Cupping

“Cupping is an art,” wrote the London cupper Samuel Bayfield in 1823, “the value of which every one can appreciate who has had opportunities of being made acquainted with its curative power by observing its effects on the person of others, or by realizing them in his own.”[87] The curious operation of taking blood by means of exhausted cups had been part of Western medicine since the time of Hippocrates, and has been found in many other cultures as well. It is still practiced in some parts of the world today.

Since antiquity medical authors have distinguished two forms of cupping, dry and wet. In dry cupping, no blood was actually removed from the body. A cup was exhausted of air and applied to the skin, causing the skin to tumefy. In wet cupping, dry cupping was followed by the forming of several incisions in the skin and a reapplication of the cups in order to collect blood. It was possible to scarify parts of the body without cupping—through the nineteenth-century physicians recommended scarifying the lips, the nasal passages, the eyes, and the uterus. In order to remove any sizeable amount of blood, however, it was necessary to apply some sort of suction to the scarifications, because capillaries, unlike arteries and veins, do not bleed freely. (Figure [8].)

Cupping was generally regarded as an auxiliary to venesection. The indications for the operation were about the same as the indications for phlebotomy, except that there was a tendency to prefer cupping in cases of localized pain or inflammation, or if the patient was too young, too old, or too weak to withstand phlebotomy. “If cutting a vein is an instant danger, or if the mischief is still localised, recourse is to be had rather to cupping,” wrote the encyclopedist Celsus in the first century A.D.[88]

As noted above, the ancients usually recommended cupping close to the seat of the disease. However, there were several examples in ancient writings of cupping a distant part in order to divert blood. The most famous of these examples was Hippocrates’ recommendation of cupping the breasts in order to relieve excessive menstruation.[89]

As was the case for phlebotomy, the number of ills that were supposedly relieved by cupping was enormous. Thomas Mapleson, a professional cupper, gave the following list of “diseases in which cupping is generally employed with advantage” in 1801:

Apoplexy, angina pectoris, asthma, spitting blood, bruises, cough, catarrh, consumption, contusion, convulsions, cramps, diseases of the hip and knee joints, deafness, delirium, dropsy, epilepsy, erysipelas, eruptions, giddiness, gout, whooping cough, hydrocephalus, head ache, inflammation of the lungs, intoxication, lethargy, lunacy, lumbago, measles, numbness of the limbs, obstructions, ophthalmia, pleurisy, palsy, defective perspiration, peripneumony, rheumatism, to procure rest, sciatica, shortness of breath, sore throat, pains of the side and chest.[90]

Early Cupping Instruments

Mapleson believed that cupping was first suggested by the ancient practice of sucking blood from poisoned wounds. In any case, the earliest cupping instruments were hollowed horns or gourds with a small hole at the top by which the cupper could suck out the blood from scarifications previously made by a knife. The Arabs called these small vessels “pumpkins” to indicate that they were frequently applied to a part of the body in which the organs contained air or that they were vessels that had to be evacuated before they could be applied.[91] The use of cattle horns for cupping purposes seems to have been prevalent in all periods up to the present. When Prosper Alpinus visited Egypt in the sixteenth century, he found the Egyptians using horns that were provided with a small valve of sheepskin to be maintained in place by the cupper’s tongue and serving to prevent the intake of air once the cup was exhausted.[92]

In nineteenth-century America, at least one physician still recommended horns as superior to glass cups for rural medical practice. A Virginia physician, Dr. W. A. Gillespie, disturbed by the high cost of cupping instruments, suggested to his readers in The Boston Medical and Surgical Journal for 1834 that since glass cups were often broken when carried from place to place, “an excellent substitute can be made of a small cow horn, cornicula, which may be scraped or polished until perfectly diaphanous or transparent.”[93]

The Smithsonian collection contains a cow’s horn from Madaoua, Niger Republic (West Africa), used for drawing blood in the 1960s. The director of the Baptist Mission, who sent the horn, noted that he had often seen Africans sitting in the market place with such horns on their backs or their heads. Scarifications were made with a handmade razor.[94]

[Larger Image]

Figure 8.—Scarification without cupping in Egypt in the 16th century. To obtain sufficient blood, 20 to 40 gashes were made in the legs and the patient was made to stand in a basin of warm water. (From Prosper Alpinus, Medicina Aegyptorum, Leyden, 1719. Photo courtesy of NLM.)

In addition to horn cups, the ancients employed bronze cups in which a vacuum was obtained by inserting a piece of burning flax or linen into the cup before its application to the skin. Most Greek and Roman cups were made of metal.[95] Although Galen already preferred glass cups to metal cups for the simple reason that one could see how much blood was being evacuated, metal cups were used until modern times. Their main virtue was that they did not break and thus could be easily transported. For this reason, metal cups were especially useful to military surgeons. Brass and pewter cups were common in the eighteenth century, and tin cups were sold in the late nineteenth century.

Since the latter part of antiquity, cups have been made of glass. The Smithsonian possesses two Persian opaque glass cups dating from the twelfth century, called “spouted glasses” because of the spout protruding from the side of the cup by which the cupper exhausted the air with his mouth. Similar spouted glasses were illustrated by Prosper Alpinus (sixteenth century), so designed that the blood would collect in a reservoir instead of being sucked into the cupper’s mouth. Like the horn cups illustrated by Alpinus, the glass cups were provided with a small valve made of animal skin. It appears that the sixteenth-century Egyptians were not familiar with the use of fire for exhausting cups. (Figure [9].)

Cupping and leeching were less frequently practiced in the medieval period, although general bloodletting retained its popularity.[96] When the eastern practice of public steam baths was reintroduced into the West in the late sixteenth and early seventeenth centuries, cupping tended to be left in the hands of bath attendants (Bagnio men) and ignored by regular surgeons. Some surgeons, such as Pierre Dionis, who gave a course of surgery in Paris in the early eighteenth century, saw little value in the operation. He felt that the ancients had greatly exaggerated the virtues of the remedy.[97] Another French surgeon, René de Garengeot, argued in 1725 that those who resorted to such outdated remedies as cupping had studied the philosophical systems of the ancients more than they had practiced medicine. He accused the admirers of the ancients of wishing to kill patients “with the pompous apparatus of wet cupping.”[98] (Figure [10].)

Figure 9.—Persian spouted cupping glass, 12th century.
(NMHT 224478 [M-8037]; SI photo 73-4215.)

Nineteenth-century cuppers tended to blame the baths for the low status of cupping among surgeons. Dionis had described the baths in Germany as great vaulted halls with benches on two sides, one side for men and the other for women. Members of both sexes, nude except for a piece of linen around the waist, sat in the steamy room and were cupped, if they so desired, by the bath attendants. The customers’ vanity was satisfied by making the scarifications (which left scars) in the form of hearts, love-knots, and monograms.[99] Mapleson’s complaint against the baths in 1813 was typical of the reaction of the nineteenth-century professional cupper:

The custom which appears to have become prevalent of resorting to these Bagnios, or Haumaums, to be bathed and cupped, appears to have superseded the practice of this operation by the regular surgeons. Falling into the hands of mere hirelings, who practiced without knowledge, and without any other principle than one merely mercenary, the operation appears to have fallen into contempt, to have been neglected by Physicians, because patients had recourse to it without previous advice, and disparaged by regular Surgeons, because, being performed by others, it diminished the profits of their profession.[100]

[Larger Image]

Figure 10.—Cupping in the bath, 16th century. (From a woodcut held by the Bibliotheque Nationale. Photo courtesy of NLM.)

After a period of neglect, cupping enjoyed renewed popularity in the late eighteenth and early nineteenth centuries. In that period a number of professional cuppers practiced in the cities of Europe and America. Both Guy’s and Westminster Hospitals in London employed a professional cupper to aid physicians and surgeons. Of these hospital cuppers, at least four, Thomas Mapleson, Samuel Bayfield, George Frederick Knox, and Monson Hills published treatises on the art of cupping, from which we gain the clearest account of cupping procedure.[101] Knox, who succeeded Mapleson as Cupper at Westminster Hospital, was petitioned by 59 medical and surgical students to write his practical and portable text.[102]

Instruments of the Professional Cupper

Cupping instruments in the eighteenth and nineteenth centuries were generally simple dome-shaped glass cups provided with thick rims so that the cups would be less painful when applied and removed. Cups were sold in various sizes, ranging from about 45 mm to 75 mm high. Some were made with a smaller diameter and a larger belly for cupping on parts of the body with a limited surface area. For the same reason, cups with an oval rim were recommended. (Figure [11].)

There were several common methods for exhausting cups, of which the simplest and most widely used was that of throwing burning lint or tow (the coarse part of flax, hemp, or jute) inside the glass before applying the glass to the skin of the patient. The professional cuppers vehemently disapproved of this clumsy practice, for the patient could easily be scorched.[103] Various improvements were suggested to avoid burning the patient. Dionis (1708) had recommended placing a small card with lighted candles over the scarifications, and then applying the cup.[104] Other methods included the brief introduction of a wire holding a bit of sponge soaked with alcohol and ignited, or attaching a bit of sponge to the inside of the glass by means of wax and a piece of wood. All such methods were deemed “clumsy expedients” by professional cuppers,[105] who preferred to employ a lamp or torch especially made for cupping. Eighteenth-century surgical texts illustrated brass grease lamps with covers to regulate the flame. Probably less difficult to maneuver was the alcohol lamp first introduced in the 1790s. Alcohol lamps for cupping were made of metal, shaped like teapots, and contained a heavy cotton wick protruding from the spout.[106]

Figure 11.—Typical glass cupping cups, late 19th century.
(NMHT 152130 [M-4766-68]; SI Photo 61135-C.)

Although Mapleson (1813) employed an alcohol lamp, the cuppers writing after him preferred the more recently-introduced cupping torch. This consisted of a piece of hollow metal tubing cut obliquely at one end and provided with a metal bulb or ring at the other end. A cotton wick was stuffed as compactly as possible into the tube so that a small piece of wick protruded from the oblique end. The wick was dipped in alcohol, ignited, and inserted briefly into the cup. The torch was more convenient than the older teapot lamp because it was easier to insert into the cup, and was small enough to hold in the hand at the same time as one held the scarificator.[107]

The introduction of the scarificator represented the major change in the art of cupping between antiquity and the nineteenth century. Unlike later attempts at improving cupping technology, the scarificator was almost universally adopted. Previous to its invention, the cupper, following ancient practice, severed the capillaries by making a series of parallel incisions with a lancet, fleam, or other surgical knife.[108] This was a messy, time consuming, and painful procedure. Ambroise Paré (1510?-1590) was the first to employ the word “scarificator” and the first to illustrate a special instrument for scarification in his compendium of surgical instruments.[109] However, a precursor to the scarificator had been suggested by Paulus of Aegina (625-690), who described an instrument constructed of three lancets joined together so that in one application three incisions could be made in the skin. The instrument, recommended for the removal of coagulated blood in the wake of a blow, was considered difficult to use and was not generally adopted.[110] Paré’s scarificator had a circular case and eighteen blades attached to three rods projecting from the bottom. A pin projecting from the side may have served to lift the blades and a button on the top to release them although Paré did not describe the spring mechanism.[111] Paré did not recommend the instrument for cupping, but rather for the treatment of gangrene. Several sixteenth- and seventeenth-century surgical texts made reference to Paré’s instrument, among them Jacques Delechamps (1569) and Hellkiah Crooke (1631).[112]

It is not known who made the first square scarificator and adapted it to cupping. The instrument was not found in Dionis (1708), but it did appear in Heister (1719) and in Garengeot (1725). Thus it appears that the scarificator was invented between 1708 and 1719. Garengeot disliked cupping in general and he had little good to say of the new mechanical scarificator. “A nasty instrument,” he called it, “good only for show.”[113] The German surgeon, Lorenz Heister, was more appreciative of the innovation. After describing the older method of making sixteen to twenty small wounds in the skin with a knife, he announced that “The modern surgeons have, for Conveniency for themselves and Ease to the Patient, contrived a Scarificator ... which consists of 16 small Lancet-blades fixed in a cubical Brass Box, with a Steel Spring.”[114] Heister noted that while Paré had used the scarificator only for incipient mortification, it was now “used with good success by our Cuppers in many other Diseases, as I myself have frequently seen and experienced.”[115]

The earliest scarificators were simple square brass boxes, with cocking and release levers and 16 pointed blades. By 1780, illustrations in surgical works showed that the bottom of the scarificator was detachable. Thus, although the illustrations do not show the screw for regulating the height of the blade cover, provision may already have been made for adjusting the depth of cut of the blades.[116] Square or German-style scarificators continued to be sold in Germany throughout the nineteenth century. The earlier models (late eighteenth, early nineteenth century) were frequently embellished with ornate decoration, and had pointed blades. Some were quite tall. A specimen dated 1747, in the Wellcome Medical Museum collection, is 14.4 cm high and 4.5 cm wide at the base. (Figure [12].)

[Larger Image]

Figure 12.—Lavishly decorated scarificator, 18th century. (Held by the Wellcome Institute of the History of Medicine, London. Photo courtesy of the Wellcome.)

The later models (mid- to late nineteenth century) were wider and plainer and had arched or crescent shaped blades (which made a cleaner lesion), but the internal mechanism remained the same. Square scarificators all had 16 steel blades that cut in the same direction and were arranged on three rods of five, six, and five blades respectively. At one end of each rod was a gear pinion. The cocking lever, protruding through an aperture at the top of the scarificator, broadened out into a flat plate with as many gear sectors as blade rods. The plate was held against the interior of the scarificator by a heavy support rod running the width of the scarificator, in such a way that the gear sectors of the cocking lever meshed with the pinions on the blade rods. Pulling up on the cocking lever turned the blades 180 degrees. A heavy flat cantilever spring, attached at one end to the bottom of the case, was caught under a protuberance on the cocking lever and bent as the cocking lever was pulled. As the blades were turned, a catch slipped over a tooth on the cocking lever, and held the blades in place. Nineteenth-century octagonal scarificators generally had two catches, the first exposing the blades, and the second rotating them a full 180 degrees. Pressure on the release lever pushed the catch off the tooth on the cocking lever, thereby releasing the lever and allowing the spring to snap the apparatus back to its original position. Releasing the spring brought the blades around so quickly that their movement could not be seen. (Figure [13].)

[Larger Image]

Figure 13.—Interior of square scarificator.
(NMHT 152130 [M-4771]; SI photo 76-9111.)

In the square scarificators, the top and two sides were detachable from the bottom and the other two sides. Turning the wing-tip nut on the top of the scarificator lowered, by means of a yoke, the bottom of the scarificator that was fitted by grooves into the top. By raising and lowering the bottom, one could regulate the length of blade protruding beyond the bottom, and hence the depth of cut.

In the 1790s, the octagonal scarificator that was to become the standard English-American model began to appear in surgical texts. The early octagonal scarificator, as illustrated in Latta (1795) and Bell (1801), had sixteen rounded blades arranged as in the square scarificator, an iron triggering lever similar to that of the square scarificator, a button release on the side, and a flat key on top for regulating depth of cut.[117] Early in the nineteenth century the flat keys were replaced by round screws. Only the bottom or blade cover of the octagonal scarificator was detachable. In some of the octagonal scarificators, the round screw on top ran the height of the scarificator and screwed directly into an internally threaded post inside the blade cover. In other scarificators, the screw raised and lowered a yoke whose two sides were attached by additional screws to side projections of the blade cover.

A notable improvement was made in the early nineteenth century when John Weiss, a London instrument maker, introduced a 12 blade octagonal scarificator whose blades, arranged on two rods or pinions, were made to cut in opposite directions. This advance was mentioned by Mapleson in 1813 and adopted by London professional cuppers thereafter. The advantage of the innovations was that the skin was thereby stretched, and a smoother, more regular cut could be made. Weiss’s Improved Scarificator also featured blades that could easily be removed for cleaning and repair. In place of two rows of six blades, one could insert a single row of four blades to adopt the scarificator for cupping on small areas such as the temple.[118] The feature of inserting a pinion with clean and sharp blades permitted the cupper to own only two scarificators. For cleansing the blades the manufacturer supplied a thin piece of wood covered with wash leather or the pith of the elder tree.[119]

Scarificators in which the blade rods turned in opposite directions (called “reversible” scarificators in trade catalogs) were more complicated to manufacture and therefore somewhat more expensive than unidirectional scarificators. The cocking lever meshed directly with only the first blade rod. To make the second blade rod turn in the opposite direction, an extra geared plate (or idler lever) was necessary to act as an intermediary between the cocking lever and the second blade pinion. The cocking lever turned the idler lever, which then turned the second pinion. Two support rods and two cantilever springs were needed in place of the one in unidirectional scarificators.

The brass, octagonal scarificator with 8, 10, and particularly 12 blades became the standard scarificator sold in England and America.[120] Both unidirectional (“plain”) and reversible scarificators were offered through trade catalogs. Smaller octagonal scarificators with four to six blades were sold for cupping parts of the body with limited surface area.

Cupping Procedure

The art of cupping, it was generally agreed, required a high degree of dexterity that could be maintained only by constant practice. Professional cuppers were concerned with avoiding any appearance of clumsiness, else the patient might come to fear an operation essential to his health. In the hands of an inexperienced physician or surgeon, cupping could be highly painful to the patient, and yet fail to produce the requisite amount of blood. While expert cuppers were usually available in cities, the rural doctor was not trained in the operation. It was to these rural practitioners that the treatises of the professional cuppers were addressed. One cupper, George Frederick Knox, offered in addition personal instruction in cupping procedures. His charge was a guinea for medical students and three guineas for non-medical students for a three month course.[121]

Physicians and surgeons took a renewed interest in cupping in the early nineteenth century. Cupping was no longer regarded as merely a useful substitute for bloodletting. Recent physiological research seemed to prove to the advocates of cupping that the effects of slow withdrawal of blood from the capillaries produced a different effect on the constitution than the quick withdrawal of blood from a vein. Thus, Knox was convinced by the results of this research that, while phlebotomy was indicated in cases of high fever, “particular phlegmasiae” specifically required the intervention of cupping.[122]

The procedure that the experts followed in wet cupping was as follows. First, the cups were immersed in hot water. Bayfield recommended that one glass be used for every four ounces of blood required. Thus, to abstract 18 to 20 ounces, as was common in cupping on the back or abdomen, four or five glasses were needed. The spot chosen for placement of the cups should be free of bone, but also not overly fatty. Cupping over the belly of a muscle was especially recommended. After the spot was fomented with hot water, the torch was dipped in alcohol, lit, and inserted into the cup for about two seconds. Once the torch was removed, the cup was allowed to sink of its own weight into the skin. During the minute that the skin was allowed to tumefy under the cup, the scarificator was warmed in the palm of the hand in preparation for the most difficult part of the operation. It required great skill to manage torch, scarificator, and cups in such a way as to lift the cup, scarify, and recup before the tumefaction had subsided. Monson Hills (1834) described the manipulations involved thus:

The torch is held in and across the palm of the right hand, by the little and ring finger, leaving the thumb, the fore and middle fingers free to hold the scarificator, which may be done by the thumb and fore finger only; the glass is then grasped by the thumb, fore and middle fingers of the left hand, leaving the little and ring fingers free; the edge of the glass is then detached from the skin by the middle finger of the right hand; the scarificator being set, care must be taken not to press upon the button with the thumb too quickly; directly the glass comes off, we apply the scarificator, spring it through the integuments, and then placing it between the free little and ring fingers of the left hand, we apply the torch to the glass, and glass to the skin over the incisions, as before recommended.[123]

Hills recommended practicing on a table, “taking care, of course, that the lancets are not allowed to strike the table.”

According to Bayfield, the blades of the scarificator were generally set at ¼″. If cupping behind the ears, they should be set at 1⁄7″, if on the temple at ⅛″, and if on the scalp at ⅙″. When the cups were two-thirds full, they were removed and reapplied if necessary. This, too, was no easy task. One had to manipulate cup and sponge deftly in order to avoid spillage. Cupping was to be not merely a neat operation, but an elegant one. After cupping, the wound was dabbed with alcohol or dressed, if necessary. Scarificator blades could be used some twenty times. After each use, the scarificator was to be cleaned and greased by springing it through a piece of mutton fat.[124]

A great variety of bodily parts were cupped, just about any part that had sufficient surface area to hold a small cup in place. Knox, for example, gave directions for cupping on the temple, back of the head, behind the ears, throat, back of the neck, extremities, shin, chest, side, abdomen, back and loins, back of the thighs, perineum, sacrum, and on buboes.[125] In reply to those who wondered if cupping hurt, Knox asserted that “those who calculate the pain incurred in cupping by comparison with a cut finger are very much deceived.” The scarificator itself produced little pain, he claimed, but he admitted that the pressure of the rims of the glasses could cause a degree of discomfort.[126]

Nineteenth Century Attempts to Improve Cupping Technology

The story of nineteenth-century attempts to improve cupping technology is an interesting one, in that a great deal of effort was expended on comparatively short-lived results. For those who were adept at cupping, the cups, torch, and standard scarificator were quite adequate. Innovations were thus aimed at making the operation more available to the less practiced. The new gadgets could not rival the traditional instruments in the hands of an experienced cupper, and, moreover, they were usually much more expensive.

Most of the attempts at innovation centered in eliminating the need for an alcohol lamp or torch to exhaust the cups. As far back as Hero of Alexandria,[127] we find directions for the construction of “a cupping-glass which shall attract without the aid of fire.” Hero’s device combined mouth suction with a system of valves. Another famous inventor of assorted devices, Santorio Santorii (1561-1636), described a cup that contained a syringe in the early seventeenth century.[128] From the 1780s on, cups with brass syringes began to appear in compendia of instruments. A cup with brass fixings would be screwed onto a brass pump, placed on the skin, and the air within removed by a few strokes of the piston.[129] This sounded better in theory than it worked in practice. Expert cuppers agreed that they thoroughly disliked using the syringe. Mapleson (1813) offered three strong objections to the instrument. First, exhaustion could easily be carried too far, so as to obstruct the flow of blood. Second, the operation become tedious and fatiguing to the bloodletter because of the repeated screwing and unscrewing of syringe and glasses. Third, the valves were liable to malfunction.[130] Twenty-three years later Knox continued to disapprove of the syringe for the very same reasons. Of all the new inventions for cupping, he declared in 1836, “the worst is the syringe, as it makes that a most complicated and bungling operation that which, with common care and attention is one of the most simple in surgery.”[131]

Despite rejection by experienced cuppers, manufacturing of an air-tight syringe continued to challenge inventors throughout the nineteenth century. Some attempted to substitute stopcocks for valves, and some to place long flexible tubes between pump and glasses so that the pumping motions would not be communicated to the patient. Pumps were gradually improved, and, although rarely recommended by experts, were sold in great numbers as part of fancy and expensive cupping sets. These sets, with prices as high as fifteen dollars, consisted of a mahogany or leather box with brass latches, lined in plush, and containing compartments for scarificators, a brass pump, and an assortment of glasses provided with metal attachments. Some of the most elegant of the cupping sets were those made by Maison Charrière of Paris. Today the luxury of these cupping sets seems rather incongruous with the bloody purposes for which the instruments were used. Yet, the beauty of the instruments and their containers must have added to the esteem of the physician or surgeon in the mind of the patient.

Syringes were not only useful in cupping but also were employed in a wide variety of medical and surgical operations. Creating an all-purpose syringe that would extract or inject liquids into any part of the body was yet another inventor’s dream. Two of the earliest English surgical patents were awarded to two such syringes. John Read (1760-1847), surgical instrument maker for the British Army and the East India Company, patented a pump in 1820 for use in “extracting poison from the stomach, administering clysters, introducing tabacco fumes into the bowels, transfusion of blood, draining off the urine, injecting the bladder, female injection, anatomical injection, administration of food and medicine, cupping, drawing the breasts ... &c.”[132] John Weiss, inventor of the improved scarificator, invented his own patent syringe in 1825, which he claimed to be superior to all previous syringes because it employed stopcocks in place of valves, which were subject to leakage and clogging. Cupping was only one of many operations that could be performed with its aid. The Truax Surgical Pump is an example of a late nineteenth-century all-purpose patent pump outfit that included cups among its numerous optional attachments.[133] (Figure [14].)

Those who went a step further in their efforts to improve cupping procedure attempted to combine cup, lancet, and exhausting apparatus all in one instrument. Bayfield described and rejected several such devices in 1823, including perhaps the earliest, that of the Frenchman, Demours. Demours’ instrument, first introduced in 1819, consisted of a cupping glass with two protruding tubes, one containing a lancet, and the other an exhausting syringe. The lancet, surrounded by leather to keep air out of the cup, could be supplemented by a cross with four additional blades, if more than one puncture was desired.[134] In 1819, Thomas Machell, a member of the Royal College of Surgeons in London, described a similar apparatus in which the glass cup was separated from the tin body of the apparatus by a flexible tube. The facility and precision of the instrument, claimed Machell, “are incalculably surpassed by the power of its application to any part whatever of the surface, under any circumstances indicating its propriety, and by any person untrained to the manual dexterity of a professed cupper.”[135]

Professional cuppers who took pride in their skill naturally avoided such novelties. Bayfield found the complex instruments objectionable because even “the most trifling degree of injury is generally sufficient to render the whole apparatus useless.”[136]

The Smithsonian collection contains two patent models of American wet cupping devices. The first is an ingenious cupping set patented by a Philadelphia navy surgeon, Robert J. Dodd, in 1844. It consisted of a metal syringe provided with a plate of lancets that screwed on to a glass tube with a protuberance for collecting blood. The most interesting feature of the apparatus was the provision made for cupping internal parts of the body such as the vagina, throat, or rectum. One could attach to the pump either a curved or a straight tapering glass tube, seven to eight inches long, and corresponding flexible metal lancet rod. The pump could also be adapted for extracting milk from the breasts of women by attaching a metal cap with a hole just large enough to accommodate the nipple.[137] The second patent model is that of W. D. Hooper of Liberty, Virginia, who invented in 1867 an apparatus combining cup, pump, and scarificator. The novel part of the instrument was the tubular blades that were injected into the flesh and then left in place while the blood was being removed, “by which means the punctures are kept from being closed prematurely, as frequently happens with the ordinary device.”[138]

It is unlikely that any of these ingenious devices were marketed in quantity. For those skilled in the art of cupping, the torch, cups, and scarificator were more effective. For those not experienced in the art, the new devices were simply too expensive, inconvenient to carry about, and fragile. While doubtless some surgeons bought fancy equipment in order to impress their patients, other surgeons, and the professional cuppers, realized that expensive and unfamiliar gadgets could inspire more dread than awe, especially among rural patients. The cupper Monson Hills advised his readers:

A person about to be cupped, is often needlessly alarmed by the arrival of his operator, with a capacious box of instruments; and he measures the severity of the pain he is about to undergo, by the seeming multitude of instruments required to inflect it. If, on the contrary, the few implements used are carried in the pocket, and produced when about to be used, unobserved by the patient, this evil is easily avoided.[139]

In seconding Hills’ sentiments, W. A. Gillespie, the Virginia country physician mentioned earlier, went a step further. Gillespie felt that the rural physician could dispense with the glass cups, torch, and scarificator and substitute in their place a simple thumb lancet and cow’s horn. Not only would these instruments save money, but they would also “excite less dread in the mind of the patient than a formidable display of numerous and complicated instruments.”[140]

Some inventors concentrated on more modest improvements in cupping technology, namely, modification of cups and scarificators. One of the simplest improvements was that of Dr. Francis Fox, House Surgeon to the Derbyshire General Dispensary. In 1827, Dr. Fox introduced a new glass cup with a short, curved, wide neck and an oval belly that hung downwards. When applied to the skin, the glass hung in the manner of a leech, and so the glass was called “The Glass Leech.” Since the burning tow could be placed in the hanging belly of the glass, away from the skin, it was easier to apply and remove the ordinary cup.[141] Other modifications of the cupping cup included the addition of a stopcock to let the air back in, graduations to measure the blood, and the attachment of a metal bar inside the cup in order to hold the burning sponge or wick away from the body of the patient.[142] (Figure [15].)

[Larger Image]

Figure 14.—Weiss’s improved patent cupping apparatus. Illustrated are Weiss’s patent syringe applied to cupping and Weiss’s improved scarificator. (From John Weiss, Surgical Instruments, 2nd edition, London, 1831. SI photo 73-5184.)

The most significant innovation in cups came with the manufacture of cups of vulcanized rubber in the 1840s. Rubber cups could be easily exhausted without need of a torch, and they were far cheaper and easier to manipulate than cups attached to a pump. Most surgical catalogs in the late nineteenth century offered both all-rubber cups and glass cups to which a rubber bulb was attached. In the late nineteenth century, sets of cups were sometimes sold with rubber rims because the rubber fit more comfortably against the skin and prevented air from entering the cup. Museum collections contain few rubber cups because nineteenth-century rubber tended to deteriorate in time. However, the appearance of these cups in all surgical catalogs indicates that they were widely sold.[143]

[Larger Image]

Figure 15.—Fox’s glass leech. Cupping set contains two hanging “glass leeches,” a scarificator, a bottle of alcohol, and a torch with a ring handle such as the cupper Knox recommended. (Set held by the Academy of Medicine, Toronto. Photo courtesy of the Academy.)

Several inventors tried to improve upon the scarificator. The defects of the ordinary scarificator were widely recognized. It was too bulky and heavy, and it cost too much—the most inexpensive scarificator offered by George Tiemann & Co. in 1889 cost $4.50.[144] A strong hand was required to trigger the blades, and when the trigger was released, the force of the spring was so great that the lever moved back with great force and produced a loud, unpleasant click. The force of the lever moving against the case of the scarificator made it impossible to use any but expensive materials (brass and German silver) in making the scarificator casing. Furthermore, the springs were liable to break. Finally, the scarificator was difficult to clean.[145] Late in the century, when sterilization became important, some cuppers went back to the lancet because the scarificator could not be surgically cleansed. The surprising thing is, that despite all the defects, the same scarificator was sold in 1930 as in 1830. Either the claims of the inventors of improved scarificators were unjustified, or cuppers were unwilling to try novel instruments in what was becoming an old-fashioned and increasingly less popular operation. (Figure [16].)

A few British and American surgical supply companies sold special models of scarificator, but always in addition to the common scarificator. The special models were generally higher in price. For example, the Englishman, James Coxeter, announced in 1845 a new scarificator with a rotating lever on the side instead of a cocking lever on the top. The roto-lever, according to Coxeter, could be turned to set the scarificator by a child of six. Furthermore, the scarificator was so constructed that when the spring was released only internal parts moved. There was no lever that snapped back and no resounding click. This special model of scarificator continued to be sold by Coxeter and Son (London) until late in the nineteenth century.[146]

Coxeter did not patent the roto-lever scarificator. In fact, through 1852 there were no British patents on scarificators. In contrast, there were eight French patents on scarificators before 1860.[147] Of these, the most important was the 1841 patent of Joseph-Frédéric-Benoit Charrière (1803-1973), a Swiss-born cutler who founded a major surgical supply company in Paris. Charrière’s octagonal scarificator substituted two flat coiled springs (like watch springs) for the two cantilever springs normally found in “reversible” scarificators. One end of each coiled spring was attached to the scarificator casing and the other to one of the support rods. As the cocking lever was pulled, the support rods turned and wound the springs more tightly about the rods. According to Charrière, these springs were more efficient and less likely to break than the ordinary springs.[148]

Charrière’s company later employed the coiled springs in the making of a circular scarificator. The circular scarificators, associated particularly with French manufacture, were the most elegant of nineteenth-century scarificators and a fitting complement to the Charrière cupping sets.[149] They were generally not sold by British and American surgical supply companies, but a number of them appear to have reached the hands of American physicians.

In America, there were five patents on scarificators, of which the Smithsonian possesses three patent models. The most significant American patent was that of George Tiemann in 1846. Tiemann’s scarificator had a flattened base and an ebony handle, which contained a coiled spring. The blades were moved by a rack and pinion mechanism, and triggered by a knob at the end of the handle. The advantages claimed by the inventor were ease in handling, ease in cleaning, and the diagonal cut of the blades that allowed the blood to flow more freely and the wounds to heal more readily. Tiemann & Co. was still selling their patent scarificator as late as 1889 for a price of $7.00.[150] The Smithsonian possesses a marketed version in addition to the patent model.

The two other patent scarificators in the Smithsonian collection were both invented by Frederick M. Leypoldt of Philadelphia. The first, patented in 1847, was similar in external appearance to the common scarificator. The novelty consisted of a new arrangement of the cocking lever and cantilever spring that allowed use of a lighter and cheaper casing. Although the patent model was made of brass, Leypoldt claimed that with his improvements in the internal mechanism, the case could, with safety, be made of tin.[151]

Leypoldt’s second patent, issued in 1851, was for a scarificator with a greatly simplified inner mechanism allowing for a substantially smaller and lighter case. The cocking lever was placed horizontally in the casing and engaged the blade rods through a rack and pinion mechanism. According to Leypoldt, this scarificator was more convenient, more portable, cheaper, safer, and more reliable than the common scarificator.[152] Leypoldt probably marketed his scarificators, there being in the Smithsonian collection other bloodletting instruments with his name, but he did not form a major surgical supply company as did George Tiemann.

[Larger Image]

Figure 16.—Advertisement for phlebotomy and cupping instruments. Note the rubber cups. (From George Tiemann & Co., American Armamentarium Chirurgicum, New York, 1889. SI photo 76-13542.)

After 1860, interest in inventing new scarificators declined as wet cupping decreased in popularity. The improved cups and scarificators, while they had achieved a limited success, had still failed to supplant the common octagonal scarificator and the plain glass cup. As interest in wet cupping declined, medical attention shifted to the therapeutic virtues of dry cupping. Dry cupping offered even greater opportunities for inventors, who sought means to bring the effects of the vacuum to more areas of the body for greater lengths of time.

Dry Cupping

Dry cupping, in its simplest form, was said to act as a “revulsive” or “derivant.” By the nineteenth century these once hotly debated terms had become nearly interchangeable in discussions of cupping. In cupping for revulsive purposes, one cupped on a distant part to relieve excess of blood in the affected part. In applying cupping as a “derivant,” one cupped closer to the affected part. In either case, the source of pain was presumed to be somewhere below the skin, and the pain was relieved by bringing blood away from the affected part to the surface of the body. Thus, one nineteenth-century cupper concluded, revulsion was only derivation at a distant point.[153]

If dry cupping was applied for ten minutes or longer so that the capillaries burst, the action of the cups was said to be that of a counter-irritant. According to ancient medical theory, the counter-irritant was a means of relieving an affected part by deliberately setting up a secondary inflammation or a running sore in another part. Counter-irritations were traditionally produced in a number of ways, among them, blisters, cautery, setons, moxa, and dry cupping.[154]

One of the most popular counter-irritation devices commonly associated with cupping instruments in catalogs of surgical goods, was Baunscheidt’s Lebenswecker, sold by most American surgical supply houses in the second half of the nineteenth century. The Lebenswecker, or “Awakener of Life,” was the mainstay of the mystical medical system known as Baunscheidtismus, after the founder of the device, Carl Baunscheidt of Prussia (1809-1860).[155] The system apparently gained much notoriety in Germany, England, and America, for Baunscheidt’s book went through ten German editions and several British and American editions. At least two Americans patented improvements on the Lebenswecker.[156] The device was made of ebony, about 250 mm long, and contained a coiled spring attached to a handle. At the other end of the spring was a place about 20 mm in diameter, with about thirty projecting needles. By pushing upon the handle, one sent the needles into the skin. The ability of the instrument to create blisters was enhanced by the application of Baunscheidt’s special oil to the irritation (Figure [17]).

[Larger Image]

Figure 17.—Venus and Adonis with marks showing where Baunscheidt’s Lebenswecker should be applied. (From Carl Baunscheidt, Baunscheidtismus, by the Inventor of the New Curing Method, Bonn, 1859(?). Photo courtesy of NLM.)

Dry cupping stimulated much theoretical debate in the nineteenth century as well as a number of physiological experiments.[157] Although physicians generally agreed that dry cupping had curative value if employed properly, they disagreed widely on when to employ the remedy, and on the manner in which the remedy operated. Did application of cups affect only the surface vessels, or could cupping affect the entire nervous system, and through the nerves, the action of the secretory organs? Were the effects of dry cupping of only a temporary nature, or were they permanent? An interesting series of investigations in Europe and America sought to ascertain the value of dry cupping in checking the absorption of poison. An American, Dr. Casper Wistar Pennock, replying to investigations performed by Martin Barry, an Edinburgh physician residing in Paris, carried out an impressive series of physiological experiments in 1827, in which he administered strychnine and arsenic under the skin of dogs and rabbits and then cupped over the wounds. He concluded that while dry cupping prevented almost certain death from the poisons, once the cups were removed, death would ensue, unless the poisons were surgically removed.[158]

Interest in dry cupping led to attempts to apply the therapeutic effects of the operation to larger areas of the body than could be accommodated by a cup. In France, Victor-Théodore Junod (1809-1881) adapted cupping to entire limbs. Shortly after receiving his degree in medicine in 1833, Junod presented at the Academy of Sciences his apparatus, known thereafter as Junod’s boot. Junod believed that actual extraction of blood was a dangerous remedy and that the benefits of bleeding might as easily be obtained by his “derivative method,” which withdrew blood from the general circulation but allowed it to be returned at will. Junod’s boot and Junod’s arm, which sold for as much as $25.00 apiece,[159] were constructed of metal and secured against the limb by a silk, and later a rubber, cap. To the boot was attached a flexible tube, stopcock, pump, and if desired, a manometer for measuring the vacuum produced. In chronic illnesses, Junod recommended that the boot be applied for an hour. So much blood was withdrawn from the circulation by use of the apparatus that the patient might easily faint. To explain how his boot worked, Junod invented a theory that he called “hemospasia,” meaning the drawing of blood.[160] This was typical of a number of attempts to introduce sophisticated terminology into discussions of traditional remedies. Junod’s arm and boot were widely available through American surgical supply companies. As late as 1915, Heinrich Stern, previously mentioned as a latter-day proponent of bloodletting, had no doubt that application of the boot to the foot would relieve congested states of the abdominal viscera.[161] (Figure [18].)

Americans patented a number of modifications of the arm and boot, and in addition they patented a number of whole body devices called “depurators.” Junod had introduced such a device along with his boot—a metal casing in which a patient would be placed leaving only his face showing. The air inside would then be exhausted by means of a gigantic syringe. In America such “depurators” may have been regarded more as quackery than as a legitimate extension of cupping, for despite the fact that Americans patented some twenty of these devices, surgical supply houses did not sell them and little was written about them.

In the last decade of the nineteenth century, Dr. August Bier, professor at the University of Bonn, developed another sophisticated theory supporting the use of blood-suction devices, known as the theory of hyperemia, meaning “excess of blood.” According to the doctrine, lesions are always accompanied in nature by hyperemia, “the most widespread of auto-curative agents.”[162] If we, therefore, wish to imitate nature, we create an artificial hyperemia. Bier recommended several means of increasing the blood supply of an affected part, including hot-air baths, suction devices such as Junod’s boot, and dry cupping. Several American surgical suppliers sold Bier’s Hyperemic Cups in the early twentieth century. These were glass cups, of a great variety of shapes and sizes including some with curved rims, each fitted with a rubber tube and bulb for exhausting the air. A major function of these cups was to collect wound secretions from boils or furuncles.[163]

[Larger Image]

Figure 18.—Junod’s boot applied to a baby in the cradle. (From Victor Theodore Junod, A Theoretical and Practical Treatise on Maemespasia. London, 1879. Photo courtesy of NLM.)

Breast Cupping

Related to cupping by its technology is the practice of drawing milk from the breasts by means of breast pumps. Mothers with underdeveloped or inflamed breasts posed a frequent problem for the nineteenth-century physician, who treated them with either large doses of tartar emetic, a strong purgative, or with cupping.[164] Breast pumps were small glass cups with fluted edges made to accommodate the nipple. While some surgeons, as the American Samuel Gross, recommended using a bottle with a long neck in which the air had been rarified by means of hot water,[165] most breast pumps were exhausted by mechanical means. For reasons of modesty, the pumps were usually designed so that the woman could draw her breasts herself. Perhaps the simplest design of a breast pump was a glass cup having a long spout extending in such a way that the woman could perform suction herself. Such all-glass cups were illustrated in the eighteenth century.[166] A few, reputedly made centuries earlier, are found in the Wellcome Historical Medical Museum. Early in the nineteenth century, breast pumps, just as glass cups for bleeding, were attached to brass syringes, and were often included among the variety of cups in cupping sets provided with syringes. Read’s and Weiss’s patent syringe as well as Thomas Machell’s cupping device were adapted for breast pumping. With the invention of vulcanized rubber, the breast pump was frequently attached to a large rubber bulb. A glass protuberance was often added to pumps exhausted by syringes or rubber bulbs, in order to collect the milk so that it could be fed to the infant. In the 1920s some breast pumps were attached to electric motors.[167] Breast pumps have continued to be employed up to the present day. Of all instruments employing the principle of the cupping device, breast pumps were the most frequently patented. From 1834 to 1975, more than 60 breast pumps were patented, the majority in the period from 1860 to 1920.[168]

The Decline of Cupping

Cupping died out in America in the early twentieth century, but its disappearance was gradual and scarcely noticed. Some of the most complex of cupping devices were invented in a period when most physicians regarded cupping as ineffectual. Patents for cupping devices continued to be issued as late as 1916 when Joel A. Maxam of Idaho Springs, Colorado, patented a motorized pump, which by means of various sizes of cups, could subject a part of the patient’s body to either a prolonged suction or a prolonged compression.[169] One of America’s last advocates of bloodletting, Heinrich Stern, writing in 1915, also advocated the use of an electrical suction pump to evacuate cups. With an electric motor, he declared, one could prolong hyperemia for 15, 30, or more minutes.

Stern also invented a theory to account for the therapeutic effects of his inventions, namely, the theory of phlebostasis. Instead of pumping air out of a device, Stern pumped air into a device, for the same purpose of removing a portion of blood from the general circulation. His “phlebostate,” manufactured by Kny-Scheerer of New York, was quite similar to a sphygmomanometer. It consisted of a set of cuffs that fit about the thighs, rubber tubes, a manometer, and a suction bulb or an electric force pump. For stubborn cases, such as migraine headaches, Stern recommended using the cuffs for 30 minutes or more. To facilitate the application of the cuffs, Stern invented a “phlebostasis chair,” one of the most complex “cupping” devices ever made. Like an electric chair, the phlebostasis chair was supplied with cuffs for both arms and legs. Air was pumped into the cuffs by means of an electric motor. According to Stern, compression of the upper segment of both arms withheld 300 cc of blood from circulation, while compression of the thighs withheld as much as 600 cc.[170]

In addition to these sophisticated devices, simple cupping, especially dry cupping, continued well into the 1930s. Although cupping was no longer generally recommended by physicians, most surgical companies advertised cups, scarificators, and cupping sets in the 1920s and even the 1930s. The last bastions of cupping in the United States were the immigrant sections of large cities. In the lower East Side of New York, in particular, cupping was still flourishing in the 1920s. By then cupping was no longer performed by the physician, but had been relegated back to the lowly barber, who advertised in his shop window, “Cups for Colds.”[171]