while a tub-bath of the same temperature is without decided effect. The pressure under which the douche is given adds a powerful element, which is absent in other hydriatic procedures. The percussion and vibration affect the vasomotor system much more powerfully than any form of still bathing.

The power and action of the heart are greatly improved by the use of the douche, the capacity of the lungs is increased, and the digestion is improved.

Brief douches of from ten to fifteen seconds generally act better than those of longer duration. The general condition of the patient must always be carefully studied, and, like the Turkish bath, the douche should always be taken under the direction of a physician, as they are also capable of doing a great amount of harm as well as good. The best results from the douche are obtained when it is taken following the use of the electric-light bath.

The neutral douche is particularly applicable in cardiac affections and in cases of high arterial tension. The sensation afforded should not be either that of hot or cold, and the duration from one to two minutes. The douche for this purpose should be given with only a slight degree of pressure, and to avoid irritation it should be directed to either side of the spinal column. This is a sedative application.

Contraindications for the Use of the Douche.—In all acute inflammations and in eruptive disorders of the skin. The cold douche is contraindicated in inflammation of the uterus, ovaries, kidneys, stomach, liver, bowels, and bladder, in intestinal catarrh, chronic inflammation of the stomach, and general neuritis. It must also be avoided in rheumatism, arteriosclerosis, cardiac insufficiency, valvular diseases of the heart with deficient compensation, fatty degeneration of the heart, and in cases of extreme nervous irritability.

The Internal Use of Water.—The internal use of water is essential to life. Water constitutes about two-thirds of the body weight; it is found in every tissue and organ of the body; it acts to dilute the foods so that they can be absorbed from the digestive tract; its presence in the blood is essential, both to carry foods to the tissues and to convey the waste matter away from the tissues. Its use in the form of a lavage is even more necessary, to keep clean and free from impurities the mucous membrane lining the 30 feet of the digestive canal and the tubules of the kidneys than is the external use of water to keep the skin in a healthy condition. Its use is also needed to keep the blood-pressure and the heart in a normal condition.

About 4½ pints of water are given off daily in the excreta and exhalations; but, since about one-half of the solid foods taken consist of water, 3 pints of water, taken daily as such, are sufficient to counterbalance the loss.

All water for drinking purposes should be filtered. The best method is to have a filter attached to the pipes of the house-supply, so as to insure filtered water running from all the spigots.

If the water is not filtered, it should be boiled for thirty minutes. The water should be run off in the morning, then poured into a well-kept tea-kettle and boiled. It is then allowed to stand and become partially cooled in covered vessels, when it is poured into large bottles—quarts are the most convenient size; these should be stoppered with corks of absorbent cotton. When cool, the bottles are placed in the refrigerator beside the ice. Water should be boiled every morning for the twenty-four hours. Boiling for this length of time secures the destruction of all the germs of disease, and it is doubly essential on the return to town in the fall, when the house has been closed for some time; also when typhoid fever in the neighborhood indicates the strong possibility of the impurity of the water-supply.

The mistake should not be made of undoing the good that has been done by boiling the water by the addition of ice to the water when it is placed on the table. Furthermore, ice-water is so cold that it retards and interferes with the digestive processes.

In the internal use of water the same marked difference is caused by the different temperatures at which the water is taken, as was seen in the external applications of water; but, while the temperature of the skin is about 90° F., that of the mucous membrane lining the digestive tract is 98.6° F. and above.

The Action of the Internal Use of Water on the Heart and Blood.—Water improves the quality of the blood, both by its direct action on the constituents and by the increased elimination of waste-products. By the increase of the volume of blood, a more energetic contraction of the heart is caused, and the activity of all the glands of the body is increased. There is a greater amount of oxygen absorbed by the lungs; oxidation in the tissues is carried on more perfectly, the result of which is that there is a diminution or absence of the products of incomplete combustion in the body, such as uric acid, the oxalates, etc.

By the increase of the blood-pressure, caused by drinking water in sufficient quantities, the activity of the kidneys is increased, and this not only in the amount of urine passed, but also of the solid constituents, which are the waste-products, removed from the body through the agency of the kidneys.

The Action of Water on the Digestion.—Very little water is absorbed from the stomach; it passes from the stomach to the intestines, where it is absorbed. In order to obtain a thorough cleansing of the stomach, and at the same time not to cause its overdistention, not less than ½ pint of water and not more than 1½ pints should be taken at one time. The water must be taken one hour before meals, in order to insure its removal from the stomach and the proper rest of that organ before food enters it, as it has been found by actual experiment that in a quarter of an hour after water had been taken one-half of the quantity remained in the stomach, but that none remained after the lapse of half an hour. Cold water is more quickly absorbed than warm, and the absorption is hastened by the presence of carbonic acid, while salt of any kind delays its absorption.

The Therapeutic Indications for the Use of Water.—First, the temperature of the water taken must be regulated by the effect desired. Briefly stated, if the water is taken for dyspepsia in any form, whether acute or chronic catarrhal inflammation of the stomach or the intestinal canal, ½ pint of water, just as hot as it can be sipped with a spoon, should be taken three times a day, one hour before each meal.

No water should be taken during the meal, and only one glass, at a temperature of about 60° F., on its completion.

If the water is taken as a diuretic, or, in other words, to increase the activity of the kidneys, the most of the water should be taken in the morning on rising and the remainder about 4 o’clock in the afternoon. Probably the best natural waters for this purpose are the waters of the Vosges, France. The Vittel water, “Grande Source,” acts on the kidneys alone; where the bowels are regular or inclined to be loose, this is the best water to use. If, on the contrary, there is constipation or biliousness, the “Source Salée” should be taken in connection with the first named or alone. The “Source Salée” has a decided action on the liver and is laxative.

In order to obtain a pronounced effect, at least 3 pints of these waters should be taken daily; in some cases more is required. Two glasses may be taken on rising in the morning, with an interval of twenty minutes between; the last glass must be taken one hour before breakfast. The temperature of the water should be 50° F., which is the temperature of the water at the springs and that of the water when placed in bottles in the refrigerator against the ice. In the afternoon the other two glasses may be taken, with the same interval between.

In gastric catarrh, where there is an accumulation of mucus or fermenting matter, with or without nausea and vomiting, hot water alone is useful. In addition to its action in diluting the contents of the stomach and the intestines, and its cleansing and antiseptic effect on their mucous membranes, the reflex effect of very hot water, slowly sipped, is a stimulation of their muscular coats, which furthers the passage of the digested food from the stomach into the intestines. The quantity taken must be from ½ to 1 pint, in order to obtain a thorough cleansing and yet not to cause an overdistention of the stomach.

In acute nephritis, inflammation of the kidneys, small quantities of very cold water, repeated at half-hourly intervals, act as a diuretic. Care must be had, however, not to overtax the stomach and heart by overfilling the system with fluids.

In obesity, water-drinking is essential as a means of dissolving and carrying out of the body the large amount of broken-down material which results from the increased tissue destruction caused by exercise, hot and cold baths, and other means employed to decrease the weight.

For constipation and biliousness two glasses of cold water should be taken before breakfast, with an interval of twenty minutes between, the last glass being taken one hour before breakfast.

Contraindications.—Cold water taken into the stomach produces more marked effects than water applied to an equal area of the skin. The quantity of water taken is a factor as well as the temperature. Cold-water drinking lowers the temperature and slows the pulse, so that drinking cold water must be strictly prohibited when one is in a state of fatigue, whether perspiring or not. Feeble persons should not drink cold water, except in very hot weather, or just before starting out for a brisk walk in the open air, or when about to engage in other exercise. With the air of the room at 70° F., a woman in fair condition, moving about making her toilet, may safely drink cold water slowly, except when there is a feeling of chilliness. In the latter case, the powers of reaction being diminished, chill and internal congestion, often resulting in great injury, may be produced. Cold-water drinking is always prohibited when in a state of fatigue. Ice-water should never be taken. When taken with meals, it greatly retards digestion and may do much harm.

Enemas.Coloclysters.—Another valuable internal use of water is for emptying the lower bowel, and washing out the large bowel in cases of catarrhal inflammation.

For constipation, in which the object is to unload the bowel as quickly as possible, 1 or 2 pints of water, at a temperature of from 104° to 110° F., is made into a suds by means of Castile or other good soap, and poured into a fountain-syringe. If the enema is being given by an attendant, the patient lies on the right side in the Sims’ position; the under leg is stretched out so that it forms a straight line with the trunk, while the upper leg is sharply flexed at the knee, so that the foot is opposite the knee of the under leg; the right arm is thrown back from under the body.

If the patient is administering the enema to herself, the best position is the knee-chest. In this the patient kneels on the floor, the thighs are held rigid, and while the shoulders are brought to touch the floor, the face is turned to one side. The position can only be taken satisfactorily with the corsets and all tight bands around the waist removed. In this position gravity causes the intestines to fall upward toward the waist, and the water naturally follows this course. In this position the water goes up higher, and is retained longer, than when taken in the other positions. Two pints of the soap-suds are prepared at the proper temperature, and the patient uses as much of this as she feels that she can retain. The water should be retained from five to ten minutes, to get the best results.

For the purpose of washing out the large intestine more water is used, but not more than 2 quarts should be used for this. The position of the patient and the temperature of the water are the same. But for this clyster, instead of adding soap to the water, cooking salt is used, in the proportion of 1 teaspoonful of salt to 1 pint of water.

This lavage of the intestine removes rapidly large masses of decomposing material, swarming with microbes and ptomains and the toxins produced by them. It also increases the activity of the portal circulation.

In cases of chronic constipation there are atony and dilatation of the colon, and the patient always carries about with her an enormous accumulation of fecal matter, and lives in a state of chronic autointoxication. In this class of cases the coloclyster should be administered daily for from two to three weeks; if need be, so long as the patient complains of gaseous distention and fetid flatulence. After the discharge of the warm water, 1 pint of cool water should be introduced, beginning with a temperature of 85° F., and gradually decreasing this from day to day until 70° F. is reached. This water should be retained if possible; it acts as a tonic bath for the colon.

Care should be exercised to avoid the distention of the colon by an excessive amount of water, and, after the colon has been thoroughly cleansed, the amount of water used should be decreased from day to day, until finally only 1 pint is used. Warm water is always relaxing, whereas cold water stimulates and tones up the bowel. If the quantity of water used is small, the cold coloclyster may be used indefinitely without producing constipating effects.

Great care must be used to avoid the introduction of air into the bowel with the water; to this end the water is allowed to run out of the nozzle before its introduction into the rectum. A small-sized nozzle should always be used, and this should be lubricated with vaselin or some other emollient, in order to prevent irritation of the mucous membrane.

Vaginal Irrigations.—To be of any service the vaginal douche should be taken in the horizontal position. It may be taken on the bed, couch, or lying on the floor. When taken on the floor, a heavy rug or steamer blanket should be doubled four times, and two pillows are used: the under one goes up and down for the support of the back, while the second is used for the support of the head. A douche-pan is, of course, indispensable. The agate pans holding 4 quarts of water are the most serviceable. The douche-pan is placed against the lower edge of the under pillow, which is protected by a bath-towel. The woman must throw a heavy shawl or blanket over herself while taking the douche, otherwise there is great danger of becoming chilled, and thus doing actual harm instead of good.

The most common and best form of syringe is the fountain-syringe. This is hung about 6 feet above the bed or floor. It should hold 4 quarts of water; this quantity of water is necessary when the douche is given, as it most commonly is, for pelvic inflammation. On beginning its use, the temperature of the water must be controlled by the sensitiveness of the patient; generally one can use a temperature of at least 112° F., but not always; sometimes one must be content with a beginning temperature as low as 104° F., gradually increasing the temperature by two degrees every few days, until from 114° to 120° F. is reached. The use of a bath thermometer is always essential to test the temperature of the water. The temperature of the douche should never go above 120° F., or actual harm will be done.

On lying down, the lower part of the body rests on the broad strip of the douche-pan, the nates coming over the edge, and the clothing well pushed up, otherwise the water will seep up the back.

The water acts as a hot poultice about the uterus and its adnexa; it is also astringent, and greatly relieves ovarian irritation and congestion. It is highly sedative, and is best used at night just before retiring. In severe cases better results will be obtained by its use twice daily. In that case one douche must be taken in the morning, but in cold weather it must never be taken immediately before going out-of-doors; there must be at least one hour between the time of taking the douche and going out into the cold air. Patients taking hot douches must be warned that the pelvic viscera are much more susceptible of chilling because of these heating procedures, and of the necessity to counteract this tendency by the wearing of woolen abdominal bands, both night and day.

Ordinarily, plain hot water is all that is necessary to use, but if the vaginal discharge is irritating, one teaspoonful of borax may be added to the pint of water; or one teaspoonful of cooking salt; or one-half teaspoonful of the sulphate of zinc.

Douching the Ear.—This procedure is made use of to remove impacted ear-wax or to relieve the pain of earache. A small fountain syringe should be used, hung not more than 3 feet above the head. The water should have a temperature of from 105° to 110° F. The nozzle must be small, and have a very fine opening, and great care must be used in its introduction not to allow the nozzle to enter beyond the external opening of the ear. A pus-basin or small dish may be used to protect the clothing from getting wet. After the procedure is finished, the ear is dried by means of a very fine handkerchief or a little absorbent cotton.

CHAPTER III
THE CARE OF THE SKIN AND ITS APPENDAGES

The Complexion; the Action of the Bath in Health; the Proper Time to Bathe; the Care of Wash-cloths; Cleansing the Face; Protection of the Face; the Use of So-called Cosmetics for the Face; Facial Blemishes, Freckles, Liver Spots, Sallow Complexion, Pimples, Acne, Eczema, Wrinkles, and Their Treatment; the Relation of Diseases of the Skin to Internal Disorders.

The Hair; Dandruff; Causes and Treatment of Premature Thinness of the Hair and Baldness; the Care of the Hair; Gray Hair.

The Cosmetic Care and Treatment of the Hands; Cosmetic of the Nails; the Care of the Feet; Painful Affections of the Feet.

The face is a complete index of the life of the individual written large, so that he who runs may read. By looking at the condition of the skin and the whites of the eyes we can judge very fairly of the digestion. From the dulness or brilliancy of the eyes we can make a very good diagnosis of the mental condition. From the general expression of the face we can read the kind of life that has been led by the individual, whether of pleasure, dissipation, or sorrow.

From greatest antiquity men and women have striven to beautify their bodies. To be indifferent to the personal appearance is an indication of some abnormal condition in the individual or her environment.

The Complexion.—The skin of the face is known as the complexion, and this is the part of the skin that is most exposed to the vicissitudes of dust and grime of the streets or of the occupation, as well as to heat, cold, and winds.

An ideal complexion combines the qualities of clearness, translucency, and fineness of the outer skin, with a proper disposition of the blood-supply.

The beauty of the skin is evidence of good respiration, good digestion, proper excretion by the bowels, skin, and kidneys, good condition of the blood, and plenty of outdoor exercise.

It is now well known that the skin, as well as other parts of the body, depends for its integrity upon the general nervous system. Disturbance anywhere in the body acts upon the central nervous system. A simple case of indigestion often manifests itself over considerable areas of the skin.

It cannot be too earnestly impressed on the reader that beauty is entirely dependent on the health. It will readily be seen that no external applications can produce such qualities as fineness of texture, translucency, and delicate play of coloring produced by the contraction and dilatation of the blood-vessels.

The natural order in which to consider the skin will be first as subservient to health, and then as it is conducive to beauty.

The Action of the Bath in Health.—Not only in the art of pleasing, but in the maintenance of health, neatness of person must be carried to perfection. By the use of friction, soap and water, the scarf-skin becomes more and more constantly renewed by the layers underneath it. It becomes softer, more pliant, and finer than satin in appearance and texture. Besides this, as has already been shown, bathing has upon the corium or true skin, and thence upon the general system, a revitalizing influence. Combined with the proper kinds of soap, avoiding the use of irritating ones, bathing removes from the skin all effete oily matters, scales of the scarf-skin, crusts, the saline matters excreted by the perspiration, dust of all kinds, soot, particularly that from the clothing, and so forth.

Caustic soaps and borax in excess may remove the oil in so great quantities as to be detrimental to the skin.

PLATE I
Facial expression.

Within twenty-four hours the skin, especially those parts which are covered, becomes vested with a pellicle of impurities, which, when allowed to remain, become thicker every day, and may produce injurious effects by obstructing the excretory openings and affording lodgement for disease. The effects would be felt not only in the skin, but in the whole organism. The skin when not cleansed will be irritated chemically and mechanically.

The Proper Time to Bathe.—This depends on the nature of the bath to be taken, the strength of the woman, the temperature of the room, and the season of the year.

To repeat, a cold bath of any description must never be taken unless the body has a decided sensation of warmth. In winter, if she will drink a glass of hot water before rising and has a warm room, the woman in average health may take a cold sponge bath. But the body must be very gradually trained to the application of cold, just as it is to vigorous muscular exercise. For the woman who has never in her life taken a cold bath of any sort, except in midsummer, to begin a heroic treatment with cold baths in winter would be utter folly, which might easily be the cause of pneumonia and even of death. The time to begin a systematic use of cold water is in summer, continued through the autumn, and by the time midwinter has arrived, the system has become so toned up that nothing but good can result.

If the woman is not very strong, she had better begin with the cold ablutions, just to the waist, on rising in the morning. These must always be followed by a vigorous toweling and friction. In case of inflammation of the kidneys or pelvic viscera, cold applications to the abdomen should be avoided, as they are badly borne.

If the woman is anemic, has a poor circulation, or is conscious of her heart, she will feel at her best in the afternoon. In that case, after a cup of hot bouillon, taken on rising from her siesta, she may take a quick hot scrub, followed by a cold shower. This is much more invigorating than the cold ablution, and the reaction at that time of the day is more vigorous than in the early morning.

From the simple ablution, the next step in training would be the cold wet sheet. It is impossible to take this without an attendant, but a good maid may readily be taught to give the necessary rubbing. Ordinarily, this will be enough to attempt in one winter.

A strong woman, who has always been accustomed to taking cold baths, may all the year round, except just before, during, and immediately after the menstrual period, take a cold dip on rising in the morning. It must be literally a quick dip in a tubful of cold water, from 65° to 55° F., or, if she is sufficiently strong to stay in the tub longer, there must be a constant brisk friction kept up while in the water.

It is permitted only a woman in good health, with a strong heart and normal kidneys, to get into a tub of cold water, take a cold plunge, or attempt sea-bathing.

For the woman who is a semi-invalid, the only time allowable for a cold tonic bath is in the afternoon.

In cold weather the shower, like all other forms of baths, must be taken in a warm room. The shower bath can be taken every day to the greatest possible advantage. An ideal way is to rest for half an hour on coming home in the afternoon; to sleep, if possible, then take a quick scrub, and follow it first by the hot shower of 100° to 104° F., and finish with the cold shower. A brisk rubbing should be kept up until the skin is in a good healthy glow. This bath is followed by a feeling of great exhilaration, and it gives a beautiful glow to the face and skin. It removes the tired feeling of the day’s work, and leaves one feeling greatly refreshed for the evening. A daily ablution or a daily shower, with friction, will not cause an undue removal of the oil of the skin. All cold baths, when given in suitable cases, tone up the system to resist disease, and are the best preventives against ordinary colds and sore throat.

A hot tub-bath is best taken at night just before retiring. In winter it must never be taken immediately before going out-of-doors, because the pores of the skin are more or less open and there is great danger of chilling. A hot tub-bath, remaining in the bath for some minutes, should not be taken more than twice a week, as it is too debilitating, and a prolonged stay in the hot water causes an actual loss of flesh.

A woman may take a warm sponge bath in a warm room at any time of the month, but during the menstrual period she must, under no consideration, take a cold tub-bath or even a cold sponge-bath, since this would be apt to cause a chill of the surface of the body and a congestion, if not an actual inflammation, of the pelvic organs.

No bath should be taken within two hours after eating, as the bath draws the blood from the stomach toward the surface of the body and so interferes with digestion.

The Care of Wash-cloths.—After using each time, the wash-cloth must be thoroughly washed, well rinsed, and hung up to dry. But this is not sufficient: once every week all wash-cloths must be sent to the laundry to be boiled, thus insuring the destroying of any germs that may lurk in the cloth. If a woman has any kind of skin disease, it is quite possible for her to reinfect herself after the disease has apparently become cured. Further, each member of the family should have her own individual towels, soap, and wash-cloths. Aside from all sanitary questions, in a matter so intimate as the bath, there is something repulsive in the thought of having your toilet articles used by any one else.

A pure Castile soap is one of the best that can be used. All cheap scented soaps should be avoided, as they are apt to contain impure materials that will actually injure the skin. If the skin is rough, rubbing it with a good sand-soap, and rubbing the same on the flesh-brush, will remove many of the scales and leave the skin much smoother and softer. Medicated soaps should never be used except by the direction of a physician.

Cleansing the Face.—The face should be well washed twice a day with cool or cold water, but the temperature of the water should not be below 60° F. The degree of coolness must be determined by the feelings and judgment of the individual. If the face were washed with very hot or very cold water, and then exposed to the cold air, the skin would become rough and chapped. The water should be soft. To soften hard water, put 1 pound of bran into a muslin bag, place in 4 quarts of water, and boil for fifteen minutes. Add enough of this bran water to the bath to make the water milky.

A soft, woven face towel, kept for the face and neck only, should be used with a moderate degree of friction. Great care must be used to wipe the skin thoroughly dry.

It is a question whether the daily use of soap on the face is advisable; for the healthy skin it is not essential and may prove very injurious. Soap should never be used on the face in winter just before going out-of-doors, as this would cause a roughening of the skin. When the hot tub-bath is taken, the face should be well washed with soap and hot water, plenty of friction being applied by means of the face towel, after which the face is thoroughly rinsed with pure water. This will open the pores of the skin, and should be followed by the use of cold water, which has a stimulant action on the blood-vessels and improves the circulation in the skin. It also improves the tone of the elastic fibers in the skin and tends to delay the appearance of wrinkles.

If there is any tendency to dryness of the skin, a good cold cream should be well rubbed in just after bathing the face. The cream must be a good quality and perfectly fresh, as a rancid cream is irritating to the skin. Only so much of the cream should be applied as will be absorbed by the skin. When the skin is very thin, and there has been loss of subcutaneous fat due to ill health or other cause, the systematic application of cream in this manner aids in the nutrition of the skin; and, when applied to the neck with good massage, is a great protection against sore throat due to exposure to drafts and cold.

Protection of the Face.—The cold winds of winter cause a dryness of the uncovered skin of the face and lips, which often leads to a painful chapping, and, in the case of the lips, small fissures may be produced. In addition to the use of cold cream, a good rice powder may be applied, which serves as a further protection to the skin.

In very cold weather a veil should be worn to protect the face from the cold and winds. In summer a parasol should always be carried, to protect the eyes and brain as well as the face from the hot rays of the sun.

The Use of So-called Cosmetics for the Face.—All skin specialists, and these are in the very best position to judge of the great amount of harm that is done, say emphatically that the use of face lotions and “paints” can only work the lasting injury of the complexion. They may assist in hiding the defects of nature, but they frequently contribute to increase these defects. Many of them merely fill up the pores of the skin and give it a pasty look. Numerous cases of eczema and other diseases have followed the use of paints. Of the advertised cosmetics, many are not only worthless, but actually injurious.

Certain applications to the skin of the face are permissible and beneficial. “Virgin milk,” which is a milky-looking mixture, composed of the tincture of benzoin and rose-water, renders the skin soft, and is said to prevent the formation of freckles. If the skin is dry, glycerin may be added to this. The formula for this mixture is as follows: Take of the tincture of benzoin and glycerin each 1 ounce, mix well, and then add 2 ounces of rose-water. This should be applied by the fingers, just after the face is washed. Pure glycerin is irritating, and should never be applied to the face without dilution.

The various good preparations of rice and talcum powder on the market are perfectly harmless, and, if there is a tendency to greasiness or shininess of the skin, the use of these is essential from an esthetic point of view. In case of greasiness a little calcined magnesia may be used. In hot weather the use of face powder is very refreshing, and in the hot climates it is used for this purpose to a very striking extent. But the true cosmetics, and the only ones that can procure and keep a beautiful complexion, are plenty of exercise in the open air, attention to the diet, to the daily evacuation of the bowels, to the condition of the kidneys, to baths, and to proper dress.

Facial Blemishes.—Among the most common facial blemishes are freckles, liver spots, a sallow complexion, pimples, acne, eczema, superfluous hairs, and wrinkles.

Freckles.—These are brownish or yellowish pigmentary spots, varying from the size of a pin-head to that of a pea. They occur on the face and the backs of the hands. They consist of a circumscribed deposit of pigment; not much is known about their origin. The pigment is situated in the deep layers of the epidermis, and, in order to remove the freckles, it is necessary to use something capable of producing desquamation. As a rule, if left alone, they will gradually disappear.

Liver Spots.—The so-called liver spots are irregular patches of a brownish color, which appear most frequently on the face, neck, chest, back, arms, and hands. If not caused by disorders of the liver and digestion, they are certainly aggravated by them. They are not only unsightly blemishes on the skin, but sometimes cause great nervousness by the intense itching which accompanies them.

Sallow Complexion.—This is generally caused by disorders of the liver, and is most frequently met with in hot countries. It is seen in chronic dyspeptics, and, indeed, in most forms of chronic disease, and is not only a symptom of the disordered bodily state, but a cause of its perpetuation. This appearance of the skin is due to the accumulation of effete matters in it and to its impaired nutrition, and this state exists not only in the skin, but in the whole body.

Pimples, or Blackheads, and Acne.—These are affections of youth, and are generally seen together, the last-named being simply a second stage of the first. Pimples, or blackheads, appear as small elevations in the skin, with a small black point in the center. The cause of the pimple is the alteration in the quality of the sebum, the oily secretion, which becomes and remains a hard mass in the excretory ducts of the sebaceous glands and plugs up its external opening. The dust of the air becomes mixed with the fat, and thus makes a black point. When the ducts cannot get rid of the sebum, they become stopped up, and in consequence become swollen. This irritation spreads to the adjacent tissues, and so inflammation arises. Finally, the contents of the duct undergo degeneration, suppuration occurs, and the contents become mixed with pus, small abscesses result at various depths in the skin, and so require more or less time to break out.

This inflammatory condition of the sebaceous glands with their ducts is apt to become chronic and may prove an obstinate affection. It occurs most commonly about the face, on the back between the shoulders, or on the chest. The skin is rough to the touch, the ducts of the sebaceous glands are enlarged, and the skin is greasy.

Eczema.—This is the most common of all skin affections. It is a non-contagious, inflammatory disease of the skin, sometimes acute, but more often chronic, attended with itching and desquamation or loss of cuticle. With the itching may be a feeling of heat and tension in the part.

Eczema is a local disease, brought about by a local irritation in the skin; but, in addition to this, there is generally a predisposing cause, as some disorders of the digestive tract, a bad condition of the blood, and so forth. The skin, like other organs of the body, depends on the whole system for its nutrition. When this nutrition is not sufficient, the skin appears pale, of a peculiar color, and is easily taken up in folds, an evidence of poor nutrition of the skin. When the skin is not properly nourished, every slight irritation is liable to produce eczema.

Treatment of Liver Spots, Sallow Complexion, Pimples, Acne, and Eczema.—First, the general treatment. While every case of skin disease must be treated according to the peculiarities of that patient’s case, still, there are general rules which should be followed in the treatment of all cases, and first in importance comes attention to the bowels. There must be procured, by some means or other, a free daily evacuation. A hard, constipated movement is not sufficient. Fruits and vegetables are both laxatives and the very best. Water is also a laxative, and 3 pints a day should be taken, not only for the laxative effects, but also because this amount is needed to keep the kidneys properly flushed. Of the simple medicinal laxatives, one of the best is the effervescing granules of the phosphate of soda; the dose is from one teaspoonful to one tablespoonful, to be taken in a glass of cold water on rising in the morning. Sometimes patients who are troubled with gas cannot take anything which effervesces; in that case, the plain phosphate of soda may be substituted.

Next in importance to the attention to the bowels comes the diet. All articles of diet must be easily digested, while at the same time they are nourishing. Cereals, pies, pastry, fried foods, hot breads, rich gravies, rich salads, pork, and veal must be excluded from the bill of fare.

Fresh meat must be eaten by a woman in health at least once a day, and young girls need it twice a day. This should be supplemented with eggs and milk, fresh vegetables, and not an excess of stale bread or toast. The latter is constipating. Tea and coffee should both be avoided.

A glass of hot water, taken one hour before meals, will do much to rid the stomach of mucus and put it in a good condition for the digestion of the food.

For the congestion of the liver, which is so often at the bottom of these disorders, it is generally necessary to consult a physician.

Pure air, associated with the proper kinds of exercise, promotes the functions of the skin, assists in keeping the blood in good condition, increases the vigor, keeps the complexion clear and increases its beauty; while, on the other hand, a sedentary life in a confined air produces a pallid and frequently a blotched skin, with headache and dyspepsia.

Steaming the Face.—It seems that the blood-vessels of the skin are much better able to absorb vapor than water. The vapor penetrates and softens the epidermis much better than the simple application of water would. The increased secretion from the skin which is thus caused is beneficial. After using the vapor bath the outer layers of the epidermis peel off and the complexion is improved by the substitution of new pigment. The absorption of the moisture also causes a roundness of the skin and a filling out of the wrinkles. Generally, vapor baths can be used in those cases of skin diseases where the skin is rough and dry. Next in importance to the vapor bath is steaming the face. Bathing the face with very hot water is also recommended.

Massage of the Skin.—Where the complexion is sallow, or there is a tendency to pimples or blotches, massage of the skin of the face will do much to improve the circulation.

The massage is most effective when it follows steaming or washing the face in hot water. The tips of the fingers should be dipped in cold cream, and then, pressure being exerted by them, the skin of the forehead should be deeply stroked from the middle line out over the temples. The nose should be stroked from the bridge outward and downward. The skin of the cheeks should be pinched up and rolled between the fingers and thumb. All these movements facilitate the emptying of the follicles.

Never use an ointment on the face that contains vaselin or lanolin, but particularly the former, as they are both apt to produce a growth of hair, but these preparations are excellent to increase the growth of the eyebrows.

Wrinkles.—In very many cases wrinkles are the result of habit of expression, as in scowling; or an expression of dejection, when the angles of the mouth curve downward, and so forth.

There are twenty-eight muscles about the mouth. Since all these muscles are developed by use, the mouth comes to assume the expression given to it by the thoughts of the individual. The figurative expression, “down at the mouth,” comes to be literally true, and the angles of the mouth are seen to be habitually drooping, until at last this is the fixed expression of the face. A healthy frame of mind is the only means to keep the face from being converted into a map of wrinkles and drooping angles at the mouth.

Fig. 3.—Muscles of the right side of the head and neck.

The wrinkles are not, as a rule, caused by any trouble in the skin itself, but in the underlying muscles, the tissues of which have become relaxed or weakened. The circulation of the parts may be stimulated, and so increased nourishment be secured by deep massage of the muscles, and, at the same time, the use of a good cold cream will aid in the nourishment of the skin.

The face should first be washed and steamed according to the directions already given. The massage of the face should always be carried out in a systematic manner. Begin with the forehead. Stroke with the two thumbs over the forehead, starting near the eyebrows, and work out toward the roots of the hair. In the second movement one hand is used to stretch the part worked upon, while deep friction is made with the tips of the fingers of the other hand.

For wrinkles about the eyes, stroke with the tips of the fingers, over and below the eyes, from the nose toward the temples. Great care must be taken not to apply too much cold cream about the eyes, lest some of it should get into them. For the removal of the “crow’s feet” at the outer angle of the eye stretch the part with the thumb and finger of one hand, and perform friction with the tips of the fingers of the other hand.

To remove the lines that run from the corners of the nose to the angles of the mouth, stroke with both hands, one on each side of the face, beginning at the center and lower part, and stroke upward toward the temples. This upward motion counteracts the drawn and pulled-down condition of the face.

For the cheeks, use both friction and deep kneading; pick up the muscles between the thumb and finger.

To remove wrinkles under the chin and a double chin, begin at the middle line, and with both hands make deep pressure upward and outward. To remove superfluous fat, make deep friction with the tips of the fingers. In the latter case, only use enough cocoa-butter on the fingers to prevent the friction against the skin. The benzoin preparations, already given, will help to contract the tissues.

A cold cream which is a good skin food is the following: Take of the oil of sweet almonds, 2 ounces; of spermaceti, ¼ ounce; of white wax, ¼ ounce; and of rose-water, ½ ounce. Melt together at a moderate heat, the oil, spermaceti, and wax, then gradually add the rose-water; stir the mixture briskly and constantly until it is cool, and continue the stirring until it has become uniformly soft and creamy. The Dover egg-beater will give it the desired creamy appearance.

The Hair.—From an esthetic point of view, a head of luxuriant hair is a matter of prime importance to the woman.

The hairs are peculiar modifications of the epidermis. The hair follicle is a cylindric-shaped depression of the skin, whose funnel-shaped mouth opens on the free surface. Immediately below this is a constriction, called the neck, which is the narrowest part of the follicle; the duct of the sebaceous gland, which supplies the hair with oil, opens at this point. The base of the follicle is bulb-shaped, to accommodate the hair-papilla and the hair-bulb. The hair-papilla contains the blood and nerve supply for the hair. When a hair is plucked or falls out, a new hair grows from the hair-papilla.

According to Pincus, the life of a hair ranges from two to six years, after which it falls out, to be replaced by a new one. In this way about fifty or sixty hairs are normally shed every day.

In order to have thick, luxuriant, silky hair great attention must be paid to the condition of the scalp, since it is the scalp which contains the blood-vessels that nourish the hair. The scalp should be thick and pliable and move freely over the bones of the skull. If the scalp is drawn tightly over the bones of the skull, it tends to constrict the blood-vessels, and so lessen the supply of blood to the scalp and cause atrophy of the roots of the hair from pressure.

The hair has a great tendency to accumulate dirt. It catches the dust flying in the air, and also retains the secretion of fat and the desquamated epithelium of the scalp and the products of perspiration.

The two chief causes of the premature thinness of the hair are a deficient circulation of blood in the scalp and dandruff, and it is said that dandruff causes the loss of hair in 70 per cent. of all cases.

Dandruff.—The last few years has witnessed a revolution in the views of the skin specialists in regard to the cause of dandruff. Previous to that time it was considered as simply a collection of epithelial scales mixed with more or less oily matter. Now, following the investigations that were first instituted by Unna, dandruff is considered as a symptom of a parasitic disease of the scalp, called seborrheic eczema. Sabouraud believes that the same parasite that produces seborrhea causes the loss of hair. It is believed that the parasite grows down into the hair follicle, between its walls and the hair.

Seborrheic eczema is a chronic desquamative inflammation of the scalp of bacterial origin. It is divided into two stages: the first may last from one to seven years; it is attended with more or less dandruff in the form of scales and dryness of the hair; or the dandruff may unite with the oil, producing fatty crusts which are removed with difficulty. This is followed by the second stage, in which the hair falls out.

Symptoms of Seborrheic Eczema.—In the dry form of the disease, in which there is a scaling of the scalp, the hair is dry and unmanageable, the head itches, especially when the patient sits under a light or becomes overheated. There is a more or less constant falling of the scales upon the clothes. The scalp looks pale, and will be found covered with fine grayish or yellowish, readily detachable scales. Sometimes there is more or less redness of the scalp. This is the mildest grade of the disease.

That dandruff is contagious has been proved by experiment, experience, and treatment. Lassar and Bishop made a pomade of the scales taken from the head of a student who was suffering from this disease, and rubbed it into the backs of guinea-pigs, which caused the same disease in them, and falling out of the hair.

Cases have been reported in which husband and wife have contracted dandruff after marriage, he or she having been free before.

The drugs that are most efficacious in the cure of seborrhea are active antiparasitics.

Causes of Seborrheic Eczema.—The general causes are debility, constipation, and anything which undermines the general health. The local causes are lack of cleanliness of the scalp, and using combs or hair-brushes which have been used on the scalps of persons who were suffering from this disease.

In most families will be found one or more members who possess enough seborrheic infection to cause the spread of the disease throughout the rest of the household.

Causes and Treatment of Premature Thinness of the Hair and Baldness.—It has already been stated that 70 per cent. of these cases were caused by seborrheic eczema. Among other causes may be mentioned a progressive tightening of the scalp upon the skull, the scalp having lost the cushion of fat that is under it in early life; insufficient or improper care of the scalp; daily sousing of the head in cold water, combined with improper drying of the hair afterward; sweating of the head; constant mental strain, either on account of intellectual work or worry; wearing stiff, unyielding hats; gout, and all diseases which lower the general nutrition.

The chief treatment is by prophylaxis, or using preventive measures to insure the healthy condition of the scalp. And first and most important of these is cleanliness. Because of the great length of time which it takes to dry long, thick hair, many women do not wash the scalp often enough. In the healthy state of the scalp it should be washed at least once a month.

The Care of the Hair.—There is never any danger of shampooing the healthy scalp too frequently. The oil in the scalp is not removed by washing, but is, on the contrary, always increased through the improvement in the circulation. Where there is much dandruff, or if the hair has begun to fall out prematurely, owing to long neglect or following an illness, it is well to begin by washing the hair two or three times a week, and then gradually increase the interval to every two or three weeks.

Borax in the water cleanses the scalp well, but its continuous use is injurious; the same may be said of ammonia water.

One of the best shampoos is the tincture of green soap. If this cannot be obtained, take of the official green soap 2 ounces, and of alcohol, 1 ounce; mix well, and make shampoo. One ounce of the tincture or its substitute should be diluted with twice as much water and applied to the scalp with the tips of the fingers. When enough of the shampoo has been used, add sufficient water to make a good lather. This must be thoroughly rubbed into the scalp, going over the whole systematically. After the scalp is cleansed, the soap must be well rinsed out of the hair. This may require many changes of the water, but it is most important. Dry the hair with hot towels, the process being completed by a radiator or stove oven. Fanning the hair will hasten the process very considerably. The hair should then be loosely braided and a hot towel wound around the head to insure perfect dryness of the hair and as a prevention against taking cold. One hour is sufficient for the entire procedure. In winter the hair should be washed just before retiring.

Brushing the Hair.—Brushing increases the growth of the hair by stimulating the circulation in the scalp and by removing the dandruff. To be effective, the hair should be well brushed at least once a day, when there must be a deep brushing of the entire scalp. The bristles of the brush must be stiff enough to warm, but not to scratch, the scalp. Brushing and massage remove any loose hairs that are ready to fall, but they will soon be replaced by new vigorous ones.

Combing simply disentangles the hair. The teeth of the comb must be far apart and have rounded ends. In no case should a fine-toothed comb be used. It tears out the hair, and often causes an irritation of the scalp which leads to disease.

From what has been said, it will be seen that every member of the family should have a brush and comb for her own exclusive use, and that no one should allow a public brush or comb to be used on her head.

The brush and comb must be washed once a week in water containing a little ammonia; they must be well rinsed out in pure water; the brush should be dried quickly, with the bristles down. If the brush and comb are not cleaned sufficiently often, the scales of dandruff would be sufficient to reinfect the scalp.

Massage of the Scalp.—The scalp should be thoroughly massaged every night. Grasp the scalp with both hands laterally, as well as anteroposteriorly, and with some pressure loosen the tissues from the underlying parts and try to raise it in folds, or it may be pinched with the forefingers, producing some vascular flux and a sense of warmth.

If the scalp is too dry, nothing is better than pure vaselin, though some persons prefer olive oil, applied by means of a dropper. The yolks of eggs beaten up with lime-water make an elegant shampoo.

Dressing the Hair.—Dragging or twisting the hair from its natural direction, pulling it into constrained or artificial positions, and even twisting the hair very tightly is injurious to it.

The curling iron acts by abstracting more moisture on one side of the hair than on the other. The stronger the hair, the more easily it will curl, and the longer it will stay curled. The daily use of a hot iron, notwithstanding the greatest care, will in a short time prove injurious; the hair is apt to become thin and fall out. Its growth is interfered with. The use of kid curlers is much less injurious, but even here the tight twisting of the hair around the kids is said to be harmful.

Shell hair-pins are the best for the hair. If steel ones are used, the points must be smooth and the pins kept in good condition.

When the hair is dressed for the night, after the scalp has been brushed and massaged, it should be loosely braided and left hanging down.

Cutting the hair 1 inch, every two or three months, is said to promote the growth of the hair and prevent its splitting. It does not increase the number of hairs.

There is no truth in the assertion that the hair is a hollow tube, which allows the escape of oil, and that if the ends are sealed by singeing much good will result.

Gray Hair.—Grayness of the hair may be either premature or physiologic. When the grayness is due to some temporary cause, as anxiety or some diseased state, the process may cease completely on the removal of the cause. Usually the whitening is permanent. The grayness of the hair is caused by obscure changes in the nutrition of the hair-papilla, which interfere with the production of the pigment. As a rule, the hair whitens first on the temples, then on the top of the head.

The hair first turns gray at its root. The grayness is due to the loss of pigment. Prolonged residence in either a very cold or a very hot climate will cause the hair to turn gray.

A yellowish tinge of the hair is sometimes seen in patients with jaundice, or gray hair may owe its dull yellow color to the tint of dry albumin of which it is composed. The glitter of steel-gray or silver-white hair is due to the high refractive power of the minute air-bubbles that lie in the substance of the hair.

Treatment.—The color cannot be restored to gray hair. The roots of the hair are embedded in the hair follicles, and cannot be reached by any fluids applied to the scalp. Not only is the use of hair-dyes to be deprecated as an exhibition of poor taste, which happily is going out of fashion, but the use of hair-dyes is extremely dangerous. Cases are being constantly reported by physicians, where the use of these supposedly simple vegetable hair-dyes has been followed by very serious and extensive dermatitis of the face, neck, and shoulders.

Gray hair is really very beautiful when it is of silvery whiteness, and very ugly when it is of a yellowish-white color. It must be treated with much greater care, in order to preserve its silvery whiteness, than was necessary to keep the hair in good condition before it lost its coloring pigment. It should never be wet, except when it is shampooed. For this reason, instead of using hair-curlers, crimping pins should be used. In this way the hair is waved quite as well and the use of water is avoided.

The Cosmetic Care and Treatment of the Hands.—Of all the members of the body, next to the face, the hands have the most expression, and serve as an index of character and refinement.

Not only should the most scrupulous attention be given to having clean hands and nails, but every precaution should be taken to keep the skin soft and the nails carefully manicured. This is quite possible for the housewife, simply by wearing rubber gloves while she does her work. It preserves the fine sense of touch in the fingers, which aids in sewing and embroidery, at the same time that it adds much to the beauty of the hands.

Chapped Hands.—To prevent chapping of the hands in cold weather heavy gloves must be worn or a muff carried. Another aid in the prevention of the skin of the hands from becoming rough and chapped, and the best means for curing them if this has occurred, is by the use of a good cold cream at night, just before retiring. The cold cream should be well rubbed in the skin, especially about the finger-nails, and after this talcum powder be dusted over. This forms a thick covering for the hands, the talcum powder prevents the cream from being rubbed off on the bed-clothes, and, on getting up in the morning, the skin will be found to be soft. Only in case the hands are very badly chapped should old kid gloves be worn at night.

Cosmetic of the Nails.—The physiologic function of the nails is to protect the tips of the fingers against pressure and to give them a firm support; this increases the delicacy of the tactile sensations.

The nails should be slightly curved from side to side, of a light rose color, and smooth surface. The lunula should be visible at the root of the nail. Brittleness of the nails is a defect, which causes them to tear easily; it is generally due to the condition of the general health.

There is a natural tendency for the dirt to accumulate on the under surface of the nail, between it and the finger. This is not only unsightly, but it is often the cause of actual danger, as this forms a lodgment for the germs of disease. Not only is it necessary for doctors and nurses to give the most scrupulous attention to the care of the nails, but, when we learn that one cook has been the cause of spreading typhoid fever through a number of families, in her itinerary in going from place to place, we must be impressed with the necessity of more careful oversight being given to the hands of domestics and housewives who prepare the food.

For the same reason, it is self-evident that the hands should always be washed immediately before going to the table, and cleaning the nails is always a finishing touch in the washing of the hands.

For the purpose of cleansing the nails, an orange stick or nail-file should be used, and never the point of the scissors or the blade of a knife, for either of these causes a roughening of the under surface of the nails, whereby the lodgment of dirt becomes only the more securely fixed. After the use of the nail-file, the nail-brush should be used, followed again by the use of the file or stick. If there is a tendency to a roughening of the skin under the nail, it can be obviated by the use of cold cream at night. Just before retiring, the fingers should be dipped into cold cream, and let the tips take up just as much as they will retain, and after this dipped into talcum powder.

The small rim of epidermis which laps over the nail should be gently shoved back with the orange stick every day. This skin, when torn, forms the so-called hangnails, by which infection easily enters the system; it may give rise to felons or even to general blood-poisoning.

The Care of the Feet.—In the care of the feet it must be remembered that the leather of the closely fitting boot allows very little ventilation, and so more attention must be paid to the airing of the feet as well as to their bathing. The feet should be bathed twice daily.

On making the toilet for the evening dinner both shoes and stockings should be changed, the stockings hung up in the room, and the shoes left out to air and dry, instead of being stuffed into the shoe-bag, to remain there until the next morning.

An alcohol rub will be found very refreshing to weary feet. For profuse perspiration of the feet, boric acid or talcum powder may be used, dusting the powder over the feet both night and morning.

Ingrowing Toe-nails.—The common causes of ingrowing toe-nails are improper foot-wear and an improper method of cutting the nails. If the nail is cut too short, especially at the angles, while at the same time the shoe is too short or too narrow, the skin of the toe is forced over the nail, so that it necessarily happens that, by the further growth of the nail, the flesh of the toe is pushed still further over, until a point is reached where inflammation is set up. There is excruciating pain, which may be accompanied by the formation of a small tumor, which forms pus and may go on to granulation—the so-called “proud flesh.”

The preventive measures of the trouble are, first, in cutting of the nails. The toe-nail should be cut in a concave form, the outer angle projecting beyond the toe. If there is a tendency for the flesh to grow over the nail, the flesh should be pushed back from the nail, and fastened in this position with a strip of oxid of zinc plaster, and a gauze packing should be inserted under the nail-edge. A saturated solution of boric acid serves as an antiseptic dressing. It is often possible to cut off the projecting nail, and, by the use of the boric acid dressing, the trouble disappears in a few days. Attention should always be given to the toe-nails when bathing.

Corns.—There are two varieties of corns; both are very painful. Soft corns come between the toes, and unless absorbent cotton is inserted to prevent the rubbing of the toes together, a second corn appears on the opposing surface of the adjoining toe. A very effective remedy for this is the application of blue-stone, or sulphate of copper, to the corn. The stone is moistened in water and then applied thoroughly to the corn; absorbent cotton should be placed between the toes. In very severe cases it may be necessary to stay off the feet for a few days and keep the foot upon a chair.

Hard corns must be cut down with the greatest care. It should be done directly after the bath, so as to have the skin in as nearly an aseptic condition as possible. A small scalpel, composed entirely of steel, should be kept for this purpose. It must be thoroughly cleaned after it is used, and just before its use be sterilized by boiling for five minutes. The reasons for these precautions are the possibility of cutting into the flesh and setting up blood-poisoning by the entrance of germs into the wound.

CHAPTER IV
THE DIGESTIVE SYSTEM: GENERAL PRINCIPLES IN HUMAN NUTRITION AND DIETETICS

The Digestive Tract; Care of the Mouth and Teeth; Controlling Factors of Digestion; Psychic Aspect of Digestion; Importance of Mechanical Factors; Chemical Changes of Food in the Stomach; Intestinal Digestion; Metabolism; Constipation and its Treatment.

The Amount of Food Required; the Classification of Foods; Standard Dietaries; Maintenance Diet; Relations of Diet to Various Conditions of Life; Practical Facts for Guidance; Dietary in the Tropics; Food Economics; Table of Food Values.

The Physiologic Action of Moderate Doses of Alcohol; the Effect of Alcohol on the Muscular System; the Effect of Alcohol on the Nervous System.

“If there is anything new of importance in the practice of medicine it is this modern work in nutrition.”—Mendel, 1914.

The activities of animals are carried on by a certain expenditure of energy which is set free as the result of a chemical breaking down of the living tissues of the body. In order to maintain the equilibrium of the body this waste must be replaced by new material which is taken in the shape of food, drink, and oxygen.

Digestion is the term applied to those changes in the food-stuffs which precede absorption; it is a refining process which separates the useless from the useful, and further prepares the latter to be used as building-stones for the repair of organs and tissues and to furnish fuel to supply the motor energy of the body.

In the human body the digestive processes are brought about by mechanical disintegration; by the action on the food-stuffs of acid and alkaline fluids; by changes produced by active substances called enzymes; and, lastly, decomposition is produced by the growth of microörganisms.

The digestive tract, or alimentary canal, begins at the mouth and ends at the anus. It consists of the mouth, the esophagus or gullet, the stomach, the small and large intestines. Two large glands, the liver and pancreas, pour their secretions into the small intestine to aid in the digestion of foods. The alimentary canal, liver, and pancreas together constitute the digestive system.

Fig. 4.—General scheme of the digestive tract, with the chief glands opening into it (Stockton).

Nose, Salivary (parotid) gland, Salivary glands, Pharynx, Vein, Trachea, Thoracic or chyle duct, Esophagus, Liver, Gall-bladder, Stomach, Spleen, Pancreas, Duodenum, Lacteals, Large intestine, Small intestine, Vermiform appendix, Rectum

The contraction of the muscular walls of the digestive tract is the propelling power that carries the food downward and brings it into contact with the digestive fluids. These movements will be referred to later, under the Mechanics of Digestion.

The digestive tract is lined throughout its entire course by mucous membrane; that lining the mouth gives some idea of its character. It is from the mucous membrane lining the stomach and intestines, as well as from the liver and pancreas, that the digestive fluids are poured forth into its cavity.

In passing downward the food meets with five different digestive fluids: the saliva in the mouth; the gastric juice in the stomach; and the bile, pancreatic, and intestinal juices in the small intestine. Each digestive fluid acts only on some particular kinds of food. This action of the digestive fluids on food is called the chemical part of digestion.

The Care of the Mouth and Teeth.—It is of the first importance that the mouth should be kept clean and as nearly aseptic as possible, for as the food is rolled about in the mouth by the process of mastication it is obvious that it will carry all the germs and mucus with it into the stomach. A nasal spray containing some solution of an alkaline or antiseptic nature should form an essential part of the toilet of the mouth.

The Teeth.—From simply an esthetic point of view well-kept teeth are beautiful and greatly enhance the charm of the face. But the proper care of the teeth is also essential to good digestion and good health.

In perhaps the majority of people the teeth are sufficiently far apart for small particles of food to become lodged between them. If not promptly removed, the heat and moisture of the mouth, acting on these small particles, cause their decomposition and set up acid fermentation in the mouth; and it is this acid which causes the decay of the enamel and finally of the teeth. The decayed tooth gives still further lodgment to particles of food, and these, left to decompose, give rise to the most offensive gases, giving fetor to the breath, poisons the blood, and so injures the digestive and nervous systems.

Where possible a tooth-pick and dental floss should be used immediately after each meal; the waxed dental floss between the teeth, and the flat end of the tooth-pick to remove any particles that may have worked in about the roots of the teeth and gums.

A tooth-brush with good tooth-powder should be used twice a day. The brush should not be too broad, and is better if slightly curved. The bristles should not be too hard. The use of tooth-powder, which must be very fine, or tooth-paste is needed to produce sufficient friction to clean the teeth well. Warm water is a better solvent than cold, and, therefore, it is well to use it for cleansing the teeth.

While it is generally known that decay if neglected will destroy a tooth, it is not so well known that many teeth are lost as the result of the accumulation of tartar at the gum margin. There is a great tendency to this, especially about the necks of the lower incisors and upon the teeth that are not used in chewing. The deposit of tartar encroaches upon the neck of the tooth and presses upon the gum; the latter becomes irritated or inflamed, and recedes from the tooth; malnutrition and loosening of the tooth follows.

With very imperfect or decayed teeth proper mastication is impossible.

The teeth should be examined by a good dentist twice a year, so that small cavities shall be discovered at an early stage, the tartar removed, and the teeth kept in their best condition. This will prevent the early loss of the teeth. Lost teeth must be replaced, so that the teeth shall be opposite each other, for a very important factor in mastication is that the teeth shall strike properly.

Digestion.—The factors controlling digestion are psychic, mechanical, and chemical.

Briefly stated, the process of digestion consists first in the liquefaction of the solid portions of food and the conversion of the insoluble into soluble and diffusible, for no nutriment can be assimilated until reduced to a state in which it can pass through a cell membrane. These chemical changes are carried on by a series of enzymes.

Fig. 5.—Location of the viscera of the body and their relation to each other: D, D, Lungs with air expelled; E, E, diaphragm cut away to show, F, liver cut to show stomach; 2, gall-bladder; H, H, large intestine; K, small intestine; L, vermiform appendix (after Heath).

Enzymes are unorganized ferments which possess the power of producing chemical changes in certain substances with which they come in contact under particular conditions without themselves suffering permanent alteration. The digestion of food is largely accomplished by the specific action of these enzyme bodies, of which every digestive fluid contains one or more.

But neither solubility nor diffusibility is adequate. Freely soluble substances like cane-sugar need to undergo digestive changes just as definite as those carried out in the case of fats or coagulated proteins. The changes which they undergo before absorption serve a more fundamental purpose than the mere hastening of their passage through the lining membrane of the intestine.

In the light of modern chemical knowledge we can be somewhat specific in regard to the molecular aspects of the digestive processes. They are probably always cleavages, large molecules giving rise to smaller ones. When the original molecule is of extraordinary size, as with proteins and starches, these cleavages have a serial character, and a number of intermediary products must accordingly be formed; that is to say, the earlier products are in turn subjected to digestion. Such cleavages are generally, if not always, hydrolytic; that is, water enters into the reaction and its elements are found combined in the products.

The Psychic Aspect or the Effect of the Emotions on Digestion.—The relation of the emotions to the activities of the alimentary canal are of very practical importance, because recent investigations have shown that not only are the first stages of the digestive processes normally started by the pleasurable smell, sight, and taste of food, but also the pouring out of the gastric juice.

The importance of the initial psychic secretion of the saliva for further digestion is indicated when we realize that materials can be tasted only when dissolved in the mouth, and thereby brought into relation with the taste organs. The saliva which waters the mouth assures the dissolving of the dry but soluble food even when it is taken in large amounts.

The importance of the initial psychic secretion of gastric juice is made clear by the fact that the continued flow of this juice during digestion not only stimulates the glands of the stomach to pour out the chemical gastric juice, but by its action on the mucous membrane of the duodenum it also starts the flow of bile and pancreatic juice.

These facts are of fundamental importance in the cooking and serving of food, especially when the appetite is fickle. A bright and cheery dining-room, the daintiness of the table service, the center-piece of ferns or flowers, all are factors in exciting the pleasurable emotions, and so stimulate the appetite.

On the other hand, the digestive processes may be wholly abolished by vexation, worry, and anxiety, or when such strong emotions as anger or fear are allowed to prevail. This fact has long been known in regard to the salivary secretion, and it has now been established in regard to the secretion of the gastric juice. It is necessary to avoid all circumstances likely to provoke emotional reactions.

The inhibitory influence of excitement on the flow of the gastric juice has been studied by Professor Cannon, of Harvard University, in an interesting series of experiments on dogs. And a most important point is that the cat, which was allowed to infuriate the dog being experimented on, was only in the room for five minutes, and in spite of the fact that the animal was hungry and ate eagerly; there was almost a complete suppression of the flow of gastric juice for a period of twenty minutes.

A similar experiment was tried on a boy with a gastric fistula. Food was shown to the boy and then withheld. He was so vexed because he could not eat at once that he began to cry and flew into a towering passion, with the result that no secretion appeared even after the child was calmed. In both the case of the dog and boy there was not only a temporary inhibition of the flow of gastric juice, but it is a noteworthy fact that the effects of the emotional excitement remained long after its cause had been removed.

The practical point is, that if the digestive processes have been inhibited by emotional disturbances any food taken will lie stagnant in the stomach; and not only will there be a suppression of the gastric but of the pancreatic secretion as well, with the consequence that there is likely to be an accumulation of unabsorbed organic material in the colon and perhaps higher up as well. Bacterial decomposition will be fostered and actual harm may be done the organism.

And just as a single occasion may lead to a passing digestive disturbance, so continual mental depression, worry, or grief may permanently impair the working of the tract and so undermine the vigor and capacity of the sufferer.

It is believed that many acute attacks of indigestion in children are due to sharp rebukes administered at the table.

The Psychic Tone.—Just as there is a psychic secretion, so likewise there is a “psychic tone,” or psychic contraction of the gastro-intestinal muscles, as a result of taking food. And just as the secretory activities of the stomach are inhibited by strong emotions, so also are the movements of the stomach. And, indeed, the movements of nearly the entire alimentary canal are almost completely stopped during moments of great excitement.

The condition of mental discord may thus give rise to a sense of gastric inertia, so that anxiety may be accompanied by a feeling of weight as if the food remained in the stomach, and every addition of food causes an increase of the distress.

The Importance of the Mechanical Factor in Digestion.—The mechanical reduction of food in the alimentary canal is preliminary to its actual digestion. The first stage of digestion takes place in the mouth, and this is the only portion of the digestive canal which is under the control of the will. It is here that the food is ground into fine particles by the act of mastication, and the more thoroughly the food is pulverized in the mouth, the more rapidly and easily can it be acted on by the gastric juice, and the very act of chewing increases the flow of saliva as well as shortens the time that the food will remain in the stomach.

Fig. 6.—The ribs removed, showing relation of thoracic to abdominal viscera: A, Trachea; B, heart; C, C, lungs; D, liver; E, stomach; F, small intestine; G, large intestine; H, bladder (after Masse).

The saliva not only protects the mucous membrane of the mouth, but it keeps it free from small food particles, which if allowed to remain would decompose, and thus injure the teeth by the action upon them by the acids produced. It also moistens the dry food, aids in the process of swallowing, and has some action on the starchy substances of the food. By the process of mastication, then, the food is divided into small particles and thoroughly admixed with the saliva until the whole is converted into a fine pulp.

Besides favoring the mechanical part of digestion and its slight chemical action on starchy foods, saliva, being an alkaline fluid, is a distinct stimulation to the secretion of gastric juice. After the food has been reduced into a pulp in the mouth, and the change of starches into sugar has begun, it is swallowed and passes into the next compartment of the digestive apparatus, namely, the stomach.

The stomach may be felt at the lower extremity of the breast bone, in the triangular space formed by the divergence of the ribs. It is a large hollow, compound gland, the walls of which contain muscular fibers in addition to the tubules which elaborate the special secretions. Its cavity is lined with a thick mucous membrane, packed with tubular glands, into which is poured out a complex secretion called the gastric juice.

The Chemical Changes which Food Undergoes in the Stomach.—There are two chief phases or periods of gastric secretion: (a) The psychic or appetite juice, and (b) the chemical juice. Gastric juice is not constantly poured into the stomach to accumulate there, but is secreted only as it is needed under the influence of certain stimuli. These stimuli may be classified as psychic and chemical.

In the second phase, or period of gastric digestion, the exciting agent is the presence of food in the stomach. It has been shown that a correlation of the different organs of the body is brought about by hormones or chemical messengers. The hormones of gastric digestion are produced from proteins in the early stage of gastric digestion, and this shows the importance of the psychic or appetite juice. A similar effect is produced by meat extracts or infusions, which are well-known provocatives of gastric secretion.

Gastric Juice.—The principal active agents of the gastric juice are hydrochloric acid and the enzymes; pepsin, the proteolytic enzyme; rennin, the milk-curdling ferment; and lipase, the fat-splitting ferment. The uses of the gastric juice are digestive, activating, and disinfecting.

Gastric juice does not dissolve and chemically change all food that enters the stomach, but acts only on that class of foods called proteins, converting them into peptones.

The changes which food undergoes in the stomach are as follows: food is disintegrated; meat is broken up, gelatin dissolved; the muscle-fibers fall apart, and are split into disks and sarcous elements; the framework of fatty tissue undergoes similar dissolution of cellular membranes; milk is curdled; the caseinogen is transformed into casein, and the latter broken down by pepsin. Bread and other starchy foods are disintegrated, some of the starch being formed into sugar by ptyalin. The other vegetable foods are but little digested by this viscus. The whole is broken into irregular fragments by the disintegrating power of the stomach and gradually converted into chyme, the creamy emulsion which passes through the pylorus into the intestines. The passage from the stomach into the duodenum is aided by the motor activity of this organ.

The Mechanics of Digestion in the Stomach.—Recent investigations, especially those of Cannon, have thrown much light on this subject. The food introduced into the stomach from the esophagus is lodged first in the fundus or cardiac end of the stomach; from here it is moved by slow degrees toward the pylorus, from which it enters the small intestine. Formerly it was taught that this movement was brought about by a churning motion of the stomach throughout its entire length. Cannon has shown the error of this conclusion. From his observations it appears that the stomach is quiet at first. The waves of peristaltic constriction begin at the duodenal and middle portions and move the food toward the pylorus. In this way the constrictions that begin near the pyloric end gradually extend to the cardiac end. The latter part of the stomach is distended after a full meal, but gradually diminishes in size during digestion.

Moreover, there is a difference in the character of the gastric juice coming from the different areas of the stomach; that from the middle portion being acid, and that from the cardiac and pyloric being neutral or nearly so. These facts show that the food remains for some time in the fundus and meets there a neutral liquid; consequently, the alkalinity of the mass is retained for a time, and the saliva acts upon the starch for a much longer period than has been supposed.

It is believed that the length of time which food remains in the stomach varies with its kind. The digesting mass is not forced into the intestine until it becomes well saturated with the free acid of the stomach, a result that will be reached later with a meat than with a vegetable diet; for it is plain that much more acid will be required to combine with the proteins of meat than with the smaller amounts in the carbohydrate foods, and so free acid is longer in accumulating.

Digestion is aided by the movements of the food mass through the contractions of the walls of the stomach, so that anything which lowers the tone of the stomach or impairs the integrity of its lining membrane seriously interferes with the digestive processes.

The nature of the food influences the rate of its passage through the pylorus. It has been shown by means of the x-rays that when the meal consisted of lean meat, suet, and rice, properly cooked and prepared in such a manner that the constituents were properly mixed together, the carbohydrates (rice) began to leave the stomach in fifteen minutes, but the protein (lean meat) and fat did not begin to leave it under one-half hour, and were much longer in passing through.

It was further found that in a normal stomach a meal of rice and potatoes gets out of the stomach rapidly, no trace being left in three hours, while a meal of protein and fat meat was much slower, some being present six hours after the meal. Indigestible substances are rejected by the sphincter and returned to the digestive cavity over and over again, but in the course of time the sphincter relaxes and the peristaltic contractions increase, until the force is sufficient to drive through the opening hard substances like peas, plum-stones, and coins.

The Absorption of Food from the Stomach.—A very wide-spread misconception prevails in regard to the amount of absorption that takes place through the gastric walls. This is very limited indeed; some sugar, alcohol and other fluids, and a small proportion of nitrogenous matter are taken up, but that is all. The legitimate rôle of the stomach is a peptonizer and grinder only. Absorption of nutrients is the special work of the intestines, and occupies but a subordinate place in the duties of the stomach.

Proteins undergo peptonization, but that does not change them sufficiently. The mere splitting into peptones, formerly thought sufficient, is now known to be quite inadequate. Recent researches have shown that the complex protein molecule has to be quite crushed into a heterogeneous assemblage of fragments, from which those suitable for building up into the body protein are selected for that purpose, the remainder being used as fuel; that is, as a source of energy. In the case of the other food principles, fats and starches, the chemical processes are much simpler.

Intestinal Digestion.—The chemical changes which food undergoes in the small and large intestines are exceedingly complex. Digestion in the intestine is due to the combined action of the bile, pancreatic juice, and succus entericus. The material which enters the duodenum from the stomach is known as the chyme. The acid chyme provokes a flow of bile and pancreatic juice. It acts upon the prosecretin in the duodenal mucous membrane in such a manner that secretin, a hormone, is formed and carried by the blood to the cells of the pancreas which it stimulates.

Bile is a secretion of the cells of the liver and from the inner wall of the gall-bladder; after elaboration, bile is stored up in part at least in the gall-bladder. The secretion of bile is irregular in quantity, as is the case with the gastric juice, and appears to be induced by chemical excitants, of which acids, especially hydrochloric, seems to be especially effective. Of the nutrients, the proteins exert the most influence. Less secretion follows the ingestion of carbohydrates than of proteins.

Formerly it was supposed that fatty foods checked the secretion of bile, but later experiments have proved that, to the contrary, they increase its secretion; and olive oil is a powerful cholagogue.

Bile precipitates the proteins of the chyme, neutralizes the acidity of the gastric juice, dissolving the fatty acids, and activates the lipase or steapsin of the pancreatic juice and assists in the absorption of fats. When for any reason the discharge of bile is retarded and the organism attempts to eliminate it through the kidneys, the tissues become charged with its compounds and take on a yellowish coloration.

Pancreatic Juice.—The second action upon the food in the intestine is that of the bicarbonate of soda contained in the pancreatic and intestinal juices, which neutralizes its acidity; and pancreatic digestion can only take place in an alkaline medium.

The pancreatic juice has the most comprehensive action of all of the digestive fluids; it contains a great variety of enzymes and acts upon all classes of nutrients. Its flow is intermittent, being induced by the action of the acids in the partially digested food from the stomach.

The pancreatic secretion attains its maximum pressure about three hours after a meal, but this varies according to the character of the meal. The enzymes of the pancreatic fluid are trypsin, amylopsin, lipase or steapsin, and pancreatic rennin.

Trypsin.—Pancreatic juice alone has but little influence on proteins, but when mixed with succus entericus its influence is great. Trypsin differs from pepsin by acting in an alkaline or neutral solution, and a free mineral acid, like hydrochloric, stops its operations; it acts much more powerfully and rapidly than pepsin. In conjunction with other enzymes it splits protein foods into simpler compounds, which may be regarded as the building stones of the original proteins.

Amylopsin.—The digestion of starch in the intestine is mainly effected by means of a diastatic ferment or enzyme in the pancreatic juice, called “amylopsin.” This enzyme has the power of hydrolyzing the starch mostly into maltose.

Steapsin or Lipase.—The pancreatic secretion acts vigorously on fats, not only splitting them into fatty acids and glycerin, but, in conjunction with the bile, also effects their emulsification. This latter result is doubtless aided by the soaps which form a union of the fatty acids and alkaline bases (mostly sodium) in the bile. The cleavage of the fats is due to the enzyme steapsin.

The succus entericus is the secretion of the glands of Lieberkühn. It contains quite a number of enzymes, including four which act on carbohydrates, namely, amylase, maltose, lactase, and invertase; the proteolytic enzyme is erepsin, which seems to supplement the action of trypsin. It has no action on native proteins except casein, but it breaks down proteoses and peptones into amino-acids.

In other words, the discovery of erepsin in the succus entericus and its effects has led to the now almost generally accepted view that the digestion of the proteins is carried further than the stage of proteoses and peptones; in fact, that this enzyme hydrolyzes them into amino-acids, in which form they are taken up by the cells of the intestinal mucous membrane.

The Absorption of Food from the Intestines.—It was formerly believed that the main stream of the nutrient passed out of the intestines through the lacteals and thoracic duct into the circulation. But it is now known that only the fats take this course, and that the dissolved proteins, carbohydrates, some fats and salts find their way into the circulation through the portal system and the liver.

The blood contains a constant proportion of serum-albumin and serum-globulin, which are constructed out of the amino-acids resulting from the digestion of protein foods. The reconstruction of proteins takes place chiefly in the cells. Fuchs believes that the amino-acids from the food are carried to all the tissues; and that the cells of the muscles and glands pick out from the blood the “building stones” necessary for the construction of their special proteins.

Fat is absorbed for the most part in the form of an emulsion and as a solution of soap. Only about 60 per cent. of the fat in the food is absorbed by the lacteals; the remaining 40 per cent. gets directly into the blood. The fat is carried directly by the blood-stream to the tissues all over the body; it is oxidized in the tissues to produce heat and energy; what is not immediately used for this purpose is stored up in the cells for future use.

Carbohydrates.—Practically all of the carbohydrates digested are absorbed in the form of sugar. The absorption takes place more rapidly in the upper than in the lower bowel. A portion of the ingested carbohydrates is destroyed in the alimentary canal by bacteria, whose enzymes transform them into various acids and gases.

The Absorption of Sugar.—The sugars pass into the blood through the portal circulation, and not through the lymphatic vessels. The question is, Where does sugar go after it gets into the blood? The proportion of sugar in the general circulation is not greater after a meal than before it. It is necessary that there should be some means of storing it, for it cannot all be immediately used for the production of energy. Is it stored as glycogen? Bunge believes that a considerable amount of carbohydrate is stored as fat, since the total amount of glycogen in the liver never exceeds 150 grams, and there is a similar store in the whole mass of muscles. It is evident, therefore, that only a small proportion of carbohydrates is laid down as glycogen, and we must assume that the greater part of it is converted into fat. That fat accumulates in the body on a purely carbohydrate diet is proved beyond a doubt, and the formation of fat from sugar is considered proved by experimental evidence.

Sugar is an important source of energy for the muscles, and provision is made for a sufficiency of it always to be in the blood circulating through them, and the storehouse from which it is derived is the liver. When the liver and muscles contain enough glycogen to keep the blood supplied with it, the excess of sugar is converted into fat, and is reconverted into sugar when there is a demand for it.

Mechanics of Digestion in the Intestines.—The intestinal movements, like those of the stomach, have recently been studied by means of the x-rays. There are three kinds: A pendulum-like motion, consisting of a gentle, swaying, rhythmic movement occurring in all parts of the intestines. These movements do not affect the whole of the gut at one time, but occur in successive segments of it, and are more obvious in those parts which are distended with food, at a period of three or four hours after a meal. They are most energetic in the upper and least so in the lower part of the gut, and proceed from above downward with the course of the food.

The movement consists in lengthening and narrowing, followed by shortening and widening, of the canal; the contraction involves both the longitudinal and circular muscular coats, and in the course of its progress divides the bowel into many segments. This movement breaks up the food, sways it backward and forward, diffuses the digestive fluids through it, and drives chyle into the lacteals.

The second kind of movement consists of peristalsis, or wave-like propulsive movements; also localized dilatation, followed by contraction of the canal, progressing from above downward at the rate of 1 or 2 inches per second, and is from three to four hours traveling the entire length of the intestines.

Under pathologic conditions a third movement is observed, consisting of a swift venicular movement, starting at the pylorus and traveling the entire length of the gut in about one minute. It is produced by toxins, gases, and other irritants.

Digestion is practically completed in the small intestine.

The colon consists of a proximal portion, consisting of the cecum, ascending colon, and one-half of the transverse colon; a mesial part, formed by the other half of the transverse colon and part of the descending colon and a distal portion, formed by the remainder of the descending colon and of the rectum. The contents of the proximal portion are fluid; food accumulates in this portion; it is gradually concentrated by the absorption of water. It has been shown by the x-rays that a meal reaches the cecum in four or five hours; the hepatic flexure in six or seven hours; the splenic flexure in nine hours; and the rectum in about eighteen hours.

The feces consist of the residue of the food, digestive secretions, etc. The contents of the alimentary canal become altered in character as they descend its course. The mass attains a greater density as it descends, more and more nutrient being absorbed from it, and even in the colon it becomes more solid; its color is brownish and its odor characteristic. The amount of feces from an average mixed diet represents from one-seventh to one-eighth of the food consumed.

Defecation.—The waste matter which collects in the lower bowel must be evacuated every day. Allowed to remain longer than this, the digestive system is clogged by the non-removal of worn-out material, and the blood is constantly absorbing matter which is poisonous to the body. Decomposition goes on without being suspected by the sufferer.

Intestinal bacteria or organized ferments are present throughout the entire intestinal canal and play a part in the food changes. They are most abundant in the lower part of the small intestine and the upper part of the large. They act upon the proteins, causing putrefaction, dissolve cellulose, and cause a decomposition of the carbohydrates. The products of these fermentations include indol and skatol, which have the characteristic fecal odor; volatile fatty acids and gases, some of which are carbon dioxid, hydrogen, marsh-gas, and hydrogen sulphid.

Fermentations of this character up to a certain extent are normal and may be beneficial, but they may proceed so far as to be deleterious to health. Anything which retards digestion, such as imperfect mastication, excessive eating, abnormal amounts of meat in the diet, and failure of the organs secreting the digestive fluids to supply these secretions in sufficient quantity, gives these bacteria a better opportunity to act on the food residues and so increases their bad effects.

Some foods, especially vegetables of the leguminous class, appear to be provocative of excessive intestinal fermentation. Flatulence and even toxic poisoning may be the result of great bacterial activity in the digestive tract. It is hardly possible to check this by administering septics, but purging is of value by removing the fermentative material. Particular foods, especially soured milk and kephir, have been shown to have a preventive action on putrefaction.

Influence of Food on Secretion.—The more recent investigations reveal the fact that the kind of food has an influence not only on the abundance, but also on the kind of digestive secretions; this is most important because an abundant supply of digestive juices is necessary for good digestion. Broths, meat extracts, and milk stimulate the secretion of the gastric juice, which makes rational the taking of soup or bouillon as the first course at dinner, or the eating of toast or zwieback by persons with weak digestions. Fats, on the other hand, tend to inhibit gastric secretion, so that an excessive proportion of fat in the meat might hinder digestion in the stomach.

Food may exert an indirect influence on the pancreatic secretion. The acid in the chyme stimulates the flow of pancreatic juice. One is almost inclined to speak of the physiologic education of the digestive glands, and to conceive them as being trained for fat, protein, or carbohydrate digestion.

Metabolism.—Life consists, so far as material phenomena are concerned, in the transformation of matter into energy. To these transformations the term metabolism is applied. In the metabolism of matter the changes are chemical; in energy the changes are physical. It is commonly assumed that the laws of conservation of matter and energy are conformed to or obeyed in animal bodies.

The body converts potential into kinetic energy by metabolism in the body. The potential energy of food is transformed into the actual energy of heat and mechanical labor. In this respect the only difference between man and other vertebrates is the nervous and intellectual processes, which are not yet understood.

Metabolism is anabolic and katabolic. Anabolism is constructive; it includes growth and the act of the tissues in selecting, appropriating, and making substances absorbed from the alimentary canal a part of themselves. The body is never stable; while growth and nutrition progress, destruction or demolition takes place, and this is called katabolism. To ascertain the exact amount of matter and energy used daily by the body a balance sheet of the exchange of material is necessary. The income consists of (a) matter—food, drink, and the oxygen of the air; (b) energy, the potential energy of the food and drink. The outgo consists of (a) matter in the feces, urine, perspiration, and breath; (b) energy—the potential energy of feces, urine, products of respiration, and perspiration. A complete account would show the amount of C, N, H, O, P, S, Cl, Na, Ca, K, Mg, and Fe in the income and outgo, it would also show the compounds in the excreta, including proteins, carbohydrates, water, and carbonic acid.

Experiments show that the body requires a given quantity of given energy producing substances for sustenance, and something more to meet the demands for muscular work.

The metabolism of nitrogen is usually measured by the amount of urea in the urine, taking into account the small proportion of uric acid and other nitrogenous bodies. In fasting the organism lives on its own flesh and fat.

The Effects of a Nitrogenous Diet on Metabolism.—The most striking effect of a purely nitrogenous diet is a large increase in the nitrogenous metabolism, but it also increases the metabolism of the non-nitrogenous elements of the body. With an ordinary mixed diet the normal excretion of urea varies from 33 to 37 grams a day, while with a meat diet the urea may rise to 50 or even 80 grams daily.

Carbohydrates as a Protein Protector.—It has long been observed that when there was a deficiency of protein in the food the metabolism of nitrogen will be spared and the tissues protected if the food contains plenty of carbohydrates and fat. The subject was fully investigated by Lusk. When the diet contains an abundance of protein, carbohydrates, and fat the organism gains a little nitrogen; when the diet contains the same amount of protein but no carbohydrates, the body loses considerable nitrogen. Again, when the food was the ordinary mixed kind, and contained a sufficiency of energy, but was of a low protein character, the excretion of nitrogen was normal. These results led to the conclusion that the carbohydrates were a protein protector.

Fat as a Protector of Proteins.—The metabolism of nitrogenous tissue and elimination of nitrogen is not prevented by the consumption of fat, but the consumption of fat reduces the metabolism of protein so much that one-quarter or one-third as much meat will suffice to maintain the nitrogen equilibrium as would have to be consumed if only lean meat was used.

The nutritive value of meat extracts is comparatively small; their chief value is in promoting digestion and metabolism of other foods.

Water and Metabolism.—The body consists of 530 parts of water per 1000. It is of greatest importance as a component of the tissues to assist in the exchange of nutritive substances, the discharge of the products of metabolism, the regulation of temperature, and other vital functions. If the supply of water is stopped the body will die, and it may die sooner from the deprivation of water than from starvation.

A reduction in the amount of water consumed accelerates the decomposition of protein and fat to replace the water essential for the bodily functions. As the result of experiments it has been found that the average income of water is 4 pints, and the excretion is 4½ pints; so that at the lowest estimate ½ pint of water is formed in the tissues by the oxidation of hydrogen in the food and tissues; and during ordinary work it was found that 17 ounces of water was excreted daily in excess of that consumed in food and drink.

The intense suffering entailed by prolonged thirst is to be accounted for by the absolute necessity for preserving the normal aqueous dilution throughout the body.

Water is also essential for removing the effete materials arising from metabolism, cell growth, and other disintegration.

Chlorids.—About 15 to 18 grams of sodium chlorid (common salt) are excreted daily in the urine, and smaller quantities in the feces and perspiration. It is, therefore, a most important food. The tissues retain common salt most tenaciously, and when there is none in the food it gradually disappears from the urine. It facilitates the absorption of the protein foods and increases tissue metabolism. And, further, an insufficiency of common salt is followed by a diminution of hydrochloric acid from the gastric juice, and consequently a failure of nutrition. There can be no doubt that the hydrochloric acid of the gastric juice originates from the chlorids of the blood.

On the other hand, a very large number of people consume more salt than they require. Salt is not only a food, it is a condiment, and as such it is liable to abuse. It has been estimated that from 2 to 4 grams of salt a day is sufficient, whereas most people take from 20 to 30 grams daily in one way or another. The kidneys have to excrete the excess of salt, which they seem to do in health without any difficulty; but in nephritis the kidneys do not excrete it so readily, and this may lead to a retention of salt in the body.

Iron is essential to the human body. It is taken into the body in the form of food, and is excreted from the body in the bile and feces. It has been estimated that typical food contains 10 mgm. of iron daily. The hemoglobin of the blood contains 0.04 per cent. of iron.

Constipation.—It must be remembered that the intestine is a permanent source of poisons, which, under certain conditions, cause grave alterations in the principal organs, notably in the liver, kidneys, and skin, and serious functional disturbances of the nervous system.

Normally, the organism manages to protect itself against the microörganisms which are found in the intestines; given, however, certain conditions, the toxic products can be generated in excess of the powers of the organism to dispose of them, such as errors of diet, quantitative or qualitative, atony of the muscular walls of the intestine, and, above all, constipation. The higher up in the intestine the stasis occurs, the more serious is the result. Constipation is considered by many surgeons as the most important factor in the production of appendicitis.

There is frequently a condition present which is known as semiconstipation, and which is most deceptive to the patient. There may be a bowel movement every day, but the bowel is never emptied; only the lower portion of the hardened fecal matter is broken off. This is repeatedly found to be the case in examining women for some form of pelvic trouble, and in a woman who says that she has a daily evacuation of the bowels, and has had one that very morning, the sigmoid flexure will be found to be packed with hardened feces.

Besides the clogging up of the digestive system by the non-removal of the waste-products of digestion, the formation of hemorrhoids, which is caused by the mechanical pressure on the veins, and so interferes with their emptying out in the normal way, and the general autointoxication of the entire system, there are also caused in women serious displacements of the pelvic organs together with their congestion and inflammation.

The general symptoms of autointoxication are: headache, vertigo, palpitation of the heart, a feeble and irregular pulse, irritability of temper, melancholia, numbness and tingling in the hands and feet, and the emaciation and loss of weight are sometimes so marked as to lead to the suspicion of malignant disease.

Treatment of Constipation.—This should always be preventive, and the diet is a most important factor. The food should be of a coarse quality, that is, such as directly stimulates the walls of the intestine to contraction by their constitutents, or by the large amount of the indigestible bulk. Corn and Graham bread should be substituted for white bread. Toast is always constipating. Plenty of fresh fruit and vegetables should be eaten. For those who can digest them, raw apples, eaten just before retiring, are a great aid. The drinking of a sufficient quantity of water daily is also essential, and this quantity must be 3 pints. A glassful of cold water, taken the first thing in the morning on rising, is often very effective. If this is insufficient, the phosphate of soda, one teaspoonful to one tablespoonful, may be added.

Habit.—Nowhere is the effect of habit more conspicuous than in the matter of a daily evacuation of the bowels. There should be a fixed time every day for this, and the very best time is in the morning, directly after breakfast. Such a habit, once established, will enforce itself upon the attention and make regularity a necessity. It not infrequently happens that constipation is the result of irregularity in going to the toilet. The school-girl or woman gets up a little late, and, although she may feel the inclination to empty the bowels, she is able to defer it.

If the movement is sufficiently large, one stool daily is sufficient, but where the stool is slight in quantity, there may be two or three during the day, entirely consistent with health, and in a run down state of the system there are apt to be several small movements rather than one full stool. So long as the stools are not watery, the individual may rest assured that there is no looseness of the bowels.

Constipation should never be allowed to become chronic. It is, as has already been shown, the progenitor of myriads of the most serious diseases; and, after the bad habits of years have been established, it is one of the most obstinate of diseases to cure. In every case a good physician should be consulted at once, and the treatment should be persevered in until the cure is complete. It is a well-known fact that all medicines for this trouble lose their effect, the dose has to be increased, and a frequent change made from one laxative to another. When everything else fails, electricity may be resorted to. It is one of our most valuable remedies, since it brings about a cure through the toning up of the muscular walls of the intestine.

The constant use of hot clysters to empty the rectum is one of the most pernicious habits; in this manner the bowel becomes overdistended and loses its tone, and the fecal mass is not sufficiently large to cause the distention of the rectum, which is the normal stimulus leading to the desire to defecate.

The Amount of Food Required.—Food is required for growth and for repair; that is, to build up the organism and make good the loses sustained by physiologic processes, to maintain the heat of the organism, and to supply it with mechanical energy.

It has become an established custom to compare the human body to a machine. Both derive their power from fuel; in both instances the potential energy of the fuel is transformed into kinetic energy or mechanical power which works the machine; in both cases the energy which is not used in work escapes in the form of heat.

The human body uses the mechanical power chiefly in muscular work; the heat is used in warming the body and causing the evaporation of moisture from its surface. The animal organism is much superior to the mechanical engine. It is more economic in the use of fuel; it has a nervous organization rendering it sensible to impressions and capable of directing its energies. The human machine is capable of adapting itself to many circumstances and changes in the demands upon it.

But to enable the body to continue to perform these functions indefinitely it must be properly fed, and a proper feeding of the body requires a knowledge of its composition and the exchanges which are constantly going on. This knowledge is to be derived from a study of its metabolism, the analysis of foods, and a determination of their heat values.

The Classification of Foods.—Foods are divided into proteins, carbohydrates, fats, mineral salts, and water. The body is composed of materials belonging to the same groups. Proteins form the principal part of muscles, bones, and many other tissues of animal bodies; they also constitute some of the most important vegetable structures.

Proteins are probably the most complex compounds in nature; all contain carbon, hydrogen, oxygen, and nitrogen, generally sulphur, and sometimes phosphorus also. They are, with rare exceptions, colloids, that is, glue-like, non-crystalline bodies, which even in solution cannot pass through animal membranes.

The building stones of the body are the amino-acids. All proteins contain them, but the kinds and proportions are not always the same. It has been shown by biologic experiments that life and growth cannot be maintained when certain amino-acids are deficient.

Proteins are of use to the human body as tissue formers, and, secondly, as producers of energy, but they also have a food value as flavoring agents, rendering the food appetizing, and so are to a certain extent stimulants. The palatability of meats and soups are due to their presence. The amino-acids have decided heat value.

The necessity for proteins in the diet has been abundantly demonstrated. Many investigations have shown that when the food contains no protein the waste of nitrogen continues, no matter how abundant the supply of carbohydrates and fats. In other words, a continuous protein cleavage is demanded by the animal organism, and no other nutriments can serve as a substitute for protein to meet this demand. If the food contains no protein, the body tissues will be depleted. It cannot be said that carbohydrates or fats are an essential part of the diet in the sense that protein is, because it is possible to substitute one for the other to produce energy, or to substitute proteins for both.

In spite of these facts, it is safe to assert that the welfare of the human organism is best promoted by a mixed diet, including all three classes of food. The larger part of man’s food is used for the production of energy, and it is physiologically economic that this energy be supplied by the non-nitrogenous nutrients, particularly the carbohydrates, and to allocate to protein, so far as practicable, its special rôle of building material.

Nitrogenous Waste Products.—The end-product of proteins is urea, which is formed from protein decomposition products in relatively large amounts in the liver cells, and, being readily soluble and diffusible, is easily eliminated by the kidneys. Besides urea there are other smaller quantities of nitrogen compounds, the one most deserving of notice being uric acid.

When the proteins are broken down to supply energy, there is always a definite proportion of urea and uric acid residue that must be eliminated through the kidneys. An excessive protein diet would burden these organs beyond their accustomed habit, and flooding the system with these nitrogenous wastes increases the tendency to rheumatism and gout.

Uric acid is of general interest, and when present in the system in abnormally large amounts, as in gouty persons, has a pathologic significance. It is more complex in its composition, and, what is of particular importance, is that it does not readily dissolve. It forms very insoluble salts which have unpleasant tendencies to settle in the joints, causing great pain. Did its metabolism proceed properly, it should be resolved into urea and carbon dioxid. The quantity of uric acid that appears in the urine is the residue that has escaped this oxidation.

Uric acid is built up from purin bodies in the food, so that it would be well for those with a gouty diathesis to abstain, at least when an attack of gout threatens, from all aliment in which purin is at all abundant. The most valuable of the purin-free foods are eggs and milk, and to these the uric-acid sufferer has to turn in times of trouble.

Carbohydrates Physiologically Economic.—This group of compounds comprises starches, sugars, and gums; the elements of which they are composed—namely, carbon, hydrogen, and oxygen—are so balanced that if all of the carbon were removed the residual hydrogen and oxygen would be in the proportions to form water.

Carbohydrates are usually characterized as the fuel portions of the food, or, in other words, that part which is burned to produce the various forms of energy. They are also essential for the well-being of the organism; reduction of the intake below the essential point frequently leads to acetonuria.

When the metabolism is perfect, any carbohydrates consumed in excess of the ordinary requirements are converted into glycogen and fat and stored for providing fuel at a future date. When stored as fats they are completely oxidized in the simplest compounds, carbon dioxid and water, and are eliminated through the lungs and skin, possibly part of the water so formed acting as a solvent for the urinary compounds. Investigations seem to prove that the body has a preference for the carbohydrates over fats or other nutrients as a source of energy. There is every justification for the abundance of starches in man’s diet.

Fat is essential in the food of mankind; it is absorbed ready formed from the food, or manufactured in the body from the proteins and carbohydrates. Neutral fats and fatty acids are valuable foods; their primary function is to supply the body with fuel for heat and energy.

The mineral substances form 5 or 6 per cent. by weight of the human body, and are constantly leaving it by different channels; they are indispensable elements of food. They give solidity and stability to the organism, constituting a considerable proportion of the bones. They keep various proteins in solution and confer upon them the property of electric conductivity. They are necessary for all of the secretions and assist in the general metabolism. The carbonates of soda, potash, iron, and other minerals render the blood and secretions alkaline. The removal of carbon dioxid is performed mainly by the alkaline carbonates, which take it from the blood and surrender it to the lungs. We have already considered the need of sodium chlorid. The total daily requirements of salts is estimated at about 360 grains.

Vitamins a New Factor in Nutrition.—But recent investigation has proved that something more is essential for the maintenance of growth and well-being than protein, carbohydrates, fats, and salts; that food contains a minute portion of accessory bodies, and that when they are deficient or absent from the diet the immature body does not grow, the mature body does not maintain its condition, and there are manifestations of more or less serious disease. These accessory bodies have been called “vitamins,” and they are essential to maintain the normal metabolism of the body.

It is recognized that although vitamins are undoubtedly widely distributed in food products, they occur for the most part in very minute amounts, and the various foods differ in the proportion which they contain. If the diet is made up of substances which are poor in vitamins, or rendered so by their mode of preparation, abnormal metabolic processes have been found to follow.

The study by many scientists during the past few years of the enzymes and their striking specificity; of the salts; of the insufficiency of many proteins, and of the vitamins is epoch making, and has caused a corresponding advance in dietetics. These discoveries are so important as to raise the question whether nutritive failure or success does not depend as much on the accessory bodies—the vitamins, the enzymes, and lipoids—as on the primary element of the diet.

In addition to these food principles, there exists in our food a number of compounds which, while not indispensable, act beneficially as flavorings, stimulants to digestion, etc.; these are termed food adjuncts, and comprise such bases as caffein, essential oils, organic acids, etc.

Standard Dietaries: The Maintenance Diet.—There is great need of standardization and of knowledge regarding the maintenance diet, first among physicians and then among the people in general, or scientific dietaries based on the nutritive value of foods. These are given in terms of proteins, carbohydrates, and fats, together with the aggregate energy of the nutritive value in each. This is the corner-stone of dietetics.

Dietetics is the science of feeding. It has to do with the necessities of the body and the ability of the food to meet these necessities in the various circumstances and conditions of life. The ultimate scientific knowledge concerning human nutrition should be to promote the healthful and economic use of food.

The problems to be dealt with are quite complex. These are: (1) changes in the economic conditions of the population; (2) changes in food production and food supply; (3) changes in the methods of preparing food.

In regard to the influence of the economic conditions of the people on the composition of their diet, it might be expected that a considerable decrease in the earning capacity of the poorer people, or an increase in the cost of foods, would be followed by a change in their diet. Everyday experience teaches that under such conditions the more expensive foods—meat, eggs, and milk—are reduced in the diet. These same foods are also rich in vitamins, so that a reduction here would, therefore, reduce the vitamin content of the dietary unless other dietary complements rich in vitamins, such as legumes, were introduced.

The value of any food as a source of heat and energy is measured by a bomb-calorimeter. The heat given off during the combustion is a measure of the latent or potential energy of the food. The kinetic energy of the food is the amount of heat developed by the proportion which is digested. The unit commonly used is the calorie, or the amount of heat which would be required to raise the temperature of 1 kilogram of water 1° C., which is about equal to that required to raise the temperature of 1 pound of water 4° F.

Heat Value and Digestibility of Foods.—One of the chief functions of food is to supply the body with heat and energy; the food must be capable of digestion and absorption. Herein lies the exact value of any food to the consumer. In science the figures that are given for the digestibility of the various foods refer to the completeness or extent to which the food is dissolved and transferred to the circulation, and an indigestible one is that of which a considerable portion passes out of the system into the feces without being disintegrated and absorbed.

Animal food is more completely digested than vegetable food, as shown by the difference of nitrogen in the feces. In meats 97 per cent. of the protein and 98 per cent. of the fat are absorbed. Lean meat is more rapidly digested than fat, and the flesh of young animals than that of older ones.

The breast of chicken, fresh beef, and mutton are among the most digestible of the solid foods. Raw and rare meats are more easily digested than well-done meats; in other words, cooking lessens the digestibility of meats. Steak should be broiled and never fried; all fried foods are difficult to digest. Veal and pork are both difficult to digest.

Eggs are almost as nutritious as meat; their digestibility is unsurpassed and only equalled by a few foods, such as milk and oysters. They are most easily digested when soft boiled or poached. Dry toast finely broken up and mixed with a soft-boiled egg aids in its digestion. Soft-boiled eggs are more easily digested than raw eggs, but the latter are less irritating to the stomach, probably because they are digested in the intestines. It has been found that two poached or soft-boiled eggs leave the stomach in from two to three hours; that is, in the same time as milk, oysters, white bread, and light fish.

Milk.—Although one of the most completely digested of foods in a mixed diet, milk is not quite so completely digested as meat and eggs. When milk is the sole food (milk diet) the proportion digested depends partly on the amount consumed. With the consumption of 3½ pints of milk daily the loss of milk solids varies from 10 to 11.16 per cent. Young children digest milk more completely than adults.

The addition of aërated waters or crackers broken up in the milk prevent the formation of tough clots, and hence render it more digestible. Hot (not boiled) milk is more digestible than cold. Boiling increases the toughness of the curd, but it destroys the bacteria. Buttermilk and koumiss are more easily digested than cows’ milk.

Wheat flour enters largely into the diet of every family. In producing it the outer coating of the wheat kernel is removed, thus throwing into the milling offals that part of the kernel which is most heavily charged with mineral ingredients and vitamins. The proportion of digestible proteins in white flour is not less than in whole wheat flour, as is so often claimed, but because the latter is richer in mineral ingredients its use is recommended.

Bread is readily digestible; white bread digests more rapidly than brown or black; and crackers more rapidly than either.

Rice is another cereal of great economic importance. As a food for invalids it possesses a high value on account of its digestibility, especially in intestinal diseases. Ordinarily polished rice contains only 0.5 per cent. of cellulose, and almost all of the substance of the grain is absorbed.

There is a perfect analogy between the well-known relation of the polishing of rice to its nutritive value, and the milling of wheat and corn to the nutritive value of wheat, flour, and cornmeal; that is, it loses the mineral ingredients and vitamins.

Potatoes.—In European countries potatoes rank next to bread; this arises from the ease of their digestion. From 92 to 95 per cent. of the starch is absorbed, but there is a loss of 23 per cent. of the protein.

The manner of preparation of vegetable foods determines the proportion of loss. When potatoes are baked or boiled in the skins the loss is negligible. The greatest amount of loss occurs when the skins are removed, the potatoes then allowed to soak in cold water, and placed in cold water to boil. The potatoes should be pared just before cooking, and the water should be boiling hard before they are put in. Mealy potatoes digest more rapidly than waxy ones, and mashed quicker than unmashed.

Oatmeal, barley meal, and other cereals which are not ground very fine do not digest so easily as wheat flour, but much depends on the mode of cooking. When oatmeal-gruel is consumed with a sufficient amount of milk it forms a complete diet.

Nuts are valuable as a source of protein and fat, but they are rather difficult of digestion.

Fats.—As a rule, children do not thrive whose diet is deficient in fats, and even adults are prone to tuberculosis and nervous diseases when fat in the body is deficient.

Cheese is one of the most indigestible of foods. All fried foods are highly indigestible because the fat envelope of the foods has to be melted off before the gastric juice can act on the food substance itself. Pastry is also very indigestible. Of the vegetables, beans, while highly nutritious, are exceedingly difficult of digestion; also boiled cabbage, cauliflower, hot breads, iced drinks, ice-cream, and water-ices.

The Relation of Diet to Various Conditions of Life.—The chief factors influencing bodily needs are age, height, weight, occupation, idiosyncrasies, and atmospheric conditions.

All activity of the human body, whether in the maintenance of its functions or in the performance of labor, is work. These two forms of work may be classified as physiologic and mechanical. Nothing in nutrition is more important than the relation of food to work.

Children are practically in constant motion during their waking hours, and their demand for food energy is from two to three times as much per unit of weight as that for adults.

Sex.—Men and women of the same age and weight, doing the same kind and amount of work, require the same amount of food. The fact that men usually require more food than women is because, as a rule, they weigh more, are more active physically, and perform more external work.

Temperament.—Persons of a nervous type, being more active, use more energy than the phlegmatic, and, therefore, require more food.

Brain Workers.—A man whose work is sedentary and chiefly mental does not need so much food as a man doing muscular work. The amount of carbohydrates required is less, and the amount of fat rather more than for the man doing light muscular work.

Ranke’s diet for the brain worker is: Protein, 100 grams; fats, 100 grams; carbohydrates, 240 grams; giving an energy value of 2310 calories.

The diet should not be bulky, but light and easily digestible. Excess of food and heavy foods are especially bad for brain workers because they produce heaviness, dulness, and drowsiness. Spiced and rich foods upset the alimentary functions, whereby the circulation is flooded with the products of imperfect metabolism to the detriment of the brain.

Trained workmen will do a given amount of labor on less food than untrained, because when persons take up mechanical operations with which they are unfamiliar, or undertake work which exercises a new set of muscles, a unit of work accomplished costs more in food energy than when the muscles have been trained to do a particular thing.

Very strenuous exercise, like athletic contests and unnaturally slow movements, are both wasteful of food energy.

Again, a continuance of the same labor for hours, and a state of fatigue, whether it comes after a longer or shorter time, causes an increase in the energy expenditure per unit of work performed.

Economy in the use of energy that food supplies to the body is most fully secured when the movements of the body are at the natural rate; when periods of intense effort do not occur, and when the labor is not too long continued and is not carried to the point of fatigue.

Standard for Daily Dietaries (American)—Atwater.

Protein.
Grams.
Fuel
value.
Calories.
Nutritive
ratio.
Woman with light muscular exercise9024005.5
Woman with moderate muscular work}10027005.6
Man without muscular work
Man with light muscular work11230005.5
Man with moderate muscular work12535005.8
Man with hard muscular work.15045006.3

The Relation of Food Economics to Social Welfare.—A virile nation is one whose citizens are of a good physical type, which means that they are well nourished. A well-fed people, other conditions being favorable, is a strong people. Food is the physical basis not only of the individual activity, but also of social energy. Any causes, therefore, which limit the food supply or increase the burden of securing adequate nourishment strike a blow at the nation’s vital power.

We must constantly keep in mind that the energy output is practically the energy requirement, under given conditions, of course; and the expenditure caused by the muscular activity of a particular individual cannot be reduced without affecting the work done or causing the loss of body substance.

Investigation has shown that there is a necessary daily protein minimum use. When insufficient protein is taken in the food, the necessary balance will be supplied by drawing on the tissues of the body. The food standards which are based on the observation of practice call for not less than 100 grams of protein daily for professional men and 175 grams for men at severe labor.

It is held to be significant that communities holding leading positions in the world consume a liberal amount of protein, or, conversely, that communities with an inferior physical and mental status use a low proportion of proteins in the diet. Again, if we argue from the analogies in feeding farm animals, generous protein feeding is desirable for the growth and maintenance of vigorous organisms and a satisfactory rate of production.

On the other hand, the well-known experience of the ages has shown that the poor who live on a low protein diet are the most liable to disease. It cannot be gainsaid that the meat eater has greater stamina and energy than the one whose diet is poor in protein.

The conclusion is, that while a minimum of protein is essential to the organism, a greater proportion is advantageous by acting as a stimulant to the metabolism and as a ready source of energy; that people are better for the consumption of proteins in quantities greater than in Chittenden’s standard, and possess greater resistance to disease, probably because the body is stimulated to manufacture antibodies.

Practical Facts for Guidance.—The housewife who keeps the following facts in mind may combine foods in an approximate way that will fully meet the demands of the human organism.

The proper ratio is 1 part of protein to 5 parts of non-protein; and the fat should equal one-half of the weight of the protein. This gives the following normal dietary:

Energy
Weight.supplied.
Grams.Ounces.Calories.
Protein100410
Carbohydrates40014½1640
Fats50465
2515

Proportion of Proteins in Foods.Foods Rich in Proteins.—Lean meat, dried peas, beans, and lentils, 18 to 25 per cent.; fat meat, 12 to 18 per cent.; eggs, 12 per cent.; oatmeal, 10 to 15 per cent.; cheese, 25 to 35 per cent.

Foods with Moderate Amounts of Proteins.—Milk averages 3½ per cent.; fresh peas, beans, and lentils, 3 to 8 per cent.; white bread, 6 to 7 per cent.; fine wheat flour and barley, 8 to 10 or 12 per cent.

Food with Usually Less than 3 Per Cent. of Proteins.—Green vegetables, potatoes, and roots, such as carrots, turnips, and onions, etc.

Legumes and certain nuts supply relatively more protein than other vegetable foods, so that when the cost of meat, fowl, fish, eggs, or milk is prohibitive, the freer use of beans, peas, lentils, and nuts is strongly recommended.

The unmodified foods, such as grain, vegetables, fruit, meat, eggs, and milk, may be depended upon to amply supply all the necessary elements to sustain growth, functions, and waste of the human body. On the other hand, foods which it is proper to designate as “artificial” are not only not essential to an adequate diet, but when they are used freely may render a diet very one-sided or deficient.

Foods may be so selected as to furnish an abundant supply of mineral ingredients. For instance, the dry substance of certain vegetables like asparagus, lettuce, spinach, and such animal foods as eggs, and beef extracts are relatively rich in iron compounds, and the dried substance of leguminous seeds, carrots and other vegetables, milk, and cheese are relatively rich in calcium compounds.

Variety of foods is necessary, for monotony of even the best kinds leads to satiety, loss of appetite, loathing of food, and subsequent ill-health. Vegetables and fruits are absolutely essential, but raw fruits are not so easily digested as cooked. Salads, lettuce, water-cress, green onions, celery, tomatoes, etc., are so valuable for the juices contained in them that they cannot be too strongly recommended to those who can digest them. Similar juices are contained in cabbage, cauliflower, spinach, etc., but these are lost to a very great measure in the cooking.

Oranges, lemons, grapes, strawberries, and bananas contain equally valuable juices, and may be eaten raw with advantage to the consumer; but apples, pears, plums, gooseberries, and many other fruits are better cooked before being eaten.

The simpler the meals, the less work will be expended in their preparation, and there is no advantage in an elaborate meal. The main thing is that the table should furnish a sufficient variety from day to day.

The following specimen dietary has been found to be most satisfactory for women with sedentary occupations. On it women have maintained good health and other women have regained their health:

Breakfast.—Fruit, bacon and eggs, breakfast hominy, rolls or toast and butter, a glass of milk, and one cup of coffee.

The fruit may be any raw fruit in season except apples or bananas; apples should always be cooked for breakfast because they are more easily digested; bananas are too heavy and indigestible to be served for breakfast. Stewed prunes are good and especially laxative.

Bacon is not a necessity, though it is an appetizer. Eggs may be served in any way, though they are most digestible when soft boiled or poached.

The hominy is boiled in water and served as a vegetable, with a little salt and butter, but no sugar.

For women with good digestion and taking more active exercise, oatmeal and cream may be substituted for the eggs, hominy, and glass of milk.

Luncheon may be served in a very appetizing way from the cold meat and vegetables which have been left from the previous day’s dinner in the form of stews, baked hash, etc. Stewed fruit should always be served, and oysters always make a nice dish for lunch.

The criticism of the ordinary lunch for women is that it is too light. The food served for lunch should furnish about 1000 calories; 90 per cent. of these should be in the form of starches and fats.

Dinner.—The following is a balanced ration given in the Educational Lunch Room of the New York Department of Health:

Proteins.
Price.Quantity.Calories.Grams.
Vegetable soup5 cents.½ pint.1505
Roast beef20 cents.4 oz. lean.14030 or
Roast beef with4 oz. fat.46027
Mashed potatoes, creamedAv. helping.1104.0
String beans5 cents.2 h. tbsp.10.5
Salad a la Sauté8 cents.Av. helping.3702.0
Whole wheat bread2 slices.1405.5
Butter½ ounce.120
Apple pie5 cents.⅙ pie.3004.0
Black coffee3 cents.1 cup.
Sugar2 squares.60
46 cents.1760 or50 or
144053

One glass of water is served with each meal; it should be taken when the meal is finished.

The mineral waters promote digestion by promoting an earlier and more abundant secretion of the gastric juice.

Lemon juice should be substituted for vinegar in all salad dressings. For a French dressing the correct proportions are 1 tablespoonful of lemon juice and water each to 2 of olive oil. Mix well, and pour over the salad just before serving.

Three meals a day has been found to be the best arrangement, and there should be an interval of five hours between the meals. If possible dinner, which is the principal meal, should be taken at the end of the day, after its work is over, so that comparative repose may be enjoyed after it. It is of extreme importance that the meals be served at the same hour every day. The perfectly healthy woman should never take anything to eat between meals.

A hearty meal should never be eaten when one is exhausted or greatly fatigued. Half an hour’s rest before dinner is a great aid to digestion. Sleep directly after a hearty meal is injurious and sometimes proves fatal because there is a depression of the circulation, and the digestive processes may stop absolutely during sleep.

Preparation of Food.—Fresh meats are highly nutritious, but in order that the nutritive properties may not be lost in the cooking, they must be eaten “rare,” that is, beef and mutton should be at least pink.

A roast should be done in a quick oven, so that the albumin shall rapidly coagulate on the surface and prevent the escape of the nutritive juices. Or if the meat is boiled, it should for the same reason be plunged into boiling water.

On the other hand, in treating meats in order to obtain “stock” for soup, the meat after having been cut up into small pieces should be allowed to stand in cold water for twenty minutes and then be put on to simmer for six hours or more.

Plenty of bones with gristle should be gotten with the soup meat; these do not add to the cost, and add materially to the value of the stock; for, while the gelatinoids are not flesh formers, they are admirable protein sparers. The same thing holds true of gelatin and its preparations.

Indigestible Combination of Foods.—The acid of vinegar being a fermentation acid renders the digestion of many foods with which it is taken more difficult, while vegetable acids, such as citric and tartaric, do not cause that objectionable effect. Vinegar also retards salivary and gastric digestion.

Strong tea taken with any meat meal converts the albumin of the meat into a dense precipitate that is absolutely indigestible. The tannin of tea inhibits the salivary and gastric secretions and so retards digestion. Indigestion, atony, or catarrh of the stomach is frequently due to excessive tea drinking, and the artificial stimulation of the nervous system may be carried so far as to produce insomnia, palpitation, muscular tremors, and other signs of nervous irritability.

Claret and coffee both delay digestion.

Water is the best beverage to be taken with meals; but the moderate use of tea and coffee is commendable because they have an invigorating effect arising from the caffein and the essential oils, but their use should not be abused.

The Proper Way of Making Tea.—The water should be freshly boiled; the tea-pot heated so that the water will be maintained at the boiling-point; one teaspoonful of tea is allowed to the cup. The tea is measured out, put into the tea-pot, and the requisite amount of boiling water poured over it. It is then allowed to stand on the kitchen table, not the range, for from two to three minutes; it should then be strained into the tea-pot for the table.

Unless the tea is strained off the leaves the infusion continues for some time; this extracts the tannic acid and bitter principles. In addition, the prolonged infusion dissipates the volatile oil, to which much of the fragrance of a good cup of tea is due.

As it is almost impossible to have the requisite amount of care exercised in the making of tea in the kitchen, it is much better that it should be made on the table. Sugar detracts from the healthfulness of the beverage.

Coffee.—Most that has been said about tea is true of coffee. It is aromatic and refreshing, stimulates the mental activity, invigorates the muscular system, and removes the sense of fatigue. The excessive use of coffee often leads to insomnia. Its use retards gastric digestion, but less so than tea; but strong coffee or café noir has a still greater inhibitory effect. It has a slightly aperient effect on the intestines by increasing the peristaltic action. It is also slightly diuretic.

The aromatic oils are dissipated by boiling, and the best temperature of the water is 210° F., or just below the boiling-point.

Defective Methods in the Preparation of Breads which Reduces the Vitamin Contents, Especially of Corn Bread.—By resorting to artificial methods for procuring the lightness of breads, baking soda (sodium bicarbonate) is used. In order to prepare bread in this way the cornmeal is mixed with milk or water to which baking soda has been added, and put in the oven to bake. The high temperature of the oven liberates the carbon dioxid (CO2) from the baking soda, causing the bread to rise, and the sodium bicarbonate is transformed into sodium carbonate, a strong alkali. Recent experiments have clearly demonstrated the destructive action of the alkalies on the vitamins, this being especially true at high temperatures.

It should be strongly emphasized that the old-fashioned way of combining baking soda with sour milk in the preparation of bread is an entirely harmless procedure, provided that sufficient sour milk is added to perfectly neutralize the alkalinity of the soda. The label on some brands of baking soda clearly states that sour milk, or tartaric acid, should be added in order to obtain the best results.

Dietary in the Tropics.—Sir R. Havelock Charles says, “It is impossible to form exact rules for dietary in the tropics because there are differences in climate which require modifications.” He says nothing about limiting the amount of meat, but he does say, “no cold meat whatever should come on the table.” It is important that everything should come straight from the fire to the table. It cannot then cause bacillary mischief, and there should be no fear of cholera or dysentery.

Boiled water only should be drunk. No salads of any kind should be used except in the greatest moderation.

Fruit.—Every fruit which possesses a rind that can be removed may be eaten raw with impunity by a healthy man at any time of the year. Fruits which do not possess a rind are incapable of being thoroughly cleansed; such fruit may be contaminated and dangerous to the consumer, and, at any rate, ought only to be eaten after it is cooked. Therefore oranges, grape-fruit, pears, apples, bananas, mangoes, pineapples, custard-apples, mangosteen, tomatoes, etc., may be eaten raw after peeling them. But it would be unsafe to eat grapes, currants, strawberries, and other fruits which cannot be peeled until they are cooked.

As regards proteins, some fish, fowl, or meat may be taken for breakfast; animal food ought not to be taken in the middle of the day. It is better to take dinner in the evening. Beef, mutton, pork, kid (goat-flesh), venison (deer and antelope), poultry, many kinds of birds, eggs, and fish are obtainable in one place or another. Tinned meats and fish should be avoided; indeed, the importance of fresh meat is so great that hunting, shooting, and fishing should be strongly recommended as exercise.

Fat is obtained in the form of meat, dripping, butter, ghee, nuts, and various oils used in cooking. The pure oil from peanuts, palm-nuts, and cocoanuts is salutary; but many samples are adulterated with sesamé oil, poppy-seed oil, and colza oil, which are deleterious by causing dyspepsia or other gastro-intestinal troubles. These in turn render the subject susceptible to dysentery, sprue, and other tropical disorders.

Food Economics: Regulation of Diet with Reference to Minimum Expenditure.—The cost of a meal for an individual or a family is made up of two factors—the money cost of the raw materials, and the time, cost of labor, and other expenses required for the preparation and serving of the food.

The Cost of Raw Food Materials.—Meats of all kinds, poultry, and fish are the most expensive articles of diet. Then, too, the waste has to be considered—the bones and legs of a dressed fowl and the bones and skin of fish.

At the present time the dairy products supply the cheapest nutriment among animal foods, but the price of butter and eggs are apt to soar enormously during the winter months.

Leguminous Food.—The dried pea, bean, or lentil are especially rich in protein, and are thus fit to take the place of a part of meat in the dietary. Their price is low in comparison to their value, and must be considered next to bread in importance. They are less completely digested than cereals if eaten in any quantity; and, highly nutritious as these are, it cannot be denied that in large quantities they are very indigestible for any but persons with strong constitutions and leading an active outdoor life.

Great care is needed in their preparation. Dried legumes should be soaked in cold water for eight hours, and then boiled for one hour and a half. They are then sufficiently soft to be pressed through a sieve. The skin of peas and beans that have been dried should be removed, for they pass through the intestines unchanged. Soft water should be used in preference to hard, as insoluble lime compounds are formed by the latter with the protein “legumin.”

Outside Preparation Expensive.—From the standpoint of food value, white bread is more than twice as costly as the wheat flour from which it is made. A barrel of flour of 196 pounds will make on the average 315 5-cent loaves of bread. The bread costs the consumer $15.75, whereas the flour can be bought at the time of writing for $6.50.

Breakfast foods ready for the table, instead of the cheaper cornmeal, oatmeal, and hominy cooked at home, and bread, cake, and other pastry cost double the amount of the raw materials.

There are, however, other factors which complicate and increase the cost of living. At present the exorbitant cost of labor, cost of fuel, etc., and the amount of the housewife’s time consumed are all important factors to be taken into consideration.

The size of the family, the number of small children demanding the mother’s attention, the kind of labor in which they are engaged, whether hired help has to be depended on for all the work, etc., are all factors which must be taken into consideration as to whether the outside preparation is more expensive than when the labor is performed in the home. This is a matter for every housewife to work out in making her monthly and yearly budgets.

TABLE OF FOOD VALUES[4]

Percentage composition.
Kind of food, edible portion only.Water.Protein.Fat.Carbohydrate.Ash.Heat value calories per ounce.Food values comparison of 1000 grams.
Meats.
Beef:
Roast, average48.2522.2528.55...1.251601868
Roast ribs, fat45.2019.1439.04....821222057
Boiled, average39.1026.3035.00...1.001752268
Broiled steak44.2523.4526.50...1.431001942
Corned51.1926.3218.65...4.10801810
Veal: Cooked, average51.8832.2011.40...1.50681896
Mutton:
Roast, average51.0026.0022.60...1.19901805
Boiled leg57.6727.6014.38...1.05671738
Lamb:
Roast leg67.1019.7012.70....80661318
Various parts47.2523.8028.50...1.251001966
Pork: Roast, various parts45.0032.0020.00...1.76902122
Organs:
Heart, cooked, average62.6016.6020.00...1.00701370
Kidney, ox, cooked, average76.1516.504.90.401.2032940
Liver, ox, cooked, average71.0020.604.601.801.50381150
Sweetbread, ox, cooked, average71.0016.8012.00...1.60511157
Tongue, ox, cooked, average71.0019.009.00...1.00461188
Soup, etc.
Beef-tea93.004.30.501.101.108234
Bouillon96.502.30.10.20.903116
Chicken broth94.003.80.101.801.006200
Consomme95.502.40.10.301.103120
Meat hash80.006.502.009.002.4024560
Meat stew84.504.604.305.501.1023420
Oxtail soup89.004.001.504.301.5013278
Pea soup87.004.00.808.501.3015291
Soup stock, beef89.105.801.50...3.6011324
Tomato soup89.002.001.505.501.3012158
Meat juice (natural), average90.005.37.19...1.367269
Fowl.
Domestic, average64.0019.0016.00...1.00651130
Chicken67.0022.7010.00...1.00621395
Capon56.0021.8021.00...1.30911656
Duck55.7517.5025.00...1.00951554
Goose52.0016.5035.10...1.201101800
Turkey55.5021.1023.00...1.00851679
Roast52.0027.8018.50...1.30821872
Roast capon59.0027.0011.50...1.30601677
Chicken66.9022.008.10...1.70581298
Boiled fowl57.6027.0012.80...1.90801708
Eggs.
Chicken eggs:
Raw73.7013.4011.50...1.0045983
Boiled, white.86.3012.80.20....7016633
Yolk50.0014.8033.70...1.201061883
Fish and Shell-fish.
Bluefish78.5019.101.20...1.2027935
Haddock, fresh81.4017.20.30...1.1021922
Halibut steak74.8018.505.30....1.4035850
Mackerel74.8018.506.50....1.10401086
Oysters80.0010.602.606.501.3025655
Perch75.7019.004.00....1.20331049
Salmon, Atlantic63.6021.6013.90....1.40641445
Sardines56.3024.8012.70....5.00791560
Shad70.6018.509.50....1.30471170
Roe71.2021.003.802.501.50381252
Trout:
Brook77.7019.302.10....1.2028995
Lake69.3018.3010.60....1.20481190
Salmon70.8017.8010.20....1.20481156
Calf’s foot jelly77.504.50....17.40.7026210
Milk Products.
Cows’ milk, average87.303.503.704.60.7320320
Skimmed90.304.00.204.60.8311245
Condensed milk, full cream,
unsweetened62.4010.6010.8014.102.0052973
Full cream, sweetened20.0010.509.9057.502.101001368
Skimmed and sweetened26.4010.40.9060.202.10401232
Cream, hand skimmed74.002.5018.504.50.5056210
Buttermilk90.003.201.205.00.6010238
Cheese from skimmed milk.45.3032.0016.502.004.20852140
Butter:
Best quality13.001.0082.501.502.002252371
Second quality16.002.0073.004.005.002032235
Margarine16.001.1076.70....6.302202210
Cereal Foods.
Wheat flour, superfine, white.10.5011.901.6075.40.501141283
Entire wheat10.8012.202.2073.601.001141300
Graham8.6012.602.4074.501.701161330
Maize10.9010.204.8071.001.30....1242
Meal12.507.101.3078.30.601081106
Rice12.406.90.4079.40.501021084
Boiled72.502.80.1024.50.2045258
Oatmeal, boiled84.502.80.5011.50.7018244
Macaroni, cooked78.403.001.5015.801.3026558
Bread.
White, best44.107.70.9046.90.3071793
Entire wheat49.107.401.1041.70.5065770
Brown (Graham)47.207.701.2042.80.9067780
Gluten bread38.209.301.4049.801.3072910
Toasted bread24.0011.501.6061.201.70901126
Zwiebach5.809.809.9073.501.001251399
Pies and Puddings.
Apple pie42.503.109.8043.001.8080866
Cornflour blanc mange66.002.603.1027.001.0036456
Custard with crust62.404.206.3026.101.0052604
Maize pudding (Indian meal)60.005.505.0028.001.4051628
Rice pudding60.004.004.7032.00.6052608
Tapioca pudding64.503.303.2028.50.8045505
With apples70.10.30.1030.00.2036289
Roots and Tubers.
Carrots, boiled92.50.50.204.50.80870
Beets, boiled91.701.40.105.131.0011102
Parsnips, boiled92.101.30.306.50.7011126
Potatoes, boiled75.502.50.1021.001.0026312
Mashed, with cream75.102.603.0017.801.5031364
Fried in fat2.206.8039.8046.704.501661807
Vegetables.
Asparagus, cooked and buttered91.602.103.302.20.8030200
Brussels sprouts, boiled93.701.50.103.40.20698
Cabbage85.502.30.705.101.70989
Boiled97.00.60.101.40.20341
Cauliflower, boiled97.30.60.101.40.50....41
Celery, boiled97.00.40.071.00.50....26
Green peas, boiled73.806.702.5014.601.5034588
Beans, string, boiled89.202.30.307.40.8012176
Salads.
Celery94.501.10.109.701.0013144
Cucumber94.90.70.203.10.50464
Endive93.001.00.103.00.60873
Lettuce93.801.80.604.801.209138
Onions87.601.60.309.501.1013167
Radishes91.801.20.105.60.705107
Tomatoes91.801.20.105.60.705107
Watercress92.80.70.404.001.20679
Dried Legumes.
Peas9.5023.801.8060.302.601041544
Haricot beans12.6022.501.9059.603.501001654
Butter beans10.5020.602.0062.604.201021519
Nuts.
Almonds, dried4.8021.0054.9017.302.501892645
Brasil nuts5.4018.0066.008.002.702042606
Butter nuts4.5028.0061.003.502.901922956
Chestnuts4.8011.6015.3065.702.601171537
Cocoanut, fresh19.205.4051.0010.001.20108....
Hazel and filbert nuts48.008.0028.5011.501.50160....
Peanuts9.2026.0038.6024.202.001602071
Walnuts, dried4.9015.5062.707.501.901902364
Fruits.
Apples:
Raw85.20.40.5012.60.3018149
Cooked and sweetened66.10.20.8037.20.7046395
Dried28.101.602.2066.102.0084753
Apricots85.001.10....13.40.5018176
Canned81.40.90....17.30.4021208
Bananas75.701.30.5021.70.7029276
Blackberries86.301.301.008.40.5017120
Cherries82.00.90.8014.30.6023197
Cranberries88.90.50.604.00.201476
Dates, dried20.003.502.3069.001.30101885
Figs, dried22.704.30.7062.501.3080805
Grapes, fresh80.50.90.8014.70.5028201
Dried, raisins18.603.002.8070.502.70100870
Jam, or preserve, average30.501.50....60.00.5070744
Melon89.50.60.307.20.6011103
Oranges82.80.90.2010.60.7015146
Peaches88.80.50.209.20.6012117
Canned88.10.70.1010.80.3014128
Pears80.90.90.5015.70.4018203
Canned81.10.30.3018.00.3022195
Pineapples89.30.40.3010.00.9013112
Plums74.50.90.2019.10.5024200
Prunes:
Dried22.302.10.2073.302.3086724
Stewed76.60.50.1022.30.5027243
Raspberries86.20.50....5.60.501676
Strawberries94.001.00.608.80.6012144

The Physiologic Action of Moderate Doses of Alcohol.—The result of a series of experiments by Dr. Parke were as follows: “By quickening the action of the heart, it shortens the interval of rest, and, therefore, interferes with the nutrition of the heart. It also produces palpitation and breathlessness. Even small doses of alcohol, by increasing unnecessarily the action of the heart, are injurious. It acts on the nervous system by lessening the rapidity and the delicacy of the impressions, as well as by lessening the power of control of a train of thought. Further, by this same blunting of the nervous system, voluntary muscular power is impaired, and the finer combined movements are less perfectly made. It causes a lowering of the temperature of the body, and, although it is taken to overcome the effects of exposure to cold, it has been learned that persons who take it are less able to resist the exposure to cold.”

As the result of modern scientific investigation and experimentation, alcohol with its compounds has been taken out of the list of beverages, where it has heretofore been classified with tea and coffee, and out of the list of foods, to which class it had been admitted because of the known oxidation of alcohol in the body, and has been placed in that list of drugs known as narcotics, alongside of ether, chloroform, opium, and cocain—all of them, the most deadly drugs in the Pharmacopeia, yet, when used by skilled hands, the most beneficent.

The first effect of this class of drugs is a short temporary stage of exhilaration, more or less rapidly followed, according to the amount taken, by a stage of sleepiness or actual insensibility, which lasts longer than the stage of excitement, and this in turn is followed by a long period of depression.

Like other members of its class, alcohol has a cumulative action, the residual quantities habitually taken accumulate and gradually affect the efficiency and well-being of the individual.

A point that must always be borne in mind in giving any medicine is that not a few drugs have a curious tendency to induce a craving for their repetition.

The amount of alcohol contained in some of the most commonly used of the alcoholic beverages is as follows: beer, 4 to 5 per cent.; hard cider, from 5 to 10 per cent.; claret, 8 to 11 per cent.; port, 9 to 22 per cent.; champagne, 10 to 15 per cent.; rum, gin, and strong liquors, 40 to 50 per cent.; whisky, 44 to 50 per cent.; brandy, 48 to 56 per cent.

These alcoholic beverages are often made still more harmful by adulterations by ingredients in themselves harmful.

A large percentage of alcohol is also found in bitters and patent medicines.

We will consider the subject of alcohol under the following aspects: First, the question of alcohol as a food; second, the effects of alcohol on the digestive system and the metabolism; third, the effects of alcohol on the heart and the muscular system; and fourth, the effects of alcohol on the nervous system.

First, Is Alcohol a Food?—The substances used as foods act in providing energy for muscular work, in maintaining the heat of the body, in building up of the tissues, and in saving the waste of the tissues. Moreover, a food which does harm to any organ, or to the system as a whole, when taken in moderate repeated quantities, becomes a poison for that individual.

A food may be defined as any substance which, when absorbed into the blood, will nourish, repair waste, and furnish force and heat to the body, without causing injury to any of its parts or loss of functional activity. From any one of these four standpoints alcohol cannot be regarded as a food.

The physiologic effects of alcohol and real food-stuffs are totally different. Fats, carbohydrates, and nitrogenous foods after mastication at once begin to be digested and assimilated, and to fulfil the true functions of a food by maintaining a natural temperature, pulse-rate, and tissue repair of the body, without any disturbance of its mental and physical functions and activities.

Alcohol, on the contrary, is absorbed from the stomach unaltered by the digestive processes; circulated in the blood in its original form, it at once interferes with the ordinary activity of the brain and other organs, and, by its anesthetic action, hampers the mental and physical activities and interferes with the processes of metabolism.

The Effects of Alcohol on the Digestive System and Metabolism.—The local action of alcoholic liquids is particularly destructive on an empty stomach; and when taken in strong solution, but it is also known that smaller doses, taken continuously, are liable to effect the digestive organs in a slower though similar way.

The injurious effects of alcohol are that it acts as a local irritant, producing dilatation of the blood-vessels of the stomach and subsequent gastritis; it leads to hyperacidity, by stimulating the secretion of hydrochloric acid; the tartrates and malates contained in wine are decomposed in the stomach, setting free organic acids, and thus producing acidity; the acetic acid and yeast in beer set up an acetic acid fermentation in the stomach-contents.

Whether taken alone or with food, the tendency of alcohol throughout is to lessen the churning movements of the stomach, and leads to atony of that organ, which in turn leads to dilatation of the stomach.

Alcohol appears to have a particularly deleterious effect on the digestion of women. This is explained by the fact that men lead a more active outdoor life, and consequently retain their appetite for food longer than women. For the same reason, they are able to work off the effects of drinking more easily and start afresh the assimilation of food. The indoor life led by women, their clothing, worn tight around the stomach, are added causes for lack of appetite. Catarrh of the stomach results; this is followed by insufficient food and an increased amount of stimulants. There follow nausea, irregular and insufficient nutrition, indigestion, and a faulty elaboration of the food.

By its action on the liver alcohol interferes with the amount and quantity of bile, and so inevitably leads to indigestion and constipation, and a similar interference with the action of the liver-cells and their chemical changes set up in many cases gouty conditions, accompanied by mental depression and irritability.

Diseases of the liver occur more frequently as the result of taking frequent small doses of alcohol, though never reaching the stage of intoxication, than as the result of indulging more freely, but at longer intervals.

The Effect of Alcohol on the Blood.—The blood is a mixture of corpuscles and a fluid known as the blood plasma. The corpuscles are of two kinds—red and white. The red blood-corpuscles are the oxygen carriers; they carry the oxygen to the tissues, where they readily give it up. They are constantly being destroyed by the liver and spleen, and are replaced by new ones, which come from the red marrow of bones. The white corpuscles are much fewer in number, but they play a most important part in protecting the body against disease. It is now about twenty years since Professor Metchnikoff, of the Pasteur Institute of Paris, announced to the world his discovery that the white corpuscles have the power of destroying the microbes to which so many diseases are due. These white blood-cells form the standing army or policemen of the body, and their duty is to attack, and, if possible, to destroy, any foreign matter, such as dust or disease germs.

The plasma of the blood contains various kinds of salts, and include sodium chlorid or common salt, the phosphates, and chlorids of calcium and potassium.

The way which the body fights disease is partly by means of the white blood-corpuscles, which totally destroy the germs, and partly by the increase in the blood of those chemical substances which are antidotes for the poisons given out by the germs.

Alcohol taken into the stomach is quickly absorbed and reaches the blood in two minutes. The maximum of alcohol is found in the blood in fifteen minutes after it is swallowed.

The blood is the medium by which food and oxygen are conveyed to the tissues, and by which the refuse material from the tissues is carried away; alcohol interferes with both these processes.

The red cells are liable to become damaged and anemia results. It has now been proved that even tiny doses of alcohol paralyze more or less the white cells, and thus interfere with their power of destroying microbes. Chemical substances tend to exert a delaying or inhibitory influence over the chemical processes of the body. These chemical processes are oxidation, the storing up of nutriment, the manufacture of secretion, the production of energy and muscular movement, and the excretion of waste materials.

The greatest possible difference exists as to the rate at which oxidation goes on. When there is nothing to hinder its occurrence, the poisonous toxins and waste matters are rapidly burned up and eliminated and health prevails. Alcohol, by its affinity for oxygen, robs the tissues of oxygen which they would otherwise use for combustion. Hence the tissues are kept starving for oxygen, metabolism is interfered with, and they cannot get rid of their waste material.

This delayed oxidation tends to increase the body weight. The cells in an intermediate stage of fatty degeneration clog the body, and, of course, add to its weight. The natural effect of taking alcohol is to make the body obese. On abstaining from alcohol, the superfluous tissue is often burned away, and the weight of the body reduced, and a look and feeling of youth is recovered.

The Effect of Alcohol on the Heart and Circulation.—By the circulation we understand the driving of the fluid blood around the body, through the blood-vessels, such driving being maintained by the pumping power of the heart, which is practically a hollow muscle.

In consequence of this pumping power of the heart, the blood in the vessels is under considerable pressure, which is naturally increased if the blood-vessels are narrowed or contracted, and diminished if the blood-vessels are expanded or dilated.

Gradual deterioration in the heart power is a cause of premature death. One of the early indications that the foregoing changes may be occurring in a heart is a sense of fatigue and breathlessness on slight exertion, or a feeling of disinclination for normal effort. The result of such depression of the efficiency of the heart is often seen when the individual is attacked by some disease; she succumbs to heart failure, instead of being able to resist the disease. This probably accounts for a great many deaths between forty and sixty years of age.

Further, it must be remembered that all the nutritive action of the blood depends on its power of rapidly filtering through the walls of the blood-vessels to the tissues, and, conversely, its power of drawing off the waste-products of the tissues depends on the facility with which such products can penetrate its walls.

As soon as degeneracy sets in, the walls of all vessels tend to become thickened, and the active transference through them, more and more prevented; the nutrition of the body is thus gravely hampered, and, with the advance of this thickening of the walls, the vessels are less able to adjust themselves to the variations in pressure from within; and, finally, when unable to withstand the pressure, they rupture, causing hemorrhage and apoplexy, which, when occurring in the brain, cause paralysis and mental decay.

A similar degeneration takes place in old age, but the point is, that many persons, instead of waiting until old age comes to them, deliberately precipitate these senile changes.

The Effect of Alcohol on the Kidneys.—The elaborate mechanism of the kidneys consist of a filtering system of thousands of tubules, arranged closely side by side, whose function it is to carry away from the body the waste material, which otherwise would interfere with the vitality of the different organs.

The part played by the kidneys in rapidly eliminating effete material cannot be too carefully safeguarded. Anything which interferes with its work will sooner or later cause a retention of waste-products in the system, and will also permit of the escape of valuable albuminous materials of the substance of the blood through the filtering apparatus. The effect of alcohol upon the kidneys can only be described as disastrous. In proportion as the kidney shrinks, there is a diminution of the excretion of urine, and, finally, the condition known as Bright’s disease is established.

The Effect of Alcohol on the Muscular System.—The muscular tissue forms 43 per cent. of the body weight. It has been proved that under the moderate use of alcohol the muscles become flabby and less vigorous and effective; that troops cannot work or march on alcohol; that in training for athletics, for races, or for other sports, total abstinence is always practised; the true sportsman depends quite as much on his brain as on his muscles for success. In England it is recognized that total abstinence is a necessity where great exertions are concerned, and it is now beyond all question that alcohol, in even so-called dietetic quantities, diminishes the output of muscular work, both in quantity and quality, and that the best physical results are obtained under total abstinence from its use.

Alcohol actually lowers the temperature of the body from three-fourths of one degree to three degrees. This depression of temperature is not transient, but lasts for several days, so that its use, when the person is exposed to intense cold, is extremely hazardous to life.

The Effects of Alcohol on the Nervous System.—Kraepelin has carried out a series of experiments to prove the effects of small doses of alcohol on the output of work. In all mental work there are two elements to be considered, namely, quality and speed. Now, all observers are agreed that the quality of mental work is affected even before speed, more mistakes being made. Tests were made in reading aloud; in adding figures in various combinations; in type-setting; and in memorizing; in all these instances it was found that, after taking moderate doses of alcohol for a number of consecutive days, the work done was less, was less accurate, and that there was a decrease in the power of memorizing.

Another series of investigations, made by Rudin to determine how long the intellectual abilities continue to be depressed after the effects of alcohol pass off, showed that the effects of a single dose of alcohol persisted until noon or evening of the next day.

Von Helmholtz, one of the greatest observers and thinkers of the nineteenth century, noted on himself the effect of alcohol in interfering with the highest powers of thought and conception. Describing the conditions under which his highest scientific thoughts had matured and come to fruition, he said: “As far as my experience is concerned, they never come to a wearied brain or at the writing-desk; they were especially inclined to appear to me while indulging in a quiet walk in the sunshine or over the forest-clad mountains, but the smallest quantity of alcohol seemed to drive them away.”

Professor Sikovsky’s testimony is that “alcohol diminishes the rapidity of thought, makes the imagination and the power of reflection commonplace and deprived of originality, acts upon fine and complex sensations by transforming them into coarse and elementary ones, provokes outbursts of evil passions and dispositions, and in this predisposes men to strife and crime, and upsets habits of work and perseverance.”

Self-control is one of the highest functions of the brain, and the racial power which results to a people as a consequence of the individual practice of self-control cannot be too highly estimated. Therefore, children are trained as far as possible to control their emotions and actions. Alcohol diminishes and breaks down this power of acquired self-control, undoing the work of parents and educationalists. Quite small doses are often responsible for reckless and self-pleasing actions, which are far reaching in their results in loss of moral tone and self-respect. The ideals of duty are lost sight of, and, at best, leave the individual in a laissez-faire attitude. Among the depressant effects of alcohol are intellectual lethargy and a sense of fatigue, which, combined with the other factors, lessen the capacity for genuine enjoyment and pleasure.