X

INSECTIVOROUS PLANTS

(The Nation, April 2 and 9, 1874)

That animals should feed upon plants is natural and normal, and the reverse seems impossible. But the adage, "Natura non agit saltatim," has its application even here. It is the naturalist, rather than Nature, that draws hard and fast lines everywhere, and marks out abrupt boundaries where she shades off with gradations. However opposite the parts which animals and vegetables play in the economy of the world as the two opposed kingdoms of organic Nature, it is becoming more and more obvious that they are not only two contiguous kingdoms, but are parts of one whole—antithetical and complementary to each other, indeed; but such "thin partitions do the bounds divide" that no definitions yet framed hold good without exception. This is a world of transition in more senses than is commonly thought; and one of the lessons which the philosophical naturalist learns, or has to learn, is, that differences the most wide and real in the main, and the most essential, may nevertheless be here and there connected or bridged over by gradations. There is a limbo filled with organisms which never rise high enough in the scale to be manifestly either animal or plant, unless it may be said of some of them that they are each in turn and neither long. There are undoubted animals which produce the essential material of vegetable fabric, or build up a part of their structure of it, or elaborate the characteristic leaf-green which, under solar light, assimilates inorganic into organic matter, the most distinguishing function of vegetation. On the other hand, there are plants—microscopic, indeed, but unquestionable—which move spontaneously and freely around and among animals that are fixed and rooted. And, to come without further parley to the matter in hand, while the majority of animals feed directly upon plants, "for 'tis their nature to," there are plants which turn the tables and feed upon them. Some, being parasitic upon living animals, feed insidiously and furtively; these, although really cases in point, are not so extraordinary, and, as they belong to the lower orders, they are not much regarded, except for the harm they do. There are others, and those of the highest orders, which lure or entrap animals in ways which may well excite our special wonder—all the more so since we are now led to conclude that they not only capture but consume their prey.

As respects the two or three most notable instances, the conclusions which have been reached are among the very recent acquisitions of physiological science. Curiously enough, however, now that they are made out, it appears that they were in good part long ago attained, recorded, and mainly forgotten. The earlier observations and surmises shared the common fate of discoveries made before the time, or by those who were not sagacious enough to bring out their full meaning or importance. Vegetable morphology, dimly apprehended by Linnaeus, initiated by Casper Frederick Wolff, and again, independently in successive generations, by Goethe and by De Candolle, offers a parallel instance. The botanists of Goethe's day could not see any sense, advantage, or practical application, to be made of the proposition that the parts of a blossom answer to leaves; and so the study of homologies had long to wait. Until lately it appeared to be of no consequence whatever (except, perhaps, to the insects) whether Drosera and Sarracenia caught flies or not; and even Dionaea excited only unreflecting wonder as a vegetable anomaly. As if there were real anomalies in Nature, and some one plant possessed extraordinary powers denied to all others, and (as was supposed) of no importance to itself!

That most expert of fly-catchers, Dionaea, of which so much has been written and so little known until lately, came very near revealing its secret to Solander and Ellis a hundred years ago, and doubtless to John Bartram, our botanical pioneer, its C probable discoverer, who sent it to Europe. Ellis, in his published letter to Linnaeus, with which the history begins, described the structure and action of the living trap correctly; noticed that the irritability which called forth the quick movement closing the trap, entirely resided in the few small bristles of its upper face; that this whole surface was studded C with glands, which probably secreted a liquid; and that the trap did not open again when an insect was captured, even upon the death of the captive, although it opened very soon when nothing was caught, or when the irritation was caused by a bit of straw, or any such substance. It was Linnaeus who originated the contrary and erroneous statement, which has long prevailed in the books, that the trap reopened when the fatigued captive became quiet, and let it go; as if the plant caught flies in mere play and pastime! Linnaeus also omitted all allusion to a secreted liquid—which was justifiable, as. Ellis does not state that he had actually seen any; and, if he did see it, quite mistook its use, supposing it to be, like the nectar of flowers, a lure for insects, a bait for the trap. Whereas, in fact, the lure, if there be any, must be an odor (although nothing is perceptible to the human olfactories); for the liquid secreted by the glands never appears until the trap has closed upon some insect, and held it at least for some hours a prisoner. Within twenty-four or forty-eight hours this glairy liquid is abundant, bathing and macerating the body of the perished insect. Its analogue is not the nectar of flowers, but the saliva or the gastric juice!

The observations which compel such an inference are re-cent, and the substance of them may be briefly stated. The late Rev. Dr. M. A. Curtis (by whose death, two years ago, we lost one of our best botanists, and the master in his especial line, mycology), forty years and more ago resided at Wilmington, North Carolina, in the midst of the only district to which the Dionaea is native; and he published, in 1834, in the first volume of the "Journal of the Boston Society of Natural History," by far the best account of this singular plant which had then appeared. He remarks that "the little prisoner is not crushed and suddenly destroyed, as is sometimes supposed," for he had often liberated "captive flies and spiders, which sped away as fast as fear or joy could hasten them." But he neglected to state, although he must have noticed the fact, that the two sides of the trap, at first concave to the contained insect, at length flatten and close down firmly upon the prey, exerting no inconsiderable pressure, and insuring the death of any soft-bodied insect, if it had not already succumbed to the confinement and salivation. This last Dr. Curtis noticed, and first discerned its import, although he hesitated to pronounce upon its universality. That the captured insects were in some way "made subservient to the nourishment of the plant" had been conjectured from the first. Dr. Curtis "at times (and he might have always at the proper time) found them enveloped in a fluid of mucilaginous consistence, which seems to act as a solvent, the insects being more or less consumed in it." This was verified and the digestive character of the liquid well-nigh demonstrated six or seven years ago by Mr. Canby, of Wilmington, Delaware, who, upon a visit to the sister-town of North Carolina, and afterward at his home, followed up Dr. Curtis's suggestions with some capital observations and experiments. These were published at Philadelphia in the tenth volume of Meehan's Gardeners' Monthly, August, i868; but they do not appear to have attracted the attention which they merited.

The points which Mr. Canby made out are, that this fluid is always poured out around the captured insect in due time, "if the leaf is in good condition and the prey suitable;" that it comes from the leaf itself, and not from the decomposing insect (for, when the trap caught a plum-curculio, the fluid was poured out while he was still alive, though very weak, and endeavoring, ineffectively, to eat his way out); that bits of raw beef, although sometimes rejected after a while, were generally acted upon in the same manner—i.e., closed down upon tightly, salvered with the liquid, dissolved mainly, and absorbed; so that, in fine, the fluid may well be said to be analogous to the gastric juice of animals, dissolving the prey and rendering it fit for absorption by the leaf. Many leaves remain inactive or slowly die away after one meal; others reopen for a second and perhaps even a third capture, and are at least capable of digesting a second meal.

Before Mr. Canby's experiments had been made, we were aware that a similar series had been made in England by Mr. Darwin, with the same results, and with a small but highly-curious additional one—namely, that the fluid secreted in the trap of Dionaea, like the gastric juice, has an acid reaction. Having begun to mention unpublished results (too long allowed to remain so), it may be well, under the circumstances, to refer to a still more remarkable experiment by the same most sagacious investigator. By a prick with a sharp lancet at a certain point, he has been able to paralyze one-half of the leaf-trap, so that it remained motionless under the stimulus to which the other half responded. Such high and sensitive organization entails corresponding ailments. Mr. Canby tells us that he gave to one of his Dionaea-subjects a fatal dyspepsia by feeding it with cheese; and under Mr. Darwin's hands another suffers from paraplegia.

Finally, Dr. Burdon-Sanderson's experiments, detailed at the last meeting of the British Association for the Advancement of Science, show that the same electrical currents are developed upon the closing of the Dionaea-trap as in the contraction of a muscle.

If the Venus's Fly-trap stood alone, it would be doubly marvelous—first, on account of its carnivorous propensities, and then as constituting a real anomaly in organic Nature, to which nothing leads up. Before acquiescing in such a conclusion, the modern naturalist would scrutinize its relatives. Now, the nearest relatives of our vegetable wonder are the sundews.

While Dionaea is as local in habitation as it is singular in structure and habits, the Droseras or sundews are widely diffused over the world and numerous in species. The two whose captivating habits have attracted attention abound in bogs all around the northern hemisphere. That flies are caught by them is a matter of common observation; but this was thought to be purely accidental. They spread out from the root a circle of small leaves, the upper face of which especially is beset and the margin fringed with stout bristles (or what seem to be such, although the structure is more complex), tipped by a secreting gland, which produces, while in vigorous state, a globule of clear liquid like a drop of dew— whence the name, both Greek and English. One expects these seeming dew-drops to be dissipated by the morning sun; but they remain unaffected. A touch shows that the glistening drops are glutinous and extremely tenacious, as flies learn to their cost on alighting, perhaps to sip the tempting liquid, which acts first as a decoy and then like birdlime. A small fly is held so fast, and in its struggles comes in contact with so many of these glutinous globules, that it seldom escapes.

The result is much the same to the insect, whether captured in the trap of Dionaea or stuck fast to the limed bristles of Drosera. As there are various plants upon whose glandular hairs or glutinous surfaces small insects are habitually caught and perish, it might be pure coincidence that the most effectual arrangement of the kind happens to occur in the nearest relatives of Dionaea. Roth, a keen German botanist of the eighteenth century, was the first to detect, or at least to record, some evidence of intention in Drosera, and to compare its action with that of Dionaea, which, through Ellis's account, had shortly before been made known in Europe. He noticed the telling fact that not only the bristles which the unfortunate insect had come in contact with, but also the surrounding rows, before widely spreading, curved inward one by one, although they had not been touched, so as within a few hours to press their glutinous tips likewise against the body of the captive insect—thus doubling or quadrupling the bonds of the victim and (as we may now suspect) the surfaces through which some part of the animal substance may be imbibed. For Roth surmised that both these plants were, in their way, predaceous. He even observed that the disk of the Drosera-leaf itself often became concave and enveloped the prey. These facts, although mentioned now and then in some succeeding works, were generally forgotten, except that of the adhesion of small insects to the leaves of sundews, which must have been observed in every generation. Up to and even within a few years past, if any reference was made to these asserted movements (as by such eminent physiologists as Meyen and Treviranus) it was to discredit them. Not because they are difficult to verify, but because, being naturally thought improbable, it was easier to deny or ignore them. So completely had the knowledge of almost a century ago died out in later years that, when the subject was taken up anew in our days by Mr. Darwin, he had, as we remember, to advertise for it, by sending a "note and query" to the magazines, asking where any account of the fly-catching of the leaves of sundew was recorded.

When Mr. Darwin takes a matter of this sort in hand, he is not likely to leave it where he found it. He not only confirmed all Roth's observations as to the incurving of the bristles toward and upon an insect entangled on any part of the disk of the leaf, but also found that they responded similarly to a bit of muscle or other animal substance, while to any particles of inorganic matter they were nearly indifferent. To minute fragments of carbonate of ammonia, however, they were more responsive. As these remarkable results, attained (as we are able to attest) half a dozen years ago, remained unpublished (being portions of an investigation not yet completed), it would have been hardly proper to mention them, were it not that independent observers were beginning to bring out the same or similar facts. Mrs. Treat, of New Jersey, noticed the habitual infolding of the leaf in the longer-leaved species of sundew (American Journal of Science for November, 1871), as was then thought for the first time—Roth's and Withering's observations not having been looked up. In recording this, the next year, in a very little book, entitled "How Plants Behave," the opportunity was taken to mention, in the briefest way, the capital discovery of Mr. Darwin that the leaves of Drosera act differently when different objects are placed upon them, the bristles closing upon a particle of raw meat as upon a living insect, while to a particle of chalk or wood they are nearly inactive. The same facts were independently brought out by Mr. A. W. Bennett at the last year's meeting of the British Association for the Advancement of Science, and have been mentioned in the journals.

If to these statements, which we may certify, were added some far more extraordinary ones, communicated to the French Academy of Science in May last by M. Zeigler, a stranger story of discrimination on the part of sundew-bristles would be told. But it is safer to wait for the report of the committee to which these marvels were referred, and conclude this sufficiently "strange eventful history" with some details of experiments made last summer by Mrs. Treat, of New Jersey, and published in the December number of the American Naturalist. It is well to note that Mrs. Treat selects for publication the observations of one particular day in July, when the sundew-leaves were unusually active; for their moods vary with the weather, and also in other unaccountable ways, although in general the sultrier days are the most appetizing:

"At fifteen minutes past ten of the same day I placed bits of raw beef on some of the most vigorous leaves of Drosera longifolia. Ten minutes past twelve, two of the leaves had folded around the beef, hiding it from sight. Half-past eleven of the same day, I placed living flies on the leaves of D. longifolia. At 12 and 48 minutes one of the leaves had folded entirely around its victim, the other leaves had partially folded, and the flies had ceased to struggle. By 2 and 30 minutes four leaves had each folded around a fly. . . . I tried mineral substances—bits of dry chalk, magnesia, and pebbles. In twenty-four hours, neither the leaves nor their bristles had made any move like clasping these articles. I wet a piece of chalk in water, and in less than an hour the bristles were curving about it, but soon unfolded again, leaving the chalk free on the blade of the leaf. Parallel experiments made on D. rotundifolia, with bits of beef and of chalk, gave the same results as to the action of the bristles; while with a piece of raw apple, after eleven hours, "part of the bristles were clasping it, but not so closely as the beef," and in twenty-four hours "nearly all the bristles were curved toward it, but not many of the glands were touching it."

To make such observations is as easy as it is interesting. Throughout the summer one has only to transfer plants of Drosera from the bogs into pots or pans filled with wet moss—if need be, allowing them to become established in the somewhat changed conditions, or even to put out fresh leaves—and to watch their action or expedite it by placing small flies upon the disk of the leaves. The more common round-leaved sundew acts as well as the other by its bristles, and the leaf itself is sometimes almost equally prehensile, although in a different way, infolding the whole border instead of the summit only. Very curious, and even somewhat painful, is the sight when a fly, alighting upon the central dew-tipped bristles, is held as fast as by a spider's web; while the efforts to escape not only entangle the insect more hopelessly as they exhaust its strength, but call into action the surrounding bristles, which, one by one, add to the number of the bonds, each by itself apparently feeble, but in their combination so effectual that the fly may be likened to the sleeping Gulliver made fast in the tiny but multitudinous toils of the Liliputians. Anybody who can believe that such an apparatus was not intended to capture flies might say the same of a spider's web.

Is the intention here to be thought any the less real because there are other species of Drosera which are not so perfectly adapted for fly-catching, owing to the form of their leaves and the partial or total want of cooperation of their scattered bristles? One such species, D. filiformis, the thread-leaved sundew, is not uncommon in this country, both north and south of the district that Dionaea locally inhabits. Its leaves are long and thread-shaped, beset throughout with glutinous gland-tipped bristles, but wholly destitute of a blade. Flies, even large ones, and even moths and butterflies, as Mrs. Treat and Mr. Canby affirm (in the American Naturalist), get stuck fast to these bristles, whence they seldom escape. Accidental as such captures are, even these thread-shaped leaves respond more or less to the contact, somewhat in the manner of their brethren. In Mr. Canby's recent and simple experiment, made at Mr. Darwin's suggestion, when a small fly alights upon a leaf a little below its slender apex, or when a bit of crushed fly is there affixed, within a few hours the tip of the leaf bends at the point of contact, and curls over or around the body in question; and Mrs. Treat even found that when living flies were pinned at half an inch in distance from the leaves, these in forty minutes had bent their tips perceptibly toward the flies, and in less than two hours reached them! If this be confirmed—and such a statement needs ample confirmation—then it may be suspected that these slender leaves not only incurve after prolonged contact, just as do the leaf-stalks of many climbers, but also make free and independent circular sweeps, in the manner of twining stems and of many tendrils.

Correlated movements like these indicate purpose. When performed by climbing plants, the object and the advantage are obvious. That the apparatus and the actions of Dionaea and Drosera are purposeless and without advantage to the plants themselves, many have been believed in former days, when it was likewise conceived that abortive and functionless organs were specially created "for the sake of symmetry" and to display a plan; but this is not according to the genius of modern science.

In the cases of insecticide next to be considered, such evidence of intent is wanting, but other and circumstantial evidence may be had, sufficient to warrant convictions. Sarracenias have hollow leaves in the form of pitchers or trumpet-shaped tubes, containing water, in which flies and other insects are habitually drowned. They are all natives of the eastern side of North America, growing in bogs or low ground, so that they cannot be supposed to need the water as such. Indeed, they secrete a part if not all of it. The commonest species, and the only one at the North, which ranges from Newfoundland to Florida, has a broad-mouthed pitcher with an upright lid, into which rain must needs fall more or less. The yellow Sarracenia, with long tubular leaves, called "trumpets in the Southern States, has an arching or partly upright lid, raised well above the orifice, so that some water may rain in; but a portion is certainly secreted there, and may be seen bedewing the sides and collected at the bottom before the mouth opens. In other species, the orifice is so completely overarched as essentially to prevent the access of water from without. In these tubes, mainly in the water, flies and other insects accumulate, perish, and decompose. Flies thrown into the open-mouthed tube of the yellow Sarracenia, even when free from water, are unable to get out—one hardly sees why, except that they cannot fly directly upward; and microscopic chevaux-de-frise of fine, sharp-pointed bristles which line most of the interior, pointing strictly downward, may be a more effectual obstacle to crawling up the sides than one would think possible. On the inside of the lid or hood of the purple Northern species, the bristles are much stronger; but an insect might escape by the front without encountering these. In this species, the pitchers, however, are so well supplied with water that the insects which somehow are most abundantly attracted thither are effectually drowned, and the contents all summer long are in the condition of a rich liquid manure.

That the tubes or pitchers of the Southern species are equally attractive and fatal to flies is well known. Indeed, they are said to be taken into houses and used as fly-traps. There is no perceptible odor to draw insects, except what arises from the decomposition of macerated victims; nor is any kind of lure to be detected at the mouth of the pitcher of the common purple-flowered species. Some incredulity was therefore natural when it was stated by a Carolinian correspondent (Mr. B.F. Grady) that in the long-leaved, yellow-flowered species the lid just above the mouth of the tubular pitcher habitually secretes drops of a sweet and viscid liquid, which attracts flies and apparently intoxicates them, since those that sip it soon become unsteady in gait and mostly fall irretrievably into the well beneath. But upon cultivating plants of this species, obtained for the purpose, the existence of this lure was abundantly verified; and, although we cannot vouch for its inebriating quality, we can no longer regard it as unlikely.

No sooner was it thus ascertained that at least one species of Sarracenia allures flies to their ruin than it began to appear that—just as in the case of Drosera—most of this was a mere revival of obsolete knowledge. The "insect-destroying process" was known and well described sixty years ago, the part played by the sweet exudation indicated, and even the intoxication perhaps hinted at, although evidently little thought of in those ante-temperance days. Dr. James Macbride, of South Carolina—the early associate of Elliott in his "Botany of South Carolina and Georgia," and to whose death, at the age of thirty-three, cutting short a life of remarkable promise, the latter touchingly alludes in the preface to his second volume—sent to Sir James Edward Smith an account of his observations upon this subject, made in 1810 and the following years. This was read to the Linnaean Society in 1815, and published in the twelfth volume of its "Transactions." From this forgotten paper (to which attention has lately been recalled) we cull the following extracts, premising that the observations mostly relate to a third species, Sarracenia adunca, alias variolaris, which is said to be the most efficient fly-catcher of the kind:

"If, in the months of May, June, or July, when the leaves of those plants perform their extraordinary functions in the greatest perfection, some of them be removed to a house and fixed in an erect position, it will soon be perceived that flies are attracted by them. These insects immediately approach the fauces of the leaves, and, leaning over their edges, appear to sip with eagerness something from their internal surfaces. In this position they linger; but at length, allured as it would seem by the pleasure of taste, they enter the tubes. The fly which has thus changed its situation will be seen to stand unsteadily; it totters for a few seconds, slips, and falls to the bottom of the tube, where it is either drowned or attempts in vain to ascend against the points of the hairs. The fly seldom takes wing in its fall and escapes. . . . in a house much infested with flies, this entrapment goes on so rapidly that a tube is filled in a few hours, and it becomes necessary to add water, the natural quantity being insufficient to drown the imprisoned insects. The leaves of S. adunca and rubra might well be employed as fly-catchers; indeed, I am credibly informed they are in some neighborhoods. The leaves of the S. flava [the species to which our foregoing remarks mainly relate], although they are very capacious, and often grow to the height of three feet or more, are never found to contain so many insects as those of the species above mentioned.

"The cause which attracts flies is evidently a sweet, viscid substance resembling honey, secreted by or exuding from the internal surface of the tube . . . From the margin, where it commences, it does not extend lower than one-fourth of an inch.

"The falling of the insect as soon as it enters the tube is wholly attributable to the downward or inverted position of the hairs of the internal surface of the leaf. At the bottom of a tube split open, the hairs are plainly discernible pointing downward; as the eye ranges upward, they gradually become shorter and attenuated, till at or just below the surface covered by the bait they are no longer perceptible to the naked eye nor to the most delicate touch. It is here that the fly cannot take a hold sufficiently strong to support itself, but falls. The in. ability of insects to crawl up against the points of the hairs I have often tested in the most satisfactory manner."

From the last paragraph it may be inferred that Dr. Macbride did not suspect any inebriating property in the nectar, and in a closing note there is a conjecture of an impalpable loose powder in S. flava, at the place where the fly stands so unsteadily, and from which it is supposed to slide. We incline to take Mr. Grady's view of the case.

The complete oblivion into which this paper and the whole subject had fallen is the more remarkable when it is seen that both are briefly but explicitly referred to in Elliott's book, with which botanists are familiar.

It is not so wonderful that the far earlier allusion to these facts by the younger Bartram should have been overlooked or disregarded. With the genuine love of Nature and fondness for exploration, 'William Bartram did not inherit the simplicity of his father, the earliest native botanist of this country. Fine writing was his foible; and the preface to his well-known "Travels" (published at Philadelphia in 1791) is its full-blown illustration, sometimes perhaps deserving the epithet which he applies to the palms of Florida—that of pomposity. In this preface he declares that "all the Sarracenias are insect-catchers, and so is the Drosera rotundifolia. Whether the insects caught in their leaves, and which dissolve and mix with the fluid, serve for aliment or support to these kind of plants is doubtful," he thinks, but he should be credited with the suggestion. In one sentence he speaks of the quantities of insects which, "being invited down to sip the mellifluous exuvia from the interior surface of the tube, where they inevitably perish," being prevented from returning by the stiff hairs all pointing downward. This, if it refers to the sweet secretion, would place it below, and not, as it is, above the bristly surface, while the liquid below, charged with decomposing insects, is declared in an earlier sentence to be "cool and animating, limpid as the morning dew." Bartram was evidently writing from memory; and it is very doubtful if he ever distinctly recognized the sweet exudation which entices insects.

Why should these plants take to organic food more than others? If we cannot answer the question, we may make a probable step toward it. For plants that are not parasitic, these, especially the sundews, have much less than the ordinary amount of chlorophyll—that is, of the universal leaf-green upon which the formation of organic matter out of inorganic materials depends. These take it instead of making it, to a certain extent.

What is the bearing of these remarkable adaptations and operations upon doctrines of evolution? There seems here to be a field on which the specific creationist, the evolutionist with design, and the necessary evolutionist, may fight out an interesting, if not decisive, "triangular duel."