SOME USES OF ELECTRICITY
288. Heat. Any one who handles electric wires knows that they are more or less heated by the currents which flow through them. If three cells are arranged as in Figure 200 and the connecting wire is coarse, the heating of the wire is scarcely noticeable; but if a shorter wire of the same kind is used, the heat produced is slightly greater; and if the coarse wire is replaced by a short, fine wire, the heating of the wire becomes very marked. We are accustomed to say that a wire offers resistance to the flow of a current; that is, whenever a current meets resistance, heat is produced in much the same way as when mechanical motion meets an obstacle and spends its energy in friction. The flow of electricity along a wire can be compared to the flow of water through pipes: a small pipe offers a greater resistance to the flow of water than a large pipe; less water can be forced through a small pipe than through a large pipe, but the friction of the water against the sides of the small pipe is much greater than in the large one.
So it is with the electric current. In fine wires the resistance to the current is large and the energy of the battery is expended in heat rather than in current. If the heat thus produced is very great, serious consequences may arise; for example, the contact of a hot wire with wall paper or dry beams may cause fire. Insurance companies demand that the wires used in wiring a building for electric lights be of a size suitable to the current to be carried, otherwise they will not take the risk of insurance. The greater the current to be carried, the coarser is the wire required for safety.
289. Electric Stoves. It is often desirable to utilize the electric current for the production of heat. For example, trolley cars are heated by coils of wire under the seats. The coils offer so much resistance to the passage of a strong current through them that they become heated and warm the cars.
FIG. 201.—An electric iron on a metal stand.
Some modern houses are so built that electricity is received into them from the great plants where it is generated, and by merely turning a switch or inserting a plug, electricity is constantly available. In consequence, many practical applications of electricity are possible, among which are flatiron and toaster.
FIG. 202.—The fine wires are strongly heated by the current which flows through them.
Within the flatiron (Fig. 201), is a mass of fine wire coiled as shown in Figure 202; as soon as the iron is connected with the house supply of electricity, current flows through the fine wire which thus becomes strongly heated and gives off heat to the iron. The iron, when once heated, retains an even temperature as long as the current flows, and the laundress is, in consequence, free from the disadvantages of a slowly cooling iron, and of frequent substitution of a warm iron for a cold one. Electric irons are particularly valuable in summer, because they eliminate the necessity for a strong fire, and spare the housewife intense heat. In addition, the user is not confined to the laundry, but is free to seek the coolest part of the house, the only requisite being an electrical connection.
FIG. 203.—Bread can be toasted by electricity.
The toaster (Fig. 203) is another useful electrical device, since by means of it toast may be made on a dining table or at a bedside. The small electrical stove, shown in Figure 204, is similar in principle to the flatiron, but in it the heating coil is arranged as shown in Figure 205. To the physician electric stoves are valuable, since his instruments can be sterilized in water heated by the stove; and that without fuel or odor of gas.
A convenient device is seen in the heating pad (Fig. 206), a substitute for a hot water bag. Embedded in some soft thick substance are the insulated wires in which heat is to be developed, and over this is placed a covering of felt.
FIG. 204.—An electric stove.
290. Electric Lights. The incandescent bulbs which illuminate our buildings consist of a fine, hairlike thread inclosed in a glass bulb from which the air has been removed. When an electric current is sent through the delicate filament, it meets a strong resistance. The heat developed in overcoming the resistance is so great that it makes the filament a glowing mass. The absence of air prevents the filament from burning, and it merely glows and radiates the light.
FIG. 205.—The heating element in the electric stove.
291. Blasting. Until recently, dynamiting was attended with serious danger, owing to the fact that the person who applied the torch to the fuse could not make a safe retreat before the explosion. Now a fine wire is inserted in the fuse, and when everything is in readiness, the ends of the wire are attached to the poles of a distant battery and the heat developed in the wire ignites the fuse.
FIG. 206.—An electric pad serves the same purpose as a hot water bag.
292. Welding of Metals. Metals are fused and welded by the use of the electric current. The metal pieces which are to be welded are pressed together and a powerful current is passed through their junction. So great is the heat developed that the metals melt and fuse, and on cooling show perfect union.
293. Chemical Effects. The Plating of Gold, Silver, and Other Metals. If strips of lead or rods of carbon are connected to the terminals of an electric cell, as in Figure 208, and are then dipped into a solution of copper sulphate, the strip in connection with the negative terminal of the cell soon becomes thinly plated with a coating of copper. If a solution of silver nitrate is used in place of the copper sulphate, the coating formed will be of silver instead of copper. So long as the current flows and there is any metal present in the solution, the coating continues to form on the negative electrode, and becomes thicker and thicker.
FIG. 207.—An incandescent electric bulb.
The process by which metal is taken out of solution, as silver out of silver nitrate and copper out of copper sulphate, and is in turn deposited as a coating on another substance, is called electroplating. An electric current can separate a liquid into some of its various constituents and to deposit one of the metal constituents on the negative electrode.
FIG. 208.—Carbon rods in a solution of copper sulphate.
Since copper is constantly taken out of the solution of copper sulphate for deposit upon the negative electrode, the amount of copper remaining in the solution steadily decreases, and finally there is none of it left for deposit. In order to overcome this, the positive electrode should be made of the same metal as that which is to be deposited. The positive metal electrode gradually dissolves and replaces the metal lost from the solution by deposit and electroplating can continue as long as any positive electrode remains.
FIG. 209.—Plating spoons by electricity.
Practically all silver, gold, and nickel plating is done in this way; machine, bicycle, and motor attachments are not solid, but are of cheaper material electrically plated with nickel. When spoons are to be plated, they are hung in a bath of silver nitrate side by side with a thick slab of pure silver, as in Figure 209. The spoons are connected with the negative terminal of the battery, while the slab of pure silver is connected with the positive terminal of the same battery. The length of time that the current flows determines the thickness of the plating.
294. How Pure Metal is obtained from Ore. When ore is mined, it contains in addition to the desired metal many other substances. In order to separate out the desired metal, the ore is placed in some suitable acid bath, and is connected with the positive terminal of a battery, thus taking the place of the silver slab in the last Section. When current flows, any pure metal which is present is dissolved out of the ore and is deposited on a convenient negative electrode, while the impurities remain in the ore or drop as sediment to the bottom of the vessel. Metals separated from the ore by electricity are called electrolytic metals and are the purest obtainable.
295. Printing. The ability of the electric current to decompose a liquid and to deposit a metal constituent has practically revolutionized the process of printing. Formerly, type was arranged and retained in position until the required number of impressions had been made, the type meanwhile being unavailable for other uses. Moreover, the printing of a second edition necessitated practically as great labor as did the first edition, the type being necessarily set afresh. Now, however, the type is set up and a mold of it is taken in wax. This mold is coated with graphite to make it a conductor and is then suspended in a bath of copper sulphate, side by side with a slab of pure copper. Current is sent through the solution as described in Section 293, until a thin coating of copper has been deposited on the mold. The mold is then taken from the bath, and the wax is replaced by some metal which gives strength and support to the thin copper plate. From this copper plate, which is an exact reproduction of the original type, many thousand copies can be printed. The plate can be preserved and used from time to time for later editions, and the original type can be put back into the cases and used again.