ACCOUNT OF THE IRISH ELK, FOSSIL ELEPHANT OR MAMMOTH, AND THE MASTODON.

As the Irish Elk, the Fossil Elephant or Mammoth, and the Mastodon, are among the most remarkable of the fossil and extinct species of quadrupeds mentioned in the preceding pages of this work, we, with the view of farther gratifying the curiosity of our readers, now lay before them the following additional details from the writings of Cuvier, Goldfuss, and others.

1. Fossil Elk of Ireland, Cervus megaceros[417].

(Noticed at p. 286.)

One of the most magnificent of the bisulcated animals met with in a fossil state in the British Islands is the Elk of Ireland, the Cervus megaceros. Bones and horns of vast size of this species are almost daily dug out of the bogs and marl pits of Ireland. Similar remains have been met with in alluvial strata in Britain, and also in the Isle of Man.

“So frequently do these remains,” Mr Hart remarks, “occur in most parts of Ireland, that there are very few of the peasantry who are not, either from personal observation or report, acquainted with them by the familiar name of the horns of the ‘old deer.’ Indeed in some parts of the country they have been found so often, that far from being regarded as objects of any extraordinary interest, they have been either thrown aside as lumber, or applied to the commonest economical uses[418].

“I have made diligent but fruitless search for an account of the particular time when any of these remains were first discovered. As they generally occur in marl, it is most likely that they did not begin to attract attention until the advanced state of agriculture had created an increased demand for that mineral as a manure. We can very easily imagine the astonishment which the appearance of horns so large, and of such strange form, must have excited in the minds of those who discovered them for the first time, and how readily they obtained a place in the hall of some adjoining mansion, where they were deposited as an ornament of great curiosity, from the contrast which they formed with the horns of the species of deer known at present. In this way we may account for the preservation of so many specimens as are found in the possession of the gentry in different parts of this country.

“Very lately an entire skeleton of the Irish Elk was dug up in that country. The following statement of the circumstances under which the bones were found, with their geological position, was laid before the Dublin Society, in a letter from Archdean Maunsell to the Right Hon. George Knox.

Middleton Lodge, March 8. 1825.

“MY DEAR SIR,

“I deferred replying to your letter of the 1st, as it was my intention to proceed to Limerick in a few days, and I was anxious to look over some notes I had taken, and which I left there, of the circumstances connected with the discovery of the fossil remains which the Royal Dublin Society have received. As I have, however, been obliged to postpone my departure for several days, I can no longer defer offering my best thanks for the kind manner in which you have received the conjectures which I formed upon a subject to which my attention was directed, by having fortunately been present before the bones were disturbed from the situation in which they had lain during a period which I apprehend it would not be easy to define. I am sensible that any consideration which may have been attached to my observations should be attributed to the interest which the subject itself is calculated to excite, rather than to any ability of mine to do it justice. The opinion which I took the liberty of communicating to you was formed after some consideration, and although I had not the most remote idea of its being worthy of any attention, I can have no objection to your making any use of it which you may conceive expedient. There is, I conceive, much interesting material for speculation, resulting from the discovery of these fossil remains, and the first that naturally occurs is the manner in which the animals were destroyed, and the bones so singularly preserved. I stated, in the hasty sketch which I gave you of my theory upon this point, that I apprehended they must have been destroyed by some overwhelming deluge, that they were probably drowned upon the hills where they had taken refuge, as the waters rose, and that, as they subsided, they were drawn from thence into the valley in which they were found; that the agitation of the waters had occasioned such a dispersion of the bones, when the ligaments dissolved, as would account for their having been scattered in the way in which they were found, and that the deposite of shell marl, with which I supposed the water to have been turbid, had so completely protected them from atmospheric influence as to prevent their subsequent decomposition. To enable you to form some estimate of the reasonableness of this supposition, it is necessary that I should endeavour to explain the situation, &c. of the valley and the adjoining hills. The valley in which the remains were found contains about twenty plantation acres, and the soil consists of a stratum of peat about a foot thick, immediately under this a stratum of shell-marl, varying from 1½ to 2½ feet in thickness; in this many of the shells retain their original colour and figure, and are not marine; under the marl there is a bed of light blue clay; through this one of my workmen drove an iron rod, in several places, twelve feet deep, without meeting opposition. Most of the bones and heads, eight in number, were found in the marl; many of them, however, appeared to rest on the clay, and to be merely covered by the marl. The remains were disposed in such a manner as to prevent the possibility of ascertaining the exact component parts of each skeleton; in some places portions were found removed many yards from others, and in no instance were two bones found lying close to each other. Their position also was singular; in one place two heads were found, with the antlers entwined in each other, and immediately under them a large blade-bone; in another, a very large head was discovered, and although a most diligent search was made, no part of the skeleton found; within some hundred yards, in another, the jaw-bones were found, and not the head. The conclusion which, I conceive, may fairly be deduced from such a position of the various parts of the animals is, that there must have been some powerful agent employed in dispersing them after their death; and as I consider it impossible that their own gravity could have been sufficient to sink them through the various strata, I conceive these must have originated subsequently to the dispersion of the bones. I also think, that, if they had been exposed for any time to atmospheric influence, they never could have been preserved in their present extraordinary perfection.

“The hills immediately adjoining this valley are composed of limestone, with a covering of rich mould of various degrees of thickness. One of them, whose base is about thirty acres, rises directly from the edge of the valley, with sides very precipitous, and in one place perfectly perpendicular, of naked limestone. In every part of this hill the superficies comprises as much stone as mould; on the side nearly opposite, the hill is equally high, but the sides not so steep, and the covering of mould thicker; on the other sides the ground only rises in some degree (twenty or thirty feet perhaps), and consists of a thin mould, and immediately under a very hard limestone gravel. Indeed, except where limestone forms the substratum, this is the character of all the soil in the vicinity except the Corkasses, which are evidently alluvial. I am fully aware, that, assuming the destruction of the animals to have been occasioned by a flood, they would naturally have retreated from the water to the hills, and that, as they probably met their fate there, their remains should have been discovered on the summit of the hills, and not in the valley, particularly as one of them is perfectly flat on the top, which contains six or seven acres. I apprehend that the remains of many of them were deposited on the tops of the hills; but as they have now only a slight covering of mould, not sufficient to cover a small dog, they were formerly perfectly bare; and as they were thus devoid of the means of protecting the remains from the atmosphere, whatever was left there soon became decomposed, and resolved into portions of the mould, which is now to be found on the hills. This remark I conceive also to be applicable to the soil with the substratum of limestone gravel, which affords quite as little material for preserving the bones as the hills do.

“It is material that I should observe, that of eight heads which we found, none were without antlers; the variety in character also was such as to induce me to imagine, that possibly the females were not devoid of these appendages. Unfortunately, however, from the difficulty of raising them, being saturated with water, and as soft as wet brown paper, only three were at all perfect.

“Having now disposed of these antediluvians, a question naturally arises, how it happens that the fossil remains of no other animals were found, when the same fate probably overwhelmed every existing creature? Could deer have been the only living beings at that period? Was Ireland part of a great continent when this catastrophe occurred, and were these unfortunates the first emigrants to our Isle from that great centre from whence the globe was supplied with occupants, and did they perish before other animals less influenced by enterprise, and less endowed with physical strength, could have followed their example? These problems I confess myself unable to solve, and shall not presume to obtrude my many reveries upon this and other points, which have originated in the discovery of a few bones, upon those who I know are so much better competent to form a sound opinion. I shall, I hope, be able to send the antlers, which are very fine, on the 15th of this month.

“If you have a desire to make any use of this letter, I can only say I have no objection. I remain, dear Sir, with feelings of great respect,

“Yours most truly,

“William W. Maunsell.”

Of this skeleton, the most perfect hitherto found, the following interesting description is given by Mr Hart, in his memoir.

“This magnificent skeleton is perfect in every single bone of the framework which contributes to form a part of its general outline: the spine, the chest, the pelvis, and the extremities, are all complete in this respect; and, when surmounted by the head, and beautifully expanded antlers, which extend out to a distance of nearly six feet on either side, forms a splendid display of the reliques of the former grandeur of the animal kingdom, and carries back the imagination to a period when whole herds of this noble animal wandered at large over the face of the country.

To proceed with a description of the several parts of this specimen in detail, I shall commence with the horns, which give the animal its chief characteristic feature.

The horns.—That the description of these may be the more intelligible, I will first explain the terms which I mean to apply to their several parts. Each horn consists of the socket or root, the burr or coronary circle, the beam or shaft, the palm and the antlers.

The socket or root is the part of the horn which grows out of the frontal bone, and which is never shed; it is smooth, of a brown colour, an inch and half in length, and eleven inches three quarters in circumference; in the animal’s lifetime it was covered by the skin. The coronary or bead-like circle, or burr, is a ring of small, hard, whitish prominences, resembling a string of pearls, which encircles the junction of the socket with the part of the horn which falls annually from the heads of all deer.

The beam or shaft extends outwards, with a curvature whose concavity looks downwards, and backwards. This part is nearly cylindrical at its root, and its length equals about one-fourth of that of the whole horn; its outer end is spread out and flattened on its upper surface, and is continuous with the palm, which expands outwards in a fan-like form, the outer extremity of which measures two feet ten inches across, being its broadest part. Where the beam joins the palm the horn undergoes a kind of twist, the effect of which on the palm is, to place its edges above and below, and its surfaces anterior and posterior; the anterior surface is convex, and looks outwards; the posterior is concave, and its surface looks towards that of the opposite palm. Such is the position of the horns, when the head is so placed that the zygomatic arch is parallel to the horizon, as it would be during progression, or whilst the animal stands in an easy posture.

The antlers are the long pointed processes which project from the horns, two of which grow from the beam anteriorly; the first comes off immediately from the root, and is directed downwards, overhanging the orbit; this is called the brow antler, which, in this specimen, is divided into two points at its extremity[419].

The other antler, which comes off from the beam, we may call the sur-antler: in this specimen it consists of a broad plate or palm, concave on its upper surface, horizontal in its direction, and forked into two points anteriorly,—an appearance which I have not observed in any other specimen of upwards of forty which I have seen, nor do I find it marked in any of the plates of those bones extant.

There is one antler given off posteriorly from the junction of the beam with the palm: it runs directly backwards parallel to the corresponding one of the opposite horn. The inferior edge of the palm beyond this runs outwards and backwards: it is obtuse and thick, and its length is two feet six inches. From the anterior and external borders of each palm there come off six long pointed antlers. None of these are designated by any particular name. The number of the antlers of both sides taken together is twenty-two.

The surface of the horns is of a lightish colour, resembling that of the marl in which they were found; they are rough, and marked with several arborescent grooves, where the ramifications of the arteries by which they had been nourished during their growing state were lodged. The horns, with the head attached, weighed eighty-seven pounds avoirdupois. The distance between their extreme tips in a right line is nine feet two inches.

Head.—The forehead is marked by a raised ridge extended between the roots of the horns; anterior to this, between the orbits and the root of the nose, the skull is flat; there is a depression on each side in front of the root of the horn and over the orbit, capable of lodging the last joint of the thumb, at the bottom of which is the superciliary hole, large enough to give passage to an artery proportioned to the size of the horns. Inferior to the orbit we have the lachrymatory fossa, and the opening left by the deficiency of bone common to all deer, and remarkable for being smaller in this than in any other species.

Below the orbits the skull grows suddenly narrower, and the upper parts of the nasal bones become contracted by a depression on either side, at the lower part of which is the infra-orbitar hole. The opening of the nares is oval, being five inches long by three broad, the greatest breadth being in the centre. From the roots of the horns to the occipital spine measures three inches and an half; the occiput descends at a right angle with this, being three inches deep to the foramen magnum: the greatest breadth of the occiput is eight inches. The temporal fossæ approach to within two inches of each other behind the horns.

Teeth.—They do not differ from those of animals of the ruminating class. The incisors were not found, having dropped out; there is no mark of canine teeth; the molares are not much worn down, and are twenty-four in number.

The skeleton measures, from the end of the nose to the tip of the tail, ten feet ten inches. The spine consists of twenty-six vertebræ, viz. seven cervical, thirteen dorsal, and six lumbar. The size of the cervical vertebræ greatly exceeds that of the other classes, and the spines of the dorsal rise to a foot in height. The necessity of these bones being so marked is obvious, considering the strong cervical ligament, and powerful muscles, required for supporting and moving a head which, at a moderate calculation, must have sustained a weight of three quarters of a hundred of solid bony matter.

The extremities are in proportion to the different parts of the trunk, and present a conformation favourable to a combination of great strength with fleetness.

It is not the least remarkable circumstance connected with these bones, that they are in such a high state of preservation as to present all the lines and impressions of the parts which had been attached to them in the recent state. Indeed, if we examine them as compared with the bones of an animal from which all the softer parts have been separated by maceration, the only perceptible differences in their physical properties are, that they are a little heavier, a degree harder, that their surface is brown, and that they all, with the exception of the horns, present a polished appearance, which is owing to the periosteum having been preserved, and still remaining to cover them, as was discovered when they were chemically examined.

The existence of fat or adipocire in the shaft of one of the bones mentioned by Archdeacon Maunsell, and which I saw in his possession, is a thing for which it is extremely difficult to account, as it occurred but in one solitary instance, and it did not appear that this bone was at all differently circumstanced from the rest. Those which I had an opportunity of examining, by boring holes in them, were hollow, and contained, for the most part, only a small quantity of black animal earth.

Mr Stokes found, in a rib of this animal,

Animal matter,42.87
Phosphates with some Fluates,43.45
Carb., Lime9.14
Oxides,1.02
Silica,1.14
Water and loss,2.38
———
100.00

Dr Apjohn of Dublin made the following observations with regard to the animal matter in the bones:

‘The bone was subjected for two days to the action of dilute muriatic acid. When examined at the end of this period, it had become as flexible as a recent bone submitted to the action of the same solvent. The periosteum was in some parts puffed out by carbonic acid gas, disengaged from the bone, and appeared to be in a state of perfect soundness.

‘To a portion of the solution of the bone in the muriatic acid some infusion of galls was added, which caused a copious precipitate of a dun colour. This proved to be tannate of gelatine, mixed with a small portion of the tannate and gallate of iron.

‘The cartilage and gelatine, therefore, so far from being destroyed, had not been perceptibly altered by time.’”

Until Baron Cuvier published his account of these remains[420], they were generally believed to have belonged to the same species as the moose deer or elk of North America, an opinion which appears to have been first advanced by Dr Thomas Molyneux in 1697[421], and which depends principally on the exaggerated description of that animal given by Josselyn in his account of two voyages to New England, published in 1674, in which he states that it is sometimes twelve feet high, with horns of two fathoms wide! This was the more readily believed by the learned Doctor, as it tended to confirm him in a favourite theory which he seems to have entertained, that Ireland had once been joined to the New Continent.

But the assertions of Josselyn regarding the size of the American moose have not been confirmed by the testimony of later travellers, from whose observations it is now clearly ascertained that the only large species of deer inhabiting the northern parts of America are the wapiti or Canadian stag (Cervus canadensis), the rein-deer (C. Tarandus), and the moose or elk (C. Alces).

The peculiar branching of the brow antlers of the rein-deer, and the rounded horns of the wapiti[422], are characters sufficient to prevent us confounding either of these animals with the fossil species.

The palmate form of the horns of the elk gave greater probability to the opinion of its specific identity with the fossil animal.

A little attention, however, to a few circumstances, will shew a most marked difference between them.

First, as to size, the difference is very remarkable, it not being uncommon to find the fossil horns ten feet between the extreme tips[423], while the largest elk’s horns never measure four feet. This measurement in a pair in the Museum of the Royal Dublin Society, is three feet seven inches: the largest pair seen by Pennant in the house of the Hudson’s Bay Company, measured thirty-four inches[424].

The horn of the elk has two palms, a lesser one which grows forward from the front of the beam, where the principal palm begins to expand. This is called brow antler by Cuvier, but it corresponds in situation rather to the sur-antler, there being, properly speaking, no brow antler attached to the root of the beam. The elk has no posterior antler similar to that of the fossil animal, nor does its beam take a similar arched direction, but runs more directly outwards.

Cuvier remarks, that the palm of the fossil horn increases in breadth as it extends outwardly, while that of the elk is broadest next the beam.

The palm of the elk’s horn is directed more backwards, while the fossil one extends more in the lateral direction. The antlers of the elk are shorter and more numerous than those of the fossil animals.

As the horns of the fossil animal exceed in size those of the elk, so, on the contrary, does the skull of the latter exceed in size that of the former; the largest heads of the fossil species not exceeding one foot nine inches in length, while the head of the elk is frequently two feet. The fossil head is broader in proportion; its length being to its breadth as two to one; in the elk they are as three to one, according to Parkinson.[425] The breadth of the skull between the roots of the horns is but four inches in the fossil skulls; in that of the elk in the Society’s Museum it is 6½ inches.

Cuvier thinks it probable that the females of the fossil species had horns[426], an opinion to which I am very much disposed to subscribe, from having observed that these parts present differences in size and strength, which appear not to be dependent on differences of age. For instance, the teeth of the specimen in Trinity College are much more worn down, and the sutures of the skull are more effaced than in the specimen described in this paper; yet the horns of the latter are much more concave, and more expanded, than those of the former; and on comparing a single horn of each of these specimens together, that belonging to the Society exceeds the other by nearly a sixth in the length, and little less than a third in the breadth; it is not, therefore, unlikely that the animal whose horns were larger and more curved was a male. Something similar to this is observed in the rein-deer, both sexes of which have horns, but with this difference, that they are smaller and less branched in the female. Hence we find that this animal possessed characters of its own sufficient to prove it of a species as distinct from the moose or elk as this latter species is from the rein-deer or any other. Therefore, it is improper to retain the name of elk or moose deer any longer: perhaps it might be better called the Cervus megaceros, a name merely expressive of the great size of its horns.

That this animal shed its head furniture periodically, is proved by the occasional occurrence of detached horns having the smooth convex surface below the burr, similar to what is observed on the cast horns of all deer. Specimens of this are to be seen in the Museum of Trinity College, and I possess one myself, of which I have had a drawing made. As every other species of deer shed their horns annually, there is no reason for supposing that that process occurred at longer intervals in this.

It is a popular opinion with the Indians that the elk is subject to epilepsy, with which he is frequently seized when pursued, and thus rendered an easy prey to the hunters. Many naturalists affect to disbelieve this account, without, however, assigning any sufficient reason. But if it be considered, that, during the growth of the horns, there must be a great increased determination of blood to those parts, which are supplied by the frontal artery, a branch from the internal carotid, it is quite conformable to well established pathological principles, to suppose, that, after the horns are perfected, and have ceased to receive any more blood, that fluid may be determined to those internal branches of the carotid which supply the brain, and establish a predisposition to such derangements of its circulation as would produce epilepsy, or even apoplexy: if such an effect were produced in consequence of the size of the horns in the elk, it is reasonable to suppose that it prevailed in a greater degree in the fossil animal whose horns were so much larger.

What could have been the use of these immense horns? It is quite evident that they would prevent the animal making any progress through a thickly wooded country, and that the long, tapering, pointed antlers were totally unfit for lopping off the branches of trees, a use to which the elk sometimes applies his horns[427], and for which they seem well calculated, by having their antlers short and strong, and set along the edge of the palm, somewhat resembling the teeth of a saw in their arrangement. It would rather appear, then, that they were given the animal as weapons for its protection, a purpose for which they seem to have been admirably designed; for their lateral expansion is such, that should occasion require the animal to use them in his defence, their extreme tips would easily reach beyond the remotest parts of his body; and if we consider the powerful muscles for moving the head, whose attachments occupied the extensive surfaces of the cervical vertebræ, with the length of the lever afforded by the horns themselves, we can easily conceive how he could wield them with a force and velocity which would deal destruction to any enemy having the hardihood to venture within their range.

From the formidable appearance of these horns, then, we must suppose that their possessor was obnoxious to the aggressions of some carnivorous animals of ferocious habits; and such we know to have abounded in Ireland, as the wolf, and the celebrated Irish wolf dog. Nor would it be surprising if limestone caves should be discovered in this country, containing the remains of beasts of prey and their victims, similar to the hyænas’ dens of Kirkdale, and other places, respecting which such interesting researches have been lately laid before the public by the geologists of this country and the Continent.

The absence of all record, or even tradition, respecting this animal[428], naturally leads one to inquire whether man inhabited this country during its existence? I think there is presumptive evidence in the affirmative of this question, afforded by the following circumstances. A head of this animal described by Professor Goldfuss of Bonn, was discovered in Germany in the same drain with several urns and stone hatchets; and in the 7th volume of the Archæologia Britannica, is a letter of the Countess of Moira, giving an account of a human body found in gravel, under eleven feet of peat soaked in the bog water: it was in good preservation, and completely clothed in antique garments of hair, which her ladyship thinks might have been that of our fossil animal. But more conclusive evidence on this question is derived from the appearance exhibited by a rib, presented by Archdeacon Maunsell to the Royal Dublin Society, in which I discovered an oval opening near its lower edge, the long diameter of which is parallel to the length of the rib, its margin is depressed on the outer, and raised on the inner surface, round which there is an irregular effusion of callus. This opening had been evidently produced by a sharp pointed instrument, which did not penetrate so deep as to cause the animal’s death, but which remained fixed in the opening for some length of time afterward; in fact it was such an effect as would be produced by the head of an arrow remaining in a wound after the shaft was broken off[429].

It is not improbable, therefore, that the chace of this gigantic animal once supplied the inhabitants of this country with food and clothing.

As to the causes which led to the extinction of this animal, whether it was suddenly destroyed by the deluge, or by some other great catastrophe of nature, or whether it was ultimately exterminated by the continued and successful persecution of its pursuers, as has nearly been the case with the red deer within the recollection of many of the present generation, I profess myself unable to form any decided opinion, owing to the limited number of facts as yet collected on the subject. On some future occasion I may, perhaps, be induced to revert to so interesting a topic, should I have opportunities of discovering any thing worthy of communication.

The following Table exhibits a comparative view of the measurements of different parts of the skeletons of the Cervus Megaceros in the Museum of the Royal Dublin Society, and in the Royal Museum of the University of Edinburgh, with some parts of the Moose. The measurements of the Edinburgh specimen are taken from Professor Jameson’s memoir on organic remains, in the Supplement to the Encyclopedia Britannica.

HEAD.R. D. Soc.U. of Edin.Moose
Ft. In.Ft. In.Ft. In.
Length of the head,11
Breadth of the skull between the orbits.010½09
Do. of skull at the occiput,08
Diameter of the orbit,02⅜0
Distance between infra orbitar holes across the skull,07
Length of alveolar processes of the upper jaw,0606
Length of lower jaw,10
Diam. of foramen magnum,02
HORNS.
Distance between the extreme tips, measured by the skull,1110
Ditto, in a straight line across,926837
Length of each horn,5951
Greatest breadth of the palm,210
Length of the beam,190
Ditto of brow antler,0
Ditto of sur-antler,14
Circumference of the beam at root of brow antler,10
BODY.
Length of spine,101098
Ditto of sternum,24
Height to the upper extremity of the dorsal spines,66
Ditto to the highest point of the tip of the horn,104
EXTREMITIES.
Greatest length of the scapula,1
Ditto breadth at the base,010¾
Ditto depth of its spine,0
Length of the humerus,141
Ditto of ulna and radius,1816
Ditto of carpus,002
Circumference of do.,0
Length of metacarpus,11
Length of phalanges,070
From anterior superior spine of one ileum to that of the other,11
From anterior superior spine to the tuber ischii,181
Greatest diameter of foramen ovale,0403
Least do. of do.,00
Length of the femur,11
Ditto of tibia,1616
Length of the tarsus, including the os calcis,08
Ditto of the metatarsus,11

2. Account of the Two Living Species of Elephant, and of the Extinct Species of Elephant, or Mammoth.

1. Elephas africanus.—The Elephant with rounded skull, large ears, grinders, having rhomboidal-shaped marks on their crown, which we call the African Elephant (Elephas Africanus), is a quadruped which has hitherto been found only inhabiting Africa. There can be no doubt that it is this species which lives at the Cape, at Senegal, and in Guinea; there is reason to believe that it also occurs at Mosambique; but it is not certain that individuals of the following species do not occur in this part of Africa. A sufficient number of individuals have not been figured or compared, to know if this species presents remarkable varieties. It is it that produces the largest tusks. Both sexes are equally furnished with tusks, at least at Senegal. The natural number of the hoofs is four before, and three behind. The ear is very large, and covers the shoulder. The skin is of a deep and uniform brown. This species has not been domesticated in modern times. It appears, however, to have been tamed by the ancients, who attributed to it less power and courage in that state than to the following species; but their observations do not appear to have been confirmed, at least in so far as refers to magnitude. Its natural manners are not perfectly known; yet judging of them by the notices of travellers, they appear to resemble in every thing essential those of the following species.

2. Elephas indicus.—The Elephant with elongated skull, concave forehead, small ears, grinders marked with undulating bands, which we call the Indian Elephant (Elephas Indicus), is a quadruped which has only been observed with certainty beyond the Indus. It extends from both sides of the Ganges to the Eastern Sea and the south of China. They are also found in the Islands of the Indian Sea, in Ceylon, Java, Borneo, Sumatra, &c. There is still no authentic proof that it exists in any part of Africa, although neither is the contrary absolutely proved. The inhabitants of India having from time immemorial been in the habit of taking this species and taming it, it has been much better observed than the other. Varieties have been remarked as to size, lightness of form, the length and direction of the tusks, and the colours of the skin. The females and some of the males have tusks which are always small and straight. The tusks of the other males never attain so great a length as in the African species[430]. The natural number of the hoofs is five before and four behind. The ear is small, frequently angular. The skin is commonly grey, spotted with brown. There are individuals entirely white. The height varies from fifteen to sixteen feet. Its manners, the mode of taking it, and of treating it, have been carefully described by many travellers and naturalists, from Aristotle down to Mr Corse Scott.

3. Elephas primigenius, Blum, or Mammoth.—The Elephant with elongated skull, concave forehead, very long alveolæ for the tusks, the lower jaw obtuse, the grinders broader, parallel, marked with closer bands, which we name the Fossil Elephant (Elephas primigenius, Blum.), is the Mammoth of the Russians. Its bones are only found in the fossil state. No person has seen in a fresh state bones resembling those by which this species is peculiarly distinguished, nor have the bones of the two preceding species been seen in the fossil state.[431] Its bones are found in great number in many countries, but in better preservation in the north than elsewhere. It resembles the Indian more than the African species. It differs, however, from the former in the grinders, in the form of the lower jaw, and many other bones, but especially in the length of the alveolæ and tusks. This last character must have singularly modified the figure and organisation of its proboscis, and given it a physiognomy much more different from that of the Indian species, than might have been expected from the similarity of the rest of their bones. It appears that its tusks were generally large, frequently more or less spirally arcuate, and directed outwards. There is no proof that they differ much according to differences of sex or race. The size was not much greater than that to which the Indian species may attain; it appears to have been still clumsier in its proportions. It is already manifest from its osseous remains, that it was a species differing more from the Indian, than the ass from the horse, and the jackal and isatis from the wolf and fox. It is not known what had been the size of its ears, or the colour of its skin; but it is certain that, at least, some individuals bore two sorts of hair, namely, a red, coarse, tufted wool, and stiff black hairs, which, upon the neck and along the dorsal spine, became long enough to form a sort of mane. Thus, not only is there nothing impossible in its having been able to support a climate which would destroy the Indian species, but it is even probable that it was so constituted as to prefer cold climates. Its bones are generally found in the alluvial and superficial strata of the earth, and most commonly in the deposits which fill up the bottom of valleys, or which border the beds of rivers. They scarcely ever occur by themselves, but are confusedly mingled with bones of other quadrupeds of known genera, such as rhinoceroses, oxen, antelopes, horses, and frequently with remains of marine animals, particularly conchiferous species, some of which have even been found adhering to them. The positive testimony of Pallas, Fortis, and many others, does not allow us to doubt that this latter circumstance has frequently taken place, although it is not always observed. We ourselves have at this moment under our eyes a portion of a jaw covered with millepores and small oysters.

The strata which cover the bones of elephants are not of very great thickness, and they are scarcely ever of a rocky nature. They are seldom petrified, and there are only one or two cases recorded in which they were found imbedded in a shelly or other rock. Frequently they are simply accompanied with our common fresh water shells. The resemblance, in this latter respect, as well as with regard to the nature of the soil, between the three places, of which we have the most detailed accounts, viz. Tonna, Cantstadt, and the Forest of Bondi, is very remarkable. Every thing, therefore, seems to announce that the cause which has buried them, is one of the most recent of those that have contributed to change the surface of the globe. It is nevertheless a physical and general cause; the bones of fossil elephants are so numerous, and have been found in places so desert and even uninhabitable, that we cannot suppose that they had been conducted there by man. The strata which contain them and those which are above them, shew, that this cause was aqueous, or that it was water that covered them; and in many places these waters were nearly the same as those of our present sea, since they supported animals nearly the same. But, it was not by these waters that they were transported to the places where they now are. Bones of this description have been found in almost every country that has been examined by naturalists. An irruption of the sea that might have brought them from places which the Indian elephant now inhabits, could not have scattered them so far, nor dispersed them so equably. Besides, the inundation which buried them has not risen above the great chains of mountains, since the strata which it has deposited, and which cover the bones, are only found in plains of little elevation. It is not, therefore, seen how the carcases of elephants could have been transported into the north, across the mountains of Thibet, and the Altaic and Uralian chains.

Further, these bones are not rolled; they retain their ridges and apophyses; they have not been worn by friction. Very frequently the epiphyses of those which had not yet attained their full growth, are still attached to them, although the slightest effort would suffice to detach them. The only alterations that are remarked, arise from the decomposition which they have undergone during their abode in the earth. Nor can it with more reason be represented that the entire carcases had been violently transported. In this case, the bones would indeed have remained entire; but they would also have remained together, and would not have been scattered. The shells, millepores, and other marine productions which are attached to some of these bones, prove besides that they had remained at least some time stripped and separated at the bottom of the fluid which covered them. The elephants’ bones had therefore already been in the places in which they are found, when the fluid covered them. They were scattered about in the same manner as in our own country the bones of horses and other animals that inhabit it may be, and as the dead bodies are spread in the fields.

Every circumstance, therefore, renders it extremely probable, that the elephants which have furnished the fossil bones, dwelt and lived in the countries where their bones are at present found. They could only, therefore, have disappeared by a revolution, which had destroyed all the individuals then living, or by a change of climate, which prevented them from propagating. But whatever this cause may have been, it must have been sudden. The bones and ivory which are found in so perfect a state of preservation in the plains of Siberia, are only so preserved by the cold which congeals them there, or which, in general, arrests the action of the elements upon them. If this cold had come on by degrees and slowly, these bones, and still more the soft parts with which they are still sometimes invested, would have had time to decompose, like those which occur in warm and temperate countries. It would especially have been impossible that an entire carcase, like that discovered by Mr Adams, could have retained its flesh and skin without corruption, if it had not been immediately enveloped by the ice which preserved it. Thus, all the hypotheses of a gradual cooling of the earth, or of a slow variation, whether in the inclination or in the position of the axis of the globe, fall to be rejected.

If the present elephants of India were the descendants of these ancient elephants, which have been preserved in that climate to the present day, from their being there placed beyond the reach of the catastrophe which destroyed them in the others, it would be impossible to explain why their species has been destroyed in America, where remains are still found, which prove that they had formerly existed there. The vast empire of Mexico presented to them heights enough to escape from an inundation so little elevated as that which we must suppose to have taken place, and the climate there is warmer than is requisite for their temperament.

The various mastodons, the hippopotamus and the fossil rhinoceros lived in the same countries, and in the same districts, as the elephants, since their bones are found in the same strata and in the same state. Yet these animals very assuredly no longer exist. Every thing therefore, Cuvier maintains, concurs to induce a belief that the fossil elephant is, like them, an extinct species, although it resembles more than they one of the species at present existing, and that its extinction has been produced by a sudden cause, by the same great catastrophe which destroyed the species of the same epoch.

3. On the Great Mastodon, or Animal of the Ohio.

It appears that the Great Mastodon or Animal of the Ohio, was very like the elephant in its tusks and whole skeleton, the grinders excepted; that it very probably had a proboscis; that its height did not exceed that of the elephant, but that it was a little more elongated, and had limbs somewhat thicker, with a more slender belly. Notwithstanding all these points of resemblance, the peculiar structure of its grinders is sufficient to constitute it of a different genus from the elephant. It further appears, that it fed much in the same manner as the hippopotamus and boar, choosing by preference the roots and other fleshy parts of vegetables; that this sort of food must have drawn it towards the soft and marshy places; that, nevertheless, it was not formed for swimming, and living often in the water like the hippopotamus, but that it was a true land animal. Its bones are much more common in North America than any where else. They are even perhaps exclusively confined to that country. They are better preserved, and fresher, than any other fossil bones known; and, nevertheless, there is not the slightest proof, the smallest authentic testimony, calculated to impress a belief that either in America, or any where else, there is still any living individual, for the various accounts which we have from time to time read in the journals respecting living mastodons, which had been observed in the forests or plains of that vast continent, have never been confirmed, and can only pass for fables.

Note