VI. Recapitulation.

To bring together shortly the results of this essay:—the fundamental fact upon which everything else is founded is the fact that two polar bodies are expelled, as a preparation for embryonic development, from all animal eggs which require fertilization, while only one such body is expelled from all parthenogenetic eggs.

This fact in the first place refutes every purely morphological explanation of the process. If it were physiologically valueless, such a phyletic reminiscence of the two successive divisions of the egg-nucleus must have been also retained by the parthenogenetic egg.

In my opinion the expulsion of the first polar body implies the removal of ovogenetic nucleoplasm when it has become superfluous after the maturation of the egg has been completed. The expulsion of the second polar body can only mean the removal of part of the germ-plasm itself, a removal by which the number of ancestral germ-plasms is reduced to one half. This reduction must also take place in the male germ-cells, although we are not able to associate it confidently with any of the histological processes of spermatogenesis which have been hitherto observed.

Parthenogenesis takes place when the whole of the ancestral germ-plasms, inherited from the parents, are retained in the nucleus of the egg-cell. Development by fertilization makes it necessary that half the number of these ancestral germ-plasms must be first expelled from the egg, the original quantity being again restored by the addition of the sperm-nucleus to the remaining half.

In both cases the beginning of embryogenesis depends upon the presence of a certain, and in both cases equal, quantity of germ-plasm. This certain quantity is produced by the addition of the sperm-nucleus to the egg requiring fertilization, and the beginning of embryogenesis immediately follows fertilization. The parthenogenetic egg contains within itself the necessary quantity of germ-plasm, and the latter enters upon active development as soon as the single polar body has removed the ovogenetic nucleoplasm. The question which I have raised on a previous occasion—‘When is the parthenogenetic egg capable of development?’—now admits of the precise answer—‘Immediately after the expulsion of the polar body.’

From the preceding facts and considerations the important conclusion results that the germ-cells of any individual do not contain the same hereditary tendencies, but are all different, in that no two of them contain exactly the same combinations of hereditary tendencies. On this fact the well-known differences between the children of the same parents depend.

But the deeper meaning of this arrangement must doubtless be sought for in the individual variability which is thus continuously kept up and is always being forced into new combinations. Thus sexual reproduction is to be explained as an arrangement which ensures an ever-varying supply of individual differences.