FOOTNOTES:

[21] Collection de Memoires relatifs à La Physique Publiés Par la Société Française de Physique. Tome I., Mémoires de Coulomb. Paris. Gauthier-Villars, Imprimeur-Libraire Du Bureau des Longitudes, de L'École Polytechnique, Quai des Augustins, 55, 1884.

[22] Catholic Churchmen in Science, the Dolphin Press, Philadelphia, 1906.


[CHAPTER VII.]
Hans Christian Oersted.

Hans Christian Oersted

Whatever may be thought of the value of controversy in other departments of knowledge, it has certainly proved useful in the progress of experimental science. Witness the animated and prolonged discussion which took place between Volta and Galvani, and which led to enduring results for the welfare of mankind. Wishing to prove the correctness of his theory of electrification by contact against Galvani's animal electricity, Volta devoted himself unremittingly to experimentation until, in the century year 1800, his brilliant work culminated in the invention of the "pile" or electric battery which bears his name.

A suspicion had been growing for many years in the minds of physicists, that there must be some degree of relationship, probably an intimate one, between magnetism and electricity, between magnetic and electric forces. In the year 1785, van Swinden, a celebrated Dutch physicist, published a work on electricity in which he described and commented upon a number of analogies which he had observed between the two orders of phenomena; but, voluminous as was the work, it threw no light on the nature of the suspected relationship.

It was well known, in the case of houses and ships struck by lightning, that knives, forks and other articles made of steel were often found to be permanently magnetized. Following up this pregnant observation, experimenters often sought to impart magnetic properties to steel needles by Leyden-jar discharges, but with indifferent success. Sometimes there would be a trace of magnetism left and sometimes none. In no case was it possible to say beforehand which end of the knitting-needle would have north polarity and which south.

Though we are better equipped to-day for research work than were our predecessors in the electrical field fifty years ago, we are still unable to predict the polarity that will result in a bar of iron from a given condenser discharge. The uncertainty arises from the fact disclosed by Joseph Henry in 1842 and well known to-day that, under ordinary circumstances, all such discharges consist of a rush of electricity to and fro, that is, they give rise to an oscillatory current of exceedingly short duration. Were it otherwise, that is, were the discharge unidirectional, the needle would always be magnetized to a degree of intensity proportional to the energy released; and it would be possible in every case to foretell with certainty the resulting polarity which the needle would acquire.

With the advent of the voltaic battery, a generator which supplies a steady flow of current in one direction, the interesting problem of relationship between electric and magnetic forces was again attacked; and this time with considerable success.

Probably the earliest investigator afield was Romagnosi, an Italian physician residing in Trent (Tyrol), who, in the year 1802, published in the "Gazetta" of his town an account of an experiment which he had made, and which showed that he was working on promising lines. What he did was this: having connected one end of a silver chain to a voltaic pile, and having carried the chain through a glass tube for the purpose of insulation, he presented the free end, terminating in a knob, to a compass-needle, also insulated. At first, the needle was attracted; and, after contact, repelled. Whatever Romagnosi thought of his experiment and its theoretical bearing, the attraction and subsequent repulsion of the compass-needle which he said he observed were electrostatic and not electromagnetic effects. The Italian physician was indeed on the verge of a great discovery; but he halted in his course and lost his opportunity.

Mojon, Professor of chemistry in Genoa, was a little more fortunate, though he, too, failed to improve his opportunities. In 1804, he sought to magnetize steel needles by placing them for a period of twenty days in circuit with a battery of one hundred elements of the crown-of-cups type, and had the satisfaction of finding them permanently magnetized when withdrawn from the circuit. Unlike the electrostatic effect of his fellow-countryman Romagnosi, this was unquestionably an electromagnetic effect, the first link in the long chain connecting electricity with magnetism.

That this result attracted wide attention at the time, as it well deserved, is evident from the notice given by Izarn in his "Manuel du Galvanisme," and by Aldini in his "Essai Théorique et expérimental sur le Galvanisme," both of which were published in Paris in the same year, 1804.

Though the manuals of Izarn and Aldini served to give a fresh impetus to the quest of the relationship between electricity and magnetism, it was not, however, until the year 1820 that the cardinal discovery was made by one philosopher and the intimate relationship revealed by another. Then all Europe rang with the names of Oersted, the fortunate discoverer of the "magnetic effect" of the electric current, and Ampère, whose masterly analysis disclosed the nature of the long-sought-for connection. In the delight of the hour, men called Oersted the Columbus, and Ampère the Newton, of electricity.

Though a philosopher of a high order and lecturer of interest and brilliancy, Oersted was, nevertheless, a poor experimentalist. He was fine in the abstract, awkward in the concrete. Often did he call for the assistance of a student to perform an experiment for the class under his direction. Hansteen, who is celebrated for his very fine work in terrestrial magnetism, often had this privilege, for he was clear of mind and deft of hand. Writing to Faraday, he said: "Oersted was a man of genious, but very unsuccessful as a demonstrator, for he could not manipulate instruments."

In seeking for some evidence of a physical interaction between electricity and magnetism, Oersted on one occasion, placed a wire conveying a current vertically across a compass-needle; and, on obtaining no result, seemed greatly disappointed. He evidently expected the needle to respond in some way to the energy of the current; and so it would have responded had he placed the wire in any other position than the particular one which he selected. The Danish philosopher now hesitates; and for lack of coolness, patience and resourcefulness, runs the risk of losing the crowning glory of his life. He is disappointed at his failure; and for the nonce, contents himself with brooding over it.

Fig. 22
The Magnetic Effect of an Electric Current. Oersted, 1820

On another occasion, having a stronger battery at his disposal, he determined to try the experiment again, in the hope that the greater energy at his command would provoke the magnet to respond. This time, he stretched the wire over and parallel to the compass needle, when, to his intense delight, the magnet turned aside as soon as the circuit was closed. The result was pronounced and instantaneous. The Professor, an enthusiast by nature, waxed warm over his good fortune, and well might he do so, as the discovery which he had just made was destined to revolutionize existing modes of transmitting intelligence to distant parts and bring remotest countries into direct, and immediate relation with one another.

That Oersted fell into ecstasy over his success was but natural, though it is not stated that he exhibited his enthusiasm by the performance of any unusual feat. When Lavoisier made a discovery, he was wont to take hold of his assistant and go dancing around with him for sheer joy. After making a certain successful experiment in his laboratory, Gay-Lussac gave vent to his feelings by dancing round the room, and clapping his hands the while. It is related that, when Davy saw the first globules of potassium burst through the crust of potash and take fire, his delight knew no bounds. He also took to dancing, and some time had to elapse before he was sufficiently composed to continue his work. Even the cool and self-possessed Faraday occasionally waxed warm on seeing his efforts crowned with success. It is said that, when he got a wire conveying a current to revolve round the pole of a magnet, he rubbed his hands vigorously and danced around the table, his face beaming with delight: "There they go, there they go; we have succeeded at last," he said. He then gleefully proposed to cease work for the day and spend the evening at Astley's seeing the feats of well-trained horses!

Having realized that his experiment was one of fundamental importance in physical theory, our philosopher proceeds to repeat it under varying conditions. He places the wire conveying the current in front of the needle, behind it, under it, across it; he reverses the current in each case, and notices the direction in which the needle turns. Though he states results very clearly, he gives no general rule whereby the direction of the deflection may be foretold from that of the current. A memoria technica to meet all cases that may occur was needed, and was promptly supplied by Ampère, who, with a flash of genius, devised the rule of the little swimmer. Others have been added since, such as the cork-screw rule and the rule involving the outspread right hand; but the swimmer appeals in a manner quite its own to the fancy of the youthful student. It pleases while it instructs; it is ingenious while yet remarkably simple.

It has been said that the Philosopher of Copenhagen was led by mere accident to the experiment which will hand his name down the ages; but inasmuch as he was looking, during thirteen years, for a result analogous to the one which he obtained, it is only right to give him full credit for the success which he achieved. It has been well remarked, that the seeds of great discoveries are constantly floating around us, but take root only in minds well prepared to receive them. Accidents of the Oersted type happen only to men who deserve them, as was the case with Musschenbroek and Galvani in the eighteenth century, and with Roentgen in the nineteenth. The electrification of a flask of water, the twitching of frogs' legs in response to electric sparks, and the blackening of a sensitive screen by a distant, shielded Crookes's tube, led to the electrostatic condenser in the first case, to "galvanism" in the second, and to the photography of the invisible in the third.

Writing of Oersted's discovery, Faraday said that "It burst open the gates of a domain in science, dark till then, and filled it with a flood of light."

The discovery of 1820 was hailed throughout Europe by an extraordinary outburst of enthusiasm. Oersted was complimented and congratulated on all sides. Honors were showered upon him: the Royal Society of London awarded him the Copley medal; the French Academy of Sciences gave him its gold medal for the physico-mathematical sciences; Prussia conferred upon him the Ordre pour le Mérite, and his own country made him a Knight of the Daneborg.

Oersted lost no time in preparing a memoir on the subject of his work, a copy of which was sent to the learned societies and most renowned philosophers of Europe. The memoir, which was written in Latin and dated July 21st, 1820, consisted of four quarto pages with the title "Experiments on the effect of the electric conflict on the magnetic needle."

A perusal of this paper brings home the conviction that Oersted realized fairly well the forces which came into play in his experiment; for in one place, he speaks of the effect as due to a transverse force emanating from the conductor conveying the current, and again as a conflict acting in a revolving manner around the wire. A complete statement of the nature of the mechanical force exerted by a conductor conveying a current on a magnetic needle was given almost immediately by Ampère, a master analyst and accomplished experimentalist.

Fig. 23
Magnetic Field Surrounding a Conductor Carrying a Current

It will stand for all time in the history of science, that in less than two months after the publication of Oersted's memoir, Ampère succeeded in showing the mechanical effect in magnitude and direction of an element of current not only on the magnetic needle itself, but also on a similar element of an adjacent conductor conveying a current, thereby founding a new science in the department of physics, the science of electro-dynamics.

Oersted does not appear to have given thought to the practical possibilities of his discovery. While appreciating the utilitarian in science, he evidently preferred the pursuit of knowledge for its own sake. In a discourse which he delivered in 1814 before the University of Copenhagen, he put himself on record when he said that "The real laborer in the scientific field chooses knowledge as his highest aim."

So said Plato ages before, and so said Archimedes, who held that it was undesirable for a philosopher to seek to apply the discoveries of science to any practical end. The screw which he invented, his catapults and burning mirrors, show, however, that when necessary the Syracusan mathematician could come down from the serene heights of investigation to the prosaic arena of application.

Before Oersted spoke of "the real laborer," Thomas Young had affirmed that "Those who possess the genuine spirit of scientific investigation are content to proceed in their researches without inquiring at every step what they gain by their newly discovered lights, and to what practical purposes they are applicable."

Fig. 24
Magnetic Whirl Surroundinga Wire Through Which a Current is Passing

Young's most illustrious successor in the Royal Institution, Michael Faraday, devoted himself calmly but unflinchingly to research work, in the conviction that no discovery, however remote in its nature, from the subject of daily observation, could with reason be declared wholly inapplicable to the benefit of mankind. After discovering in 1831 that electric currents could be produced by the relative motion of magnets and coils of wire, a discovery which is the basis of all the electric engineering of our day, Faraday constructed several experimental machines embodying this principle, and then turned away abruptly from the work, saying, "I had rather been desirous of discovering new facts and new relations dependent on magneto-electric induction than of exalting the force of those already obtained, being assured that the latter would find their full development hereafter."

Our own Joseph Henry, whose sterling merit is universally recognized, beautifully said in this connection: "He who loves truth for its own sake feels that its highest claims are lowered by being continually summoned to the bar of immediate and palpable utility."

Oersted seems to have shared the opinion largely held by the scientific men of his day, that electricity is mainly a magnetic phenomenon. Ampère, for one, did not think so, as is evident from the beautiful theory which he devised to explain the magnetism of a bar by minute electric currents flowing round each individual molecule of the iron. To the French physicist, magnetism was purely an electrical phenomenon.

Fig. 25
Ampère's Molecular Currents

Though propounded more than eighty years ago, this theory is still in harmony with all facts and phenomena in the domain of magnetism known to-day. It is important to remember, when thinking of this physical theory, that the Amperian currents in question are confined to the molecule, and that they do not flow from one molecule to another. Critics have urged against the theory that the molecules must be heated by the circulation of these elementary currents, to which objection it has been replied that, as we know nothing of the nature of the molecule, we cannot say that it offers any resistance to the current; and, therefore, we cannot affirm that there is any development of heat due to the circulation of these elementary currents.

It is to Ampère's credit that he was also the first to propose a practical application of Oersted's discovery, an application that was nothing less than the electric telegraph itself. He suggested that the deflection of the magnetic needle could be used for the transmission of signals from one place to another by means of as many needles and circuits as there are letters in the alphabet. If Ampère had only recalled the optical and mechanical telegraphs in use in his day, such as the swinging of lanterns by night and wigwagging of flags and the movements of semaphores by day, he might have reduced his twenty-four circuits to one, using the two elements, viz., motion of the needle to the right and motion to the left, to make up the entire alphabet. Morse substituted the dot and the dash for these deflections, and thus rendered the reception of messages automatic and permanent.

In connection with this proposal to use a magnetic needle for the transmission of intelligence, the reader will no doubt recall the lover's telegraph, so beautifully described by Addison in the "Spectator" for December 6th, 1711; but ingeniously conceived as it was, this magnetic telegraph was purely and simply a creation of the imagination.

This canny conceit has been attributed to Cardinal Bembo, the elegant scholar and private secretary to Pope Leo X.; but it was his friend Porta, the versatile philosopher, who made it widely known by the vivid description which he gave of it in his celebrated work on "Natural Magic," published at Naples in 1558.

This sympathetic telegraph consisted, we are told, of a magnetic needle poised in the center of a dial-plate, with the letters of the alphabet written around it. The two fortunate individuals privileged to hold wireless correspondence with each other having agreed as to the day and the hour, proceed to the room in which the wonderful instrument is kept, where, as soon as one of them turns the needle of his transmitter to a letter, the distant needle turns at once in sympathy to the same letter on its dial!

Such is the power of magnetic sympathy, that the instruments will work successfully though hills, forests, lakes or mountains intervene! Porta has it: "To a friend at a distance shut up in prison, we may relate our minds; which, I do not doubt, may be done by means of compasses having the alphabet written around them."

Fig. 26
The "Sympathetic Telegraph" from Cabeo's Pilosophia Magnetica, 1629

This sympathetic magnetic telegraph figures extensively in the scientific literature of the sixteenth and seventeenth centuries: some believed in the figment, others condemned it. Addison described it in elegant prose, and Akenside in beautiful verse. Perhaps the most famous composition on the subject is a short Latin poem, written, after the style and vein of Lucretius, in 1617 by Famianus Strada, an Italian Jesuit. A few years after its publication in the author's "Prolusiones," a metrical translation was made by Hakewill and inserted on page 285 of his "Apologie, or Declaration of the Power and Providence of God," 1630.

Owing to the interest that attaches to this celebrated composition and the difficulty of getting Hakewill's "Apologie," we append his version of the poem.

The Loade above all other stones hath this strange property
If sundry steels thereto or needles you apply,
Such force and motion thence they draw that they
incline
To turn them to the Bear, which near the Pole doth shine.
Nay, more, as many steels as touch that virtuous stone
In strange and wondrous sort conspiring all in one
Together move themselves and situate together:
As if one of those steels at Rome be stirred, the other
The self-same way will stir though they far distant be,
And all through Nature's force and secret sympathy;
Well then if you of aught would fain advise your friend
That dwells far off, to whom no letter you can send;
A large smooth round table make, write down the
crisscross row
In order on the verge thereof, and then bestow
The needle in the midst which touch'd the Loade that so
What note soe'er you list, it straight may turn unto.
Then frame another orb in all respects like this
Describe the edge and lay the steel thereon likewise,
The steel which from the self-same Magnes motion drew;
This orb send with thy friend what time he bids adieu.
But on the days agree at first, when you do mean to
prove
If the steel stir, and to what letter it doth move.
This done, if with thy friend thou closely wouldst
advise,
Who in a country off far distant from thee lies,
Take thou the orb and steel which on the orb was set
The crisscross on the edge thou seest in order writ.
What notes will frame thy words, to them direct thy
steel
And it sometimes to this, sometimes to that note wheel
Turning it round about so often till you find
You have compounded all the meaning of your mind.
Thy friend that dwells far off, O strange! doth plainly
see
The steel so stir though it by no man stirréd be,
Running now here, now there: he conscious of the plot
As the steel-guide pursues, and reads from note to note.
Then gathering into words those notes, he clearly sees
What's needful to be done, the needle truchman is.
Now, when the steel doth cease its motion; if thy friend
Think it convenient answer back to send,
The same course he may take; and, with his needle
write
Touching the several notes which so he list indite.
Would God, men would be pleased to put this course in
use,
Their letters would arrive more speedy and more sure,
No rivers would them stop nor thieves them intercept;
Princes with their own hands, their business might effect.
We scribes, from black sea 'scaped, at length with hearty
wills
At th' altar of the Loade would consecrate our quills.

Another translation of the poem was made by Dr. Samuel Ward and published at the end of his "Wonders of the Loadstone," 1640.

Fig. 27
The "Sympathetic Telegraph" from Turner's Ars Notoria, 1657

Ampère's suggestion, made, as we have seen, in the year 1820, was not the first proposal to use electricity for telegraphic purposes. Already, in 1753, a writer in The Scots Magazine, signing himself C. M. (Charles Morrison, of Greenock, according to Sir David Brewster, and Charles Marshall, of Paisley, according to Latimer Clark), outlined a method involving the use of frictional electricity; and Lesage, of Geneva, constructed a short experimental line, in 1774, consisting of twenty-four wires and a pith-ball electroscope. But the man who attained the greatest success in the employment of static electricity for this purpose was Ronalds, of London, who, in 1816, erected a single-wire line eight miles long in his gardens at Hammersmith, with a pair of pith-balls and a rotating disc for receiving instrument.

When well satisfied that his system was practicable and reliable, Ronalds wrote to the head of the intelligence department in London urging the adoption of his invention for the public service; but he was promptly brought to realize the scant encouragement so often extended to inventors by persons in high places, that responsible official politely informing him "that telegraphs of all kinds are wholly unnecessary," and that no other than the mechanical one in daily use would be adopted.

When penning these words, the representative of the British government must have forgotten the experience of 1812, when the result of the battle of Salamanca was semaphored from Plymouth to London, on which occasion a fog cut off the message after the transmission of the first two words, "Wellington defeated," the remainder of the despatch, "the French at Salamanca," reaching the capital only on the following morning!

A rapid sketch of the life of our philosopher, whose discovery of the magnetic effect of the voltaic current in 1820 led to the invention of the electric telegraph, cannot be without interest.

Hans Christian Oersted was born on August 14th, 1777, in the little town of Rudkjöbing, in the island of Langeland, Denmark. Being the son of poor parents, his early years were spent in very narrow circumstances. He and his younger brother were mainly indebted to their own efforts for whatever instruction they received in the rudiments of learning. The town in which they lived being small, offered few opportunities for education, even if the family exchequer had been such as to permit the boys to take advantage of them. There was a German wigmaker in the place, however, who was a little more advanced in knowledge than the generality of the townspeople. He and his wife liked the Oersted boys, who were very frequently to be found in the wigmaker's shop. The good housewife taught them to read, while the artist himself taught them a little German. Hans Christian advanced so rapidly in his studies that he acquired a reputation for precociousness, which, with the usual prejudice against bright children, made the neighbors shake their heads prophetically and say: "The child will not live; he is too bright to last long."

Hans Christian learned the elements of arithmetic from an old school-book which he picked up by chance; and no sooner had he advanced a little, than he set about instructing his brother. Very probably, the teacher benefited quite as much by this process of instruction as the pupil. Adversity is a good school for the formation of character as well as for the acquisition of knowledge. It is evident, from the lives of such men as Oersted, Faraday, Kepler, Ohm, and others who were brought up in the lap of poverty, that it is not so much educational opportunity that is needed for the development of mind which we call education, as the earnest determination and the abiding desire to have it. Even boyhood creates its own opportunities for education despite intervening obstacles, if it has only a decided eagerness, a pronounced thirst for knowledge.

About the time that the young Oersteds entered their teens, their father secured the services of a private teacher to give them some instruction in the rudiments of Latin and Greek. This accidental preceptor was only a wandering student who happened to be in the place at the time; but the boys, in their eagerness to learn, derived more benefit from his lessons than many boys of their age often do nowadays from the help and encouragement of a carefully selected and academically equipped tutor.

At the age of twelve, Oersted senior was taken into his father's apothecary-shop in quality of assistant, a position which seemed destined to put an end to all opportunities for further advancement in the path of learning. When a boy goes into a drug-store in an official capacity, his future career is usually settled; he is a druggist to the end. His new avocation, however, proved to be the beginning of new intellectual activities for Oersted. The chemical side of his work became a source of new information to him, and also a stimulus to learn all that he could of chemistry and kindred subjects. Science became a hobby with the young apothecary, and everything relating to it appealed to him. What Hans learned, he as usual imparted to his brother, who was already becoming interested in other departments of learning, especially the law.

The desire of the boys to advance grew with their stock of knowledge. Accordingly, when, in 1794, Hans was only seventeen years of age and his brother sixteen, they both matriculated at the University of Copenhagen. Their father was able to help them but little, so that they were obliged to live quietly and sparingly, a condition distinctly favorable to consecutive and efficient study. They became so successful in their pursuits that they soon began to attract attention. Having passed creditable examinations, they were recommended for pecuniary assistance from an educational fund established by the government for the purpose. Even then, as receipts were hardly equal to expenses, they sought to increase their little revenue by giving private lessons in their leisure hours. Here we have a striking example of what may be accomplished by men who work their way through College in the teeth of adverse circumstances; in these two brothers, we have proof of the truth that it is the student's mind, his willingness and determination to work, that count in education more than the golden opportunities that may fall to his lot.

In the year 1799, Oersted prepared a thesis on "The Architectonics of Natural Metaphysics," which won for him his Doctorate in Philosophy. Though the young Doctor did not hesitate to discuss metaphysical problems and even to disagree with Kant at a time when most Teutonic minds were deeply under the influence of the philosopher of Königsberg, his chief interests, however, centered in the experimental sciences, in physics and chemistry.

In spite of his devotedness to science, Oersted allowed himself, by way of distraction, an occasional excursion into the field of literature. A great literary and artistic movement was making itself felt in the northern part of Europe at the time. The æsthetic awakening of the Teutonic nations had come after three centuries of religious and political unrest, ill adapted to intellectual development. Lessing and Winkelmann, Goethe and Schiller, the two Schlegels and Klopstock as well as the young poets, Uhland and Koerner, were either already at work or were about to enter on their distinguished careers, and the neighboring Scandinavian nations were beginning to be seriously affected by the movement which was going on among their brethren. In the third year of his university course, Oersted entered the lists as a competitor for literary honors on the question, "What are the Limits of Prose and Poetry?" and had the satisfaction of winning the gold medal offered for the contest. In spite of this episode, indicative of devotedness to the muses, Oersted passed a brilliant pharmaceutical examination; and in the following year succeeded in capturing another prize, this time for a medical essay.

After such a period of preparation, it might be expected that a brilliant career would open up for Oersted; but, unfortunately, he could not afford to wait for slow academic rewards, as it was absolutely necessary for him to set about earning his livelihood. For this purpose, shortly after graduation, he accepted the position of manager of a drug-store. As the salary attached to the office was rather slender, he increased his resources by giving lectures in the evening on the familiar subjects of chemistry, natural philosophy and metaphysics.

About this time, the wanderlust, or passion for travel, took possession of our young philosopher; and under its influence, he resolved to see for himself what men of scientific avocations were doing in France and in Germany. His own pinched circumstances would not allow him to undertake such a journey; but he was fortunate enough to win a stipendium cappelianum which allowed him to travel at the expense of the government for a period of five years, though he used it only for three. If ever pecuniary aid was productive of enduring results, it was so in this case.

In 1801, at the age of twenty-four, Oersted set out from Copenhagen on his grand tour, determined to make it a scientific as well as sentimental journey. In Germany, which he first visited, he met Klaproth, the orientalist; Werner, the mineralogist; Olbers the astronomer; the philosophers Fichte, Schelling and the two Schlegels; and above all, the young and brilliant physicist Johann Wilhelm Ritter, who discussed with him the theory of the wonderful "pile" invented by Volta in the previous year, 1800.

In Paris, Oersted spent about fifteen months, during which time he was in habitual relations with many of the savants who were just then reflecting great lustre on French science. To mention but a few: there was Cuvier, the leading naturalist of his age; Abbé Haüy, crystallographer of world-wide reputation; Biot, the brilliant expounder of physics; Charles, the discoverer of the law which bears his name; Berthollet, the associate of Monge the mathematician, and Lavoisier, the chemist.

On his return to the Danish capital in 1804, Oersted delivered courses of lectures on electricity and magnetism, light and heat, before numerous and cultured audiences; and such was the success which he achieved that he was appointed, at the age of twenty-nine, to the chair of physics in the University of Copenhagen.

For nearly forty-five years he was destined to occupy this academical position, so that his connection with that seat of learning rounded out the full period of half a century.

While sedulously occupied with the duties of his chair and the pursuit of his favorite scientific subjects, Oersted was not unmindful of his civic and altruistic obligations. He frequently gave popular scientific lectures, which were open to women as well as to men. He helped in the organization of a bureau through which lectures would be given in various parts of the country, and thus became a pioneer in what we call to-day the university extension movement. When democratic ideas began to be discussed in Denmark after the French Revolution of 1830, Oersted was one of those who took part in the onward movement for the betterment of the people. In 1835, he coöperated in the foundation of the Society for the Freedom of the Press; and when Christian VIII. ascended the throne, he addressed the new monarch in a speech of liberal tendency, hailing him because of the interest which he took in the advancement of science and in the uplift of the masses.

An idea of the position accorded to Oersted by his colleagues in the world of science may be gathered from an address made by Sir John Herschel at the closing session of the Southampton meeting of the British Association in 1836, in which the distinguished astronomer said: "In science, there is but one direction which the needle will take when pointed towards the European continent, and that is towards my esteemed friend, Professor Oersted. To look at his cool manner, who would think that he wielded such an intense power, capable of altering the whole state of science, and almost the knowledge of the world? He has at this meeting developed some of those recondite and remarkable forces of nature which he was the first to discover, and which went almost to the extent of obliging us to alter our views on the most ordinary laws of energy and motion. He elaborated his ideas with slowness and certainty, bringing them forward only after a long lapse of time. How often did I wish to Heaven that we could trample down, and strike forever to earth, the hasty generalizations which mark the present age, and bring up another and safer system of investigation, such as that which marked the inquiries of our friend? It was in deep recesses, as it were, of a cell, that a faint idea first occurred to Oersted. He waited long and calmly for the dawn which at length broke upon him, altering the whole relations of science and life. The electric telegraph and other wonders of modern science were but mere effervescences from the surface of this deep, recondite discovery of his. If we were to characterize, by any figure, the usefulness of Oersted to science, we would regard him as a fertilizing shower descending from heaven, which brought forth a new crop, delightful to the eye and pleasing to the heart."

It may be noticed that in Oersted's day early specialization was fortunately unknown. His education was broad and his intellectual activities broader still. Quite as interesting as many of his scientific researches are some of his contributions to philosophy and some of his views on the significance of the material universe. Oersted, a man of the world with a wide range of interests and a philosopher who lived at high intellectual altitudes, was one of the all-round men in the history of thought who took active part in science, in literature, in politics and in social problems. He had the opportunity of meeting many of the renowned scientists and philosophers of the century, and had been very closely in touch with some of them. He was a regular attendant at scientific congresses, in which he distinguished himself by the leading part which he took in their deliberations. His opinions, therefore, on the great problems of life, religious, moral, social and political, challenge our respect even where they do not compel our approval. Our Danish philosopher deserves, then, to stand as the spokesman of his generation of savants on the great questions that concern man's relations to his fellow-men, to an all-wise Providence and to an enduring hereafter. His opinions on these matters are all the more interesting because they are in open contradiction with what is sometimes thought to be the views of scientists on such subjects.

One of the passages of his paper on "All Existence, a Dominion of Reason," contains some surprising anticipations of ideas that created a great stir in the intellectual world some fifty years ago. In 1846, that is, thirteen years before the publication of Darwin's "Origin of Species," Oersted discussed evolution and suggested explanations that are generally considered to have been forced from apologists when compelled to take up the work of reconciling Christian doctrines with scientific conclusions.

Writing in the middle 'forties, he said: "If we are now thoroughly convinced that everything in the material world is produced from similar particles of matter, by the same forces and in obedience to the same laws, we must allow that the planets have been formed according to the same laws as our own earth. They have been in process of development during immeasurable periods of time, and have undergone numerous transformations which have also influenced the vegetable and animal kingdoms of those remote periods. The lower forms of life advanced by gradual stages to higher and more complex states of organization, till at length (in a comparatively recent period) a self-conscious being was evolved, the crowning work of this long-continued process of development. Accordingly, we must allow a similar order of organic development to take place on the other planets of our solar family. There may be some which have not as yet attained the same degree of development that we have reached; but everywhere throughout the universe, creatures endowed with reason appear in due time, just as man appeared on our own globe. Their understanding is intimately connected with the organs of sense which they possess; therefore, the nature of their mental faculties cannot be essentially different from our own. That I may avoid even the appearance of materialism, I must direct attention to the conciliatory principle, that the natural environment from which man springs must be recognized as the work of the eternal, creative Spirit. In other words, our conception of the universe is incomplete, if not comprehended as a constant and continuous work of the eternally creating Spirit."

Thus far Oersted; let us here recall what Lord Kelvin, the representative scientist of his day, quoted with approval on a memorable occasion from the Danish scientist with regard to the basic truths of science, philosophy and religion. "It will not be foreign to our purpose if, called upon by the solemnities of this day, we endeavor to establish our conviction of the harmony that subsists between religion and science, by showing how the man of science must look upon his pursuits, if he understands them rightly, as an exercise of religion.

"If my purpose here was merely to show that science necessarily engenders piety, I should appeal to the great truth everywhere recognized, that the essence of all religion consists in love toward God. The conclusion would then be easy, that love of Him from whom all truth proceeds must create the desire to acknowledge truth in all her paths; but as we desire here to recognize science herself as a religious duty, it will be requisite for us to penetrate deeper into its nature. It is obvious, therefore, that the searching eye of man, whether he regards his own inward being or the creation surrounding him, is always led to the Eternal Source of all things. In all inquiry, the ultimate aim is to discover that which really exists and to contemplate it in its pure light apart from all that deceives the careless observer by only a seeming existence. The philosopher will then comprehend what, amidst ceaseless change, is the Constant and Uncreated, which is hidden behind unnumbered creations, the bond of union which keeps things together in spite of their manifold divisions and separations. He must soon acknowledge that the independent can only be the constant and the constant the independent, and that true unity is inseparable from either of these. And thus it is in the nature of thought that it finds no quiet resting place, no pause, except in the invariable, eternal, uncaused, all-causing, all-comprehensive Omniscience.

"But, if this one-sided view does not satisfy him, if he seeks to examine the world with the eye of experience, he perceives that all those things of whose reality the multitude feels most assured never have an enduring existence, but are always on the road between birth and death. If he now properly comprehends the whole array of nature, he perceives that it is not merely an idea or an abstract notion, as it is called; but that reason and the power to which everything is indebted for its essential nature are only the revelation of a self-sustained Being. How can he, when he sees this, be otherwise animated than by the deepest feeling of humility, of devotion and of love? If anyone has learned a different lesson from his observation of nature, it could only be because he lost his way amidst the dispersion and variety of creation and had not looked upwards to the eternal unity of truth."

As already said, Oersted lived to celebrate the fiftieth year of his connection with his university. This was in November, 1850, on which occasion his friends, pupils and the public generally united together in honoring him as a professor whose warm and animated lectures enraptured audiences; as a leader in the scientific advance of the times; and as a Christian to whom nature was but a manifestation of the Deity's combined wisdom and creative power.

The aged scientist, much touched by this popular demonstration as well as by the tokens of esteem given him by the King, spoke of this jubilee celebration as the happiest day of his life. The reader will recall another great man, great in the world of politics and great on the field of battle, who said that the happiest day of his life was that of his first communion.

A few months after celebrating his golden jubilee, Oersted passed away, after a short illness, on March 9th, 1851, deeply mourned by all.

Oersted was eminent as a scholar and equally eminent as a man; lenient in his judgment of others, he was strict with regard to himself; simple in his ways and frugal in living, he was benevolent to others, being always ready to give a helping hand wherever needed. To such a man may well be applied these beautiful words with which Priestley begins his "History of Electricity": "A life spent in the contemplation of the productions of divine power, wisdom and goodness, would be a life of devotion. The more we see of the wonderful structure of the world and of the laws of nature, the more clearly do we comprehend their admirable uses to make all percipient creation happy, a sentiment which cannot but fill the heart with unbounded love, gratitude and joy."

A statue to the memory of Oersted was unveiled in Copenhagen on September 25th, 1876, in presence of the King of Denmark, the King of Greece, the Danish Crown Prince and members of the Royal family, as well as numerous high officials, representatives of learned societies and a vast body of students and people assembled together to do honor to a man who was distinguished alike by his scientific attainments and philosophical acumen, and who, during his long life, never faltered in his devotedness to the welfare of his country as he never weakened in his defense of the great truths of religion.

Brother Potamian.


[CHAPTER VIII.]
André Marie Ampère.

Few men of the nineteenth century are so interesting as André Marie Ampère, who is, as we have seen, deservedly spoken of as the founder of the science of electro-dynamics. Extremely precocious as a boy, so that, like his immediate predecessor in discovery, Oersted the Dane, his rapid intellectual development drew down upon him ominous expressions from those who knew him, he more than fulfilled the highest promise of his early years. His was no one-sided genius. He was interested in everything, and his memory was as retentive as his intellect was comprehensive. He grew up, indeed, to be a young man of the widest possible interests. Literature never failed to have its attraction for him, though science was his favorite study and mathematics his hobby. The mathematical mind is commonly supposed to run in very precise grooves, yet Ampère was always a speculator, and his speculations were most suggestive for his contemporaries and subsequent generations. Indeed, his mathematics, far from being a hindrance to his penetrating outlook upon the hazier confines of science, rather seemed to help the penetrations it gave. While he was so great a scientist that Arago, so little likely to exaggerate his French contemporary's merit, has said of Ampère's discovery identifying magnetism and electricity, that "the vast field of physical science perhaps never presented so brilliant a discovery, conceived, verified, and completed with such rapidity," his friends knew this great scientist as one of the kindliest and most genial of men, noted for his simplicity, his persuasive sympathy and his tender regard for all those with whom he was brought into intimate relations.

André Marie Ampère

The commonly accepted formula for a great scientist, that he is a man wrapt up in himself and his work, enmeshed so completely in the scientific speculations that occupy him that he has little or no time for great humanitarian interests, so that his human sympathies are likely to atrophy, is entirely contradicted by the life of Ampère. He was no narrow specialist, and, indeed, it may be said that not a single one of these great discoverers in electricity whom we are considering in this volume was of the type that is sometimes accepted as indicative of scientific genius and originality. After reading their lives, one is prone to have the feeling that men who lack that wider sympathy which, in the famous words of the old Latin poet, makes everything human of interest to them, are not of the mental calibre to make supreme discoveries, even though they may succeed in creating a large amount of interest in their scientific speculations in their own generation. It is the all-round man who does supreme original work of enduring quality.

André Marie Ampère was born at Lyons, January 22d, 1775. His father, Jean Jacques Ampère, was a small merchant who made a comfortable living for his family, but no more. His father and mother were both well informed for their class and time, and were well esteemed by their neighbors. His mother especially was known for an unalterable sweetness of character and charitable beneficence which sought out every possible occasion for its exercise. She was universally beloved by those who knew her, and the charm of Ampère's manner, which made for him a friend of every acquaintance, was undoubtedly a manifestation of the same family strain.

Shortly after the birth of their son, the parents gave up business and retired on a little property situated in the country not far from Lyons. It was in this little village, without any school-teacher and with only home instruction, that the genius of the future savant, who was to be one of the distinguished scientific men of the nineteenth century, began to show itself. For Ampère was not only a genius, but, what is so often thought to be an almost absolute preclusion of any serious achievement later in life, a precocious genius. The first marvelous faculty that began to develop in him was an uncontrollable tendency to arithmetical expression. Before he knew how to make figures, he had invented for himself a method of doing even rather complicated problems in arithmetic by the aid of a number of pebbles or peas. During an illness that overtook him as a child, his mother, anxious because of the possible evil effects upon his health of mental work, took his pebbles away from him. He supplied their place, however, during the leisure hours of his convalescence, when time hung heavy on his child hands, by bread crumbs. He craved food, but, according to the "starving" medical régime of the time, he was allowed only a single biscuit in three days. It required no little self-sacrifice on his part, then, to supply himself with counters from this scanty supply, and his persistence, in spite of hunger, evidently indicates that this mathematical tendency was stronger than his appetite for food. This is all the more surprising, since children are usually scarcely more than little animals in the matter of eating, and commonly satisfy their physical cravings without an after-thought of any kind.

Ampère learned to read when but very young, and then began to devour all the books which came to hand. Usually, the precocious taste for reading specializes on some particular subject; but everything was grist that came to the child Ampère's mental mill, and it was all ground up; and, strangest of all, much of it was assimilated. Travel, history, poetry, occupied him quite as much as romance; and, amazing as it may appear, even philosophy was not disdained while he was still under ten years of age. It seems amusing to read the declaration of the French biographer, that if this boy of ten had any special predilection in literature, it was for Homer, Lucan, Tasso, Fénelon, Corneille and Voltaire, yet it must be taken seriously.

When he was about fifteen, this omnivorous intellectual genius came across a French encyclopedia in twenty folio volumes. This seemed to him a veritable Golconda of endless riches of information. Each of the volumes had its turn. The second was begun as soon as the first was finished, and the reading of the third followed, and so on, until every one of the volumes had been completely read. References to other volumes might be looked up occasionally, but this did not distract him into taking other portions of the works out of alphabetical order. Surprising as it must seem, most of this heterogeneous mass of information, far from being forgotten at once, was deeply engraved on his wonderful memory. More than once in after-life, when many years had passed, it was a surprise to his friends to find how much information Ampère had amassed on some abstruse and unfamiliar subject, and how readily he was able to pour forth details of information that seemed quite out of his line. He would then confess that the encyclopedia article on the subject, read so many years before, was still fresh in his mind, or at least that its information was so stored away as to be readily available. We have heard much of Gladstone's memory in more recent years; but that seems to have been nothing compared to this wonderful faculty which recalled for Ampère, even as an old man, the unrelated details of every encyclopedia article that had passed under his eyes half a century before, when he was a boy of ten to fourteen.

The modest family library soon proved utterly insufficient to occupy the mind of this young, enthusiastic student; and his father, sympathetic to his ardent curiosity, took him to Lyons from time to time, where he might have the opportunity to consult volumes of various kinds that might catch his fancy. At this time, his old mathematical tendency reasserted itself. He wished to learn something about the higher mathematics. He found in a library in Lyons the works of Bernoulli and of Euler. When the delicate-looking boy, whom the librarian considered little more than a child, put in his request to the town library for these serious mathematical works, the old gentleman said to him: "The works of Bernoulli and Euler! What are you thinking of, my little friend? These works figure among the most difficult writings that ever came from the mind of man." "I hope to be able to understand them," replied the boy. "I suppose you know," said the librarian, "that they are written in Latin." This was a disagreeable surprise for young Ampère. As yet he had not studied Latin. He went home, resolved, however, to remove this hindrance to his study of the higher mathematics. At the end of the month, owing to his assiduity, the obstacle had entirely disappeared; and though he could read only mathematical Latin and had later to study the language from another standpoint, in order to understand the classics, he was now able to pursue the study of mathematics in Latin to his heart's content.

The even tenor of the boy's life, deeply engaged as he was in studies of every description, was destined to be very seriously disturbed. When he was but fourteen, in 1789, the Revolution came, with its glorious promise and then its awful consummation. Ampère's father was seriously alarmed at the revolutionary course things were taking in France, and had the fatal inspiration to leave his country home and betake himself to the city of Lyons. For a time, he occupied a position as magistrate. After the siege of Lyons, the revolutionary tribunal established there took up the project of making the Lyonnese patriotic, as they called it, by properly punishing the citizens for their failure to sympathize at first with the revolutionary government, and soon a series of horrible massacres began. New victims were claimed every day, and Ampère's father was one of those who had to suffer. The real reason for his condemnation was that he had accepted a position under the old government, though the pretext stated on the warrant for his arrest was that he was an aristocrat. This is the only evidence we have that the Ampère family was in any way connected with the nobility. The day on which he was sentenced to die, Jean Jacques Ampère wrote to his wife a letter of sublime simplicity, in which his Christian resignation of spirit, his lofty courage, yet thoroughly practical commonsense, are manifest. He warned his wife to say nothing about his fate to their daughter Josephine, though he hoped that his son would be better able to stand the blow, and perhaps prove a consolation to his mother.

The news proved almost too much for the young Ampère, and for a time his reason was despaired of. All his faculties seemed to be shocked for the moment into insensibility. Biographers tell us that he wandered around, building little piles of sand, gazing idly at the stars or vacantly into space, wearing scarcely any of the expression of a rational being. His friends could harbor only the worst possible expectations for him, and even his physical health suffered so much that it seemed he would not long survive. One day, by chance, Rousseau's "Letters on Botany" fell into his hands. They caught his attention, and he became interested in their charming narrative style, and as a result, his reason awoke once more. He began to study botany in the field, and soon acquired a taste for the reading of Linnæus. At the same time, classic poetry, especially such as contained descriptions of nature, once more appealed to him, and so he took up his classical studies. He varied the reading of the poets with dissections of flowers, and yet succeeded in following both sets of studies so attentively that, forty years afterward, he was still perfectly capable of taking up the technical description of the plants that he had then studied, and while acting as a university inspector, he composed 150 Latin verses during his horseback rides from one inspection district to another, without ever having to consult a gradus or a dictionary for the quantities, yet without making a single mistake. His memory for subjects once learned, was almost literally infallible.

Something of his love for nature can be appreciated from an incident of his early manhood, which is not without its amusing side. Ampère was very near-sighted, and had been able to read books all his life only by holding them very close to his eyes. This makes it all the more difficult to understand how he succeeded in reading so much. His near-sightedness was so marked that he had no idea of beauties of scenery beyond him, and was often rather put out at the enthusiastic description of scenes through which he passed en diligence, when his fellow-travelers spoke of the beauties of the scenes around them. Ampère, like most people who do not share, or at least appreciate, the enthusiasm of others for beautiful things around them, was in this mood, mainly because he was not able to see them in the way that others did, and, therefore, could not have the same pleasure in them. This lack in himself was unconscious, of course, as in all other cases, and, far from lessening, rather emphasized the tendency to be impatient with others, and rather made him more ready to think how foolish they were to go into ecstasies over something that to him was so insignificant.

One day, while Ampère was making the journey along the Saone into Lyons, it happened that there sat beside him on the stage-coach a young man who suffered from near-sightedness very nearly in the same degree as Ampère himself, but whose myopia had been corrected by means of properly fitting glasses. These glasses were just exactly what Ampère needed in order to correct his vision completely. The young fellows became interested in each other, and, during the course of their conversation, his companion suggested to Ampère, seeing how near-sighted he was, that he should try his glasses. He put them on, and at once nature presented herself to him under an entirely different aspect. The vision was so unexpected, that the description which he had so often heard from his fellow-travelers, but could not appreciate, now recurred to him, and he could not help exclaiming in raptures, "Oh! what a smiling country! What picturesque, graceful hills! How the rich, warm tones are harmoniously blended in the wonderful union of sky and mountain vista!" All of these now spoke emphatically to his delicate sensibility, and a new world was literally revealed to him. Ampère was so overcome by this unexpected sight, which gave him so much pleasure, that he burst into tears from depth of emotion, and could not satisfy himself with looking at all the beauties of nature that had been hidden from him for so long. Ever after, natural scenery was one of the greatest pleasures that he had in life, and the beauties of nature, near or distant, meant more to him than any other gratification of the senses.

In spite of the fact that Ampère had devoted considerable attention to acoustics as a young man, and had studied the ways in which the waves of air by which sounds are formed and propagated, he had absolutely no ear for music, and was as tone-deaf as he had been blind before his discovery with regard to the glasses. Musical notes constituted a mathematical problem for Ampère, but nothing more. This continued to be the case until about thirty years of age. Then, one day, he attended a musical soirée, at which the principal portions of the program were taken from Glück. It is easy to understand that this master of harmony possessed no charms for a tone-deaf young man. He became uneasy during the course of the musical program, and his uneasiness became manifest to others. After the selections of the German composer were finished, however, some simple but charming melodies were unexpectedly introduced, and Ampère suddenly found himself transported into a new world. If we are to believe his biographers, once more his emotion was expressed by an abundance of tears, which Ampère seems to have had at command and to have been quite as ready to give way to in public as any of Homer's heroes of the olden time. Blind until he was nearly twenty, he used to say of himself, he had been deaf until he was thirty. In spite of his failure to respond in youth, once it had been awakened to appreciation, his soul vibrated profoundly to all the beauties of color and sound, and, later in life, they gave rise in him to depths of emotion which calmer individuals of less delicate sensibilities could scarcely understand, much less sympathize with.

Between his two supreme experiences in vision and sound, there had come to Ampère another and even profounder emotion. He tells the story himself, in words that probably express his feelings better than any possible description of his biographer could do, and that show us how wonderfully sensitive his soul was to emotion of all kinds. He had just completed his twenty-first year when he fell head over heels in love. Though he wrote very little, as a rule, he has left us a rather detailed description in diaries, evidently kept for the purpose, of the state of his feelings at this time. These bear the title, "Amorum," the story of his love. On the first page these words occur: "One day as I was taking an evening walk, just after the setting of the sun, making my way along a little brook," then there is a hiatus, and he was evidently quite unable to express all that he felt. It seems that he was gathering botanical specimens, wearing an excellent set of spectacles ever since his adventure on the stage-coach had shown him the need of them, when he suddenly perceived at some distance two young and charming girls who were gathering flowers in the field. He looked at one of them, and he knew that his fate was sealed. Up to that time, as he says, the idea of marriage had never occurred to him. One might think that the idea would occur very gently at first, then grow little by little; but that was not Ampère's way. He wanted to marry her that very day. He did not know her name; he did not know her family; he had never even heard her voice, but he knew that she was the destined one.

Fortunately for the young lady and himself, she had very sensible parents. They demanded how he would be able to support a wife. Ampère was quite willing to do anything that they should suggest. His father had left enough to support the family, but not enough to enable him to support a wife in an independent home; and until he had some occupation, the parents of his bride-to-be refused to listen to his representations. For a time, he consented to be a salesman in a silk store in Lyons, in order to have some occupation which might eventually give him enough money to enable him to marry. Fortunately, however, he was diverted from a commercial vocation which might thus have absorbed a great scientist, and arrangements were made which permitted him to continue his intellectual life, yet have the woman of his choice. She was destined to make life happier far for him than is the usual lot of man, and he was ever ready to acknowledge how much she meant for his happiness.

With literature, poetry, love and settling down in life to occupy him, it is hard to think of Ampère as a young man doing great work in science, but he did; and his work deservedly attracted attention even from his very early years. It was in pure mathematics, perhaps, above all other branches, that Ampère attracted the attention of his generation. Ordinary questions he did not care for. Problems which the fruitless efforts of twenty centuries had pronounced insoluble attracted him at once. Even the squaring of the circle claimed his attention for a while, though he got well beyond it even before his boyhood passed away. There is a manuscript note from the Secretary of the Academy of Lyons, which shows that on July 8th, 1788, Ampère, then not quite thirteen years of age, addressed to that learned body a paper on the "Squaring of the Circle." Later, during the same year, he submitted an analogous memoir, entitled, "The Rectification of an Arc of a Circle, less than a Semi-circumference."

Arago says that he was tempted to suppress this story of Ampère's coquetting with so dangerous a problem, for Ampère rather flattered himself that he had almost solved it. It was only after Arago recalled how many geniuses in mathematics had occupied themselves with this same problem, that he saw his way clearly not to share the scruples of those who might think this incident a reflection on Ampère's mathematical genius. After all, Anaxagoras, Hippocrates, Archimedes and Apollonius, among the ancients, and among the moderns, Willebrod Snell, Huyghens, Gregory, Wallis, and finally Newton, the mathematician of the heavens, occupied themselves seriously with this very problem. Arago even notes that some men, by their speculations on the squaring of the circle, were led to distinguished discoveries, and mentions the name of Father Grégoire de Saint-Vincent, the distinguished Flemish mathematician of the Society of Jesus, to whom, as a direct result of his studies in attempted circle-squaring, we owe the discovery of the properties of hyperbolic space, limited by the curve and its asymptotes, as well as the expansion of log (1 + x) in ascending powers of x. Montucla, the historian of mathematics, writing of Père Saint-Vincent, said that, "No one ever squared the circle with so much ability or with so much success." There was, however, a fallacy in his magnificent work which was pointed out by the celebrated Huyghens.

Shortly after the beginning of the nineteenth century, Ampère, as one of his French biographers rather characteristically declares, redeemed whatever of mathematical sinning there might have been, in indulging in fond dalliance with the squaring of the circle, by a series of mathematical papers, each of which was in itself a distinct advance on previous knowledge, and at the same time, definite evidence of his mathematical ability. The first paper, published in 1801, was a contribution to solid geometry, bearing the title, "On Oblique Polyhedrons." His next paper, written in 1803, though not published until 1808, was a treatise on the advantages to be derived in the theory of curves from due consideration of the osculating parabola. Another treatise, written about the same time, had for title, "Investigations on the Application of the General Formulæ of the Calculus of Variations to Problems in Mechanics." This concerned problems which had interested and, in most cases, proved too hard of solution even for such men as Galileo, Jacques Bernoulli, Leibnitz, Huyghens and Jean Bernoulli. Arago's expression with regard to this work is: "The treatise of Ampère contains, in fact, new and very remarkable properties of the catenary (la chainette) and its development." He adds: "There is no small merit in discovering hiatuses in subjects explored by such men as Leibnitz, Huyghens and the two Bernoullis. I must not forget to add that the analysis of our associate unites elegance with simplicity."

It is not surprising, after such marks of mathematical genius, that Ampère was appointed to the chair of mathematics at the École Polytechnique, where he came to be looked upon as one of the most distinguished of French mathematicians. In 1813, he became a candidate for the position left vacant by the death of the famous Lagrange; and at this time, presented to the Academy general considerations on the integration of partial differential equations of the first and the second order. After his election to the Academy, Ampère continued to present important papers at its various sessions. Among these, three are especially noteworthy: one was a demonstration of Père Mariotte's law (known to English students as Boyle's law); another bore the title, "Demonstration of a new Theory from which can be deduced all the Laws of Refraction, ordinary and extraordinary"; a third was a memoir on the "Determination of the curved surfaces of Luminous Waves in a medium whose Elasticity differs in each of the three dimensions."

In his eulogy of Ampère, which, together with his article in the "Dictionnaire Universelle de Biographie," we have followed rather closely, Arago calls particular attention to the fact that in Paris, Ampère moved in two intellectual circles quite widely separated in their interests and sympathies. Among the first group, were the members of the old "Institute" and professors and examiners of the École Polytechnique and professors of the Collège de France. In the other, were the men whose names have since become widely known as students of psychology, of whom Cabanis may be taken as the representative. Ampère had as great a passion for psychology, and was as ready to devote himself to fathoming and analyzing the mysteries of the mind, as he was to work out a problem in advanced mathematics, or throw light on difficult questions in the physical sciences. These two sets of interests are seldom united in the same man, though occasionally they are found. At the end of the nineteenth century, we had the spectacle of very distinguished men of science in physics, and even in biology—Sir William Crookes, Sir Oliver Lodge, Professor Charles Richet, Professor Lombroso and even Mr. Alfred Russell Wallace—interested in psychic and spiritualistic manifestations of many kinds as well as in natural science; and, inasmuch as they did so, they would have found Ampère a brother spirit. Ampère indeed dived rather deeply into what would be called, somewhat slightingly, perhaps, in our generation, metaphysical speculation. At one time, he contemplated the publication of a book which was to be called "An Introduction to Philosophy." He had made elaborate theories with regard to many metaphysical questions, and had written articles on "The Theory of Relations," "The History of Existence," "Subjective and Objective Knowledge" and "Absolute Morality." Arago calls attention to the fact that Napoleon's famous anathema against ideology, far from discouraging Ampère, rather seemed to stimulate him in his studies, and he declared that it would surely contribute to the propagation of this kind of speculation, rather than to its suppression. It was simply another case of Napoleon overreaching himself, though this was in the domain of ideas and not in the realm of politics, where his fate was to reach him some time later.

How deeply interested Ampère became in metaphysics will perhaps be best appreciated from the fact that, for progress in metaphysics, exercise in disputation is needed, and had been the custom in the old medieval universities. Ampère once made an arrangement to travel from Paris to Lyons and stay there for some time, provided a definite promise was made that at least four afternoons a week should be devoted to discussions on ideology. The journey to Lyons, a distance of two hundred and fifty miles, was no easy undertaking in those days. The Paris, Lyons and Mediterranean Express now whirls one down to the capital of the silk district in a night; but in Ampère's time, it took many days, and the journey was by no means without inconveniences, which were likely to be so troublesome that a prolonged rest was needed after it was over. Ampère seems quite to have exhausted the interest of his friends in Lyons, who found his metaphysical speculations too high for them, though they themselves were specializing in the subject and would be glad to tempt him into discussions of the exact sciences; but in lyrical strain he apostrophizes psychological studies: "How can I abandon the country, the flowers and running waters for the arid streets of the city! How give up streams and groves for deserts scorched by the rays of a mathematical sun, which, diffusing over all surrounding objects the most brilliant light, withers and dries them down to the very roots! How much more agreeable to wander under flitting shades, where truth seems to flee before us to incite us to pursue, than walk in straight paths where the eye embraces all at a glance!"

Had Ampère been less successful as a mathematician or an investigator of physical science, these expressions would seem little short of ridiculous. As it is, they provide food for thought. Ampère seemed to realize that, for the intellectual man, the only satisfaction was not in successful research so much as in application of mind to what promised results. As in everything else, it was the chase, and not the capture, that counted. Seldom has this idea been applied to intellectual things with so much force as it seems to have appealed to Ampère, and one is reminded of Malebranche's famous expression, "If I had truth in my hand, I would be tempted to let it go for the pleasure of recapturing it."

The principal source of Ampère's fame, however, for future generations, was to be in his researches in the science of electro-dynamics. The name of this science will ever be inseparably linked with that of Ampère, its founder. It was for that reason, of course, that the International Congress of Electricians decided to give his name to the unit of current strength, so that it has now become a household word, and will continue so for ages to come. In spite of the resemblances, much more than superficial, between magnetism and electricity, the identification of these two with each other seemed as yet very distant. It is curiously interesting, however, to note that Ampère himself, in a program of his course, printed in 1802, announced that the "professor will demonstrate that electrical and magnetic phenomena must be attributed to two different fluids which act independently of each other." Ampère's fame was to be founded on the direct contradiction of this proposition, which he proposed and triumphantly defended by a marvelous series of experimental illustrations eighteen years later. In the meantime, the discovery of another distinguished scientist, doing his work many hundreds of miles away, was to prove the stimulus to Ampère's constructive imagination, so as to enable him to fill out many obscure points of knowledge with regard to magnetism and electricity.

This suggestive discovery was that of Oersted, the sketch of whose life and work immediately precedes this. Oersted demonstrated that a current of electricity will affect a magnetic needle. This epoch-making discovery reached Paris by way of Switzerland. The experiment was repeated before the French Academy of Sciences by a member of the Academy of Geneva, on September 11th, 1820. The date has some importance in the history of science, for just seven days later, on the 18th of September, Ampère presented, at the session of the Academy of Sciences, a still more important fact, to which he had been led by the consideration of Oersted's discovery while testing it by way of control experiment. This brilliant discovery of Ampère, Arago summed up in these words: "Two parallel conducting wires attract each other when the current traverses them in the same direction. On the contrary, they repel each other when the current flows in opposite directions. The phenomenon described by Oersted was called, very appropriately, electromagnetic, whilst the phenomena described by Ampère, in which the magnet played no part, received at his suggestion the general name of electro-dynamics, which has since been applied to them."

At first it was said that these phenomena were nothing more than manifestations of the ordinary attractive and repelling power of the two forms of electricity which had been so carefully studied, especially in France, during the eighteenth century. Ampère at once disposed of any such idea as this, however, by pointing out that bodies similarly electrified repel each other, whilst those that are in opposite electrical states attract each other. In the case of conductors conveying currents, there is attraction when these are in the same direction, and repulsion when they flow in the opposite direction. This reasoning absolutely precluded all possibility of further doubt in the matter, and this particular form of objection to Ampère's discoveries was dropped at once.

Having satisfactorily disposed of other objections, Ampère was content neither to rest quietly in his discovery nor merely to develop various experimental phases of it which would be extremely interesting and popularly attractive, but which at the same time might mean very little for science. With his mathematical mind, Ampère resolved to work out a mathematical theory which would embrace not only all the phenomena of magnetism then known, but also the complete theory of the science of electro-dynamics. Needless to say, such a problem was extremely difficult. Arago has compared it to Newton's solution of the problem of gravitation by mathematics. Considering the comparatively small amount of data that Ampère had at his command, this problem might very well be compared to that which Leverrier took up with so much success, when he set about discovering by calculation only the planet Neptune, as yet unknown, which was disturbing the movements of Uranus.

It might be thought that these discoveries of Ampère would be welcomed with great enthusiasm. As a matter of fact, however, new discoveries that are really novel always have, as almost their surest index, the fact that contemporaries refuse to accept them. The more versed a man is in the science in which the discovery comes, the more likely is he to delay his acceptance of the novelty. This is not so surprising, since, as a rule, new discoveries are nearly always very simple expressions of great truths that seem obvious once they are accepted, yet have never been thought of. They mean, therefore, that men who consider themselves distinguished in a particular science have missed some easily discoverable phenomenon or its full significance, and so, to accept a new discovery in their department of learning men must confess their own lack of foresight.

It may be pointed out that the same thing happened with regard to Ohm, only it was much more serious. Years of Ohm's life were wasted because of the refusal of his contemporaries to accept his "law" at his valuation. Arago, in his life of Ampère, recalls that when Fresnel discovered the transverse character of waves of light, his observations created the same doubts and uncertainty in the same individuals who a few years later refused to accept Ampère's conclusions. Arago puts it, that as he was ambitious of a high place in the world of ideas, he should have expected to find his adversaries precisely those already occupying the highest places.

Ampère never looked on himself as a mere specialist in physical science, however, and it is extremely interesting to know that he dared to take sides in a discussion between Cuvier and Geoffroy-Saint-Hilaire, with regard to the unity of structure in organized beings. While the purely physical scientists mostly sat mute during the discussion, Ampère took an active share in it, and ventured to subject himself to what perhaps, above all things, a Frenchman dreads, the ridicule of his colleagues. Arago thought that he held his own very well in this discussion, which involved some of the ideas that were afterwards to be the subject of profound study and prolonged investigation later in the nineteenth century, because of the announcement of the theory of evolution.

After his discoveries in electricity Ampère came to be acknowledged as one of the greatest of living scientists, and was honored as such by most of the distinguished scientific societies of Europe. His work was not confined to electricity alone, however, and late in life he prepared what has been well called a remarkable work on the classification of the sciences. This showed that, far from being a mere electrical specialist or even a profound thinker in physics, he understood better probably than any man of his time the interrelations of the sciences to one another. He was a broad-minded, profound thinker in the highest sense of the words, and in many things seems to have had almost an intuition of the intimate processes of nature; a sharer in secrets as yet unrevealed, though he was at the same time an untiring experimenter, eminently successful, as is so evident in his electrical researches, in arranging experiments so as to compel answers to the questions which he put to nature.

In the midst of all this preoccupation of mind with science and all the scientific problems that were working in men's minds in his time, from the constitution of matter to the nature of life, above all engaged in experimental work, he was a deeply religious man in his opinions and practices. He had indeed the simple piety of a child. During the awful period of the French Revolution, he had some doubts with regard to religious truths; but once these were dispelled, he became one of the most faithful practical Catholics of his generation. He seldom passed a day without finding his way into a church, and his favorite form of prayer was the rosary.

Frederick Ozanam tells the story of how he himself, overtaken by misgivings with regard to faith, and roaming almost aimlessly through the streets of Paris trying to think out solutions for his doubts, and the problems that would so insistently present themselves respecting the intellectual foundations of Christianity, finally wandered one day into a church, and found Ampère there in an obscure corner, telling his beads. Ozanam himself was moved to do the same thing, for Ampère was then looked upon as one of the greatest living scientists of France. Under the magic touch of an example like this and the quiet influence of prayer, Ozanam's doubts vanished, never to return.

Saint-Beuve, whose testimony in a matter like this would surely be unsuspected of any tendency to make Ampère more Catholic than he was, in his introduction to Ampère's essay on the Philosophy of the Sciences (Paris, 1843), says:

"The religious struggles and doubts of his earlier life had ceased. What disturbed him now lay in less exalted regions. Years ago, his interior conflicts, his instinctive yearning for the Eternal, and a lively correspondence with his old friend, Father Barrett, combined with the general tendency of the time of the Restoration, had led him back to that faith and devotion which he expressed so strikingly in 1803.... During the years which followed, up to the time of his death, we were filled with wonder and admiration at the way in which, without effort, he united religion and science; faith and confidence in the intellectual possibilities of man with adoring submission to the revealed word of God."

Ozanam, to whose thoroughly practical Christianity while he was professor of Foreign Literatures at the University of Paris we owe the foundation of the Conferences of St. Vincent de Paul, which so long anticipated the "settlement work" of the modern time and have done so much for the poor in large cities ever since, was very close to Ampère, lived with him indeed for a while, said that, no matter where conversations with him began, they always led up to God. The great French scientist and philosopher used to take his broad forehead between his hands after he had been discussing some specially deep question of science or philosophy and say: "How great is God, Ozanam! How great is God and how little is our knowledge!" Of course this has been the expression of most profound thinkers at all times. St. Augustine's famous vision of the angel standing by the sea emptying it out with a teaspoon, which has been rendered so living for most of us by Botticelli's great picture, is but an earlier example of the same thing. One of Ampère's greatest contemporaries, Laplace, re-echoed the same sentiment, perhaps in less striking terms, when he declared that what we know is but little, while what we do not know is infinite.

For anyone who desires to study the beautiful Christian simplicity of a truly great soul, there is no better human document than the "Journal and Correspondence of Ampère," published some years after his death. He himself wrote out the love story of his life; and it is perhaps one of the most charming of narratives, certainly the most delightful autobiographic story of this kind that has ever been told. It is human to the very core, and it shows a wonderfully sympathetic character in a great man, whose work was destined a few years later to revolutionize physics and to found the practical science of electro-dynamics.

When Ampère's death was impending, it was suggested that a chapter of the "Imitation of Christ" should be read to him; but he said, no! declaring that he preferred to be left alone for a while, as he knew the "Imitation" by heart and would repeat those chapters in which he found most consolation. With the profoundest sentiments of piety and confidence in Providence, he passed away June 10th, 1836, at Marseilles.

With all his solid piety, this man was not so distant from ordinary worldly affairs as not to take a lively interest in all that was happening around him and, above all, all that concerned the welfare of men. He was especially enthusiastic for the freedom of the South American Republics, eagerly following the course of Bolivar and Canaris, and rejoicing at the success of their efforts. South American patriots visiting Paris found a warm welcome at his hands, and also introductions that made life pleasant for them at the French capital. His house was always open to them, and no service that he performed for them seemed too much.

Ampère was beloved by his family and his friends; he was perhaps the best liked man among his circle of acquaintances in Paris because of the charming geniality of his character and his manifold interests. He was kind, above all, to rising young men in the intellectual world around him, and was looked up to by many of them as almost a second father. His charity towards the poor was proverbial, and this side of his personality and career deserves to be studied quite as much as what he was able to accomplish for science. The beauty of his character was rooted deeply in the religion that he professed, and in our day, when it has come to be the custom for so many to think that science and faith are inalterably opposed, the lesson of this life, so deeply imbued with both of these great human interests, deserves to be studied. Ozanam, who knew him best, has brought out this extremely interesting union of intellectual qualities, in a passage that serves very well to sum up the meaning of Ampère's life.

"In addition to his scientific achievements," says Ozanam, "this brilliant genius has other claims upon our admiration and affection. He was our brother in the faith. It was religion which guided the labors of his mind and illuminated his contemplations; he judged all things, science itself, by the exalted standard of religion.... This venerable head which was crowned by achievements and honors, bowed without reserve before the mysteries of faith, down even below the line which the Church has marked for us. He prayed before the same altars before which Descartes and Pascal had knelt; beside the poor widow and the small child who may have been less humble in mind than he was. Nobody observed the regulations of the Church more conscientiously, regulations which are so hard on nature and yet so sweet in the habit. Above all things, however, it is beautiful to see what sublime things Christianity wrought in his great soul; this admirable simplicity, the unassumingness of a mind that recognized everything except its own genius; this high rectitude in matters of science, now so rare, seeking nothing but the truth and never rewards and distinction; the pleasant and ungrudging amiability; and lastly, the kindness with which he met everyone, especially young people. I can say that those who know only the intelligence of the man, know only the less perfect part. If he thought much, he loved more."


[CHAPTER IX.]
Ohm, the Founder of Mathematical Electricity.

Lord Kelvin, himself one of the greatest of the electrical scientists of the nineteenth century, in commenting some years ago on Ohm's law, said that it was such an extremely simple expression of a great truth in electricity, that its significance is probably not confined to that department of physical phenomena, but that it is a law of nature in some much broader way. Re-echoing this expression of his colleague, Professor George Chrystal, of Edinburgh, in his article on electricity in the Encyclopedia Britannica (IX. edition), says that Ohm's law "must now be allowed to rank with the law of gravitation and the elementary laws of statical electricity as a law of nature in the strictest sense." In a word, to these leaders and teachers in physical science of the generation after his, though within a comparatively short time after Ohm's death, there has come the complete realization of the absolutely fundamental character of the discovery made by George Simon Ohm, when he promulgated the principle that a current of electricity is to be measured by the electromotive force, divided by the resistance in the circuit. The very simplicity of this expression is its supreme title to represent a great discovery in natural science. It is the men who reach such absolutely simple formulæ for great fundamental truths that humanity has come, and rightly, to consider as representing its greatest men in science.

Like most of the distinguished discoverers in science who have displayed marked originality, Ohm came from what is usually called the lower classes, his ancestors having had to work for their living for as long as the history of the family can be traced. His father was a locksmith, and succeeded his father at the trade. The head of the family for many generations had been engaged at this handicraft. The first of them of whom there is any definite record was Ohm's great-grandfather, Wilhelm Ohm, who was a locksmith at Westerholt, not far from Münster, in Westphalia. Wilhelm Ohm's son, Johann Vincent, the grandfather of the great electrician, during his years as a journeyman locksmith had spent some time in France, and subsequently settled down in Kadolzburg, a small suburb of Erlangen, in Bavaria. In 1764, he obtained the position of locksmith to the University of Erlangen, and became a citizen of that municipality. Both of his sons followed the trade of their father.

The elder of these, Johann Wolfgang, worked at his trade as a journeyman in a number of the small cities of Germany, and only after ten years of absence in what, because of the independent condition of the States now known as the German Empire, were then considered foreign parts, did he wander back to his native place. On his return he received the mastership in his craft, and shortly after, about 1786, married a young woman named Beck. George Simon Ohm, the electrical scientist, was the first child of this marriage, and was born March 16th, 1789. A second son, born three years later, also became distinguished in after-life for his mathematical ability. This younger brother, after having filled a number of teaching positions in various German educational institutions, was called as professor of mathematics to Berlin, where he died in 1862.

While their father, Johann Wolfgang Ohm, followed his trade of locksmith for a living, like many another handicraftsman, he had many mental interests which he cultivated in leisure hours, and doubtless dwelt on while his hands were occupied with the mere routine work of his trade. It is curiously interesting to find that he devoted himself, during the hours he could spare from his occupation, to two such diverse intellectual occupations as mathematics and Kant's philosophy; but they had no newspapers in those days, and a man, even of the artisan class, had some time for serious mental occupation. It might be thought, under these circumstances, that he would be but the most passing of amateurs in either of these subjects, and have a very superficial knowledge of them. This probably was true for his philosophy fad, for there are not many who have ever thought themselves more than amateurs in Kantism, and even Kant himself, I believe, thought that only one scholar ever really understood his system, and subsequently said he had some doubts even about that one; but in mathematics, the elder Ohm seems to have attained noteworthy success.

Hofrath Langsdorff, who was the professor of mathematics at Erlangen during the last decade of the eighteenth century, and who was called to Heidelberg in 1804, a fact that would seem quite enough to set beyond all question that his opinion in this matter may be taken as that of a competent judge, declared that the elder Ohm's mathematical knowledge was far above the ordinary, and that he knew much more than the elements even of the higher mathematics. Under these circumstances, it is not surprising that the father should have tried to encourage in both his boys a taste for mathematics, nor that he should have taken their mathematical instruction into his own hands and succeeded in making excellent mathematicians of them, even in their early years. He was so successful in this, indeed, that Langsdorff, after a five-hour examination of the brothers when they were respectively 12 and 15, did not hesitate to declare that the Erlangen locksmith's family was likely to be remembered as containing a pair of brothers who, for success in mathematics, might rival the famous Bernoulli brothers, so well known at that time.

This might be thought only a bit of neighborly praise, meant to warm a father's heart, yet it seems indeed to have been given quite seriously. Certainly the event justified the prophecy. It is not surprising that, with such a forecast to encourage him, the father should have been ready to make every sacrifice to enable both his sons to prepare for the university.

He continued his instruction of them, then, in mathematics, though he insisted at the same time that they should continue to keep up their occupation of locksmiths. In spite of his enthusiasm for mathematics, the old gentleman seems to have cherished no illusions with regard to the likelihood of pure mathematics ever serving them as a lucrative means of livelihood. It was a very satisfying intellectual interest, but a good trade was much more apt to prove their constant and substantial standby, unless, of course, the boys should actually prove to be the geniuses foretold. He seems to have realized to the full, Coleridge's idea that, like the literary man, the mathematician should have some other occupation, though he might not go to the extent of following Oliver Wendell Holmes' well-known addition to Coleridge's formula, that he should, as far as possible, confine himself to the other occupation. The boys were given the opportunity to attend the gymnasium of Erlangen, and seem to have had excellent success in their general studies besides mathematics.[23]

In 1805, when George, the subject of our sketch, was sixteen years of age, he was graduated from the gymnasium and was ready for the university. On May 3d, 1805, he took his matriculation examination before the faculty of Erlangen, electing the course of mathematics, physics and philosophy. Later in life he told his friends that it was his deep love for the mathematics of these studies, and his persuasion that in them the student was brought in contact with the most important factors for absolute intellectual cultivation, that tempted him to take them up. To this he did not hesitate to add that there seemed to him to be some call of a higher voice, as if he had a vocation to dedicate himself to the cultivation and extension of these important subjects.

He had been but some two years at the university, when for a time his studies had to be interrupted, partly for lack of means to pursue them, but partly because to his father, at least, the university course was not the source of such satisfaction as he had anticipated from his son's ability in mathematics. While Ohm took his studies seriously, he was not by any means a mere "grind," and, indeed, the reputation which he acquired at the university for many of the qualities which make for a student's popularity among his fellows, was not such as would be likely to appeal to a very serious-minded father. Ohm had acquired the fame of being one of the best dancers in the university; he was a brilliant billiard player and an unrivalled skater; all of which indicates that as a young man he had the physical development and acuteness of sense so necessary to enable him to gain prestige in all these sports.

His father, in spite of his desire for his son's university career, was quite willing, then, at the end of September, 1808, to have him take up a position as teacher of mathematics in the school kept by Pastor Zehnder, in the Canton Berne, in Switzerland. His very youthful appearance (he was only 18 years of age at the time, quite boyish looking and not even large for his years) caused the head of this institution no little surprise when he came with letters of introduction showing that he was to be the new teacher in mathematics. He could scarcely believe his eyes for a time. Within a few months, however, he was convinced of the ability and the capacity for work of his new addition to the faculty, who seems to have given, from the very beginning, excellent satisfaction in his rather important position.

Ohm remained there some three years and a half and then moved to Neunberg, where, independent of any educational institution, he set himself up as a private tutor in mathematics. His reason for so doing, as he himself tells, was that he wished to devote himself to the study of pure mathematics more than was possible in a regular teaching position. For this same reason also he refused a number of offers of positions as teacher of mathematics, which would ordinarily be considered quite flattering to a young man of only 21. Another reason for refusing these offers was that he wished to perfect himself in French, and he had an excellent opportunity afforded him for conversation in this language in the conditions in which he was placed in Neunberg. This last may seem an unusual reason, but it is characteristic of Ohm's determination always to add to his power of understanding and expression.

Most young men in Ohm's circumstances are so occupied with the thought of immediate success in life, that every possible abbreviation of their studies which will bring them nearer the opportunity to make their own living is likely to be heartily welcomed. Ohm, however, realized that his own intellectual development was more important, especially at this time, even than getting on in the world; and for this reason his life has an added interest, not only for students themselves, but especially for those who have the best interests of students at heart and wish to be able to cite examples of how a little delay in getting at one's actual life-work, or, still more, at a remunerative occupation, may serve the very useful purpose of preparing a man so much the better to bring out his best intellectual possibilities when he does settle down to his work.

At Easter, 1811, Ohm returned to Erlangen, after having spent nearly two years perfecting himself in mathematics. He then finished his studies at the university, which seems not to have had the rule of requiring attendance for a definite period before coming up for its degree, but permitted him to take the examinations for the doctorate of philosophy on the strength of the work he had done, and gave him his degree on the 25th of October of the same year. With the drawing tighter of the bands of red tape in educational institutions in more recent years, Ohm would have found it difficult to get his degree thus readily, though it was the university rather than the graduate who was eventually to be honored by it. After this, he became privatdocent in mathematics at the university, and taught for three semesters. He met with marked success and became very popular with the students. After a year and a half, however, he gave up his university position to accept the professorship of mathematics at the Realschule of Bamberg.

While Ohm was here, the spirit of young Germany awoke at the news of Napoleon's unfortunate Moscow campaign, in which his good fortune seemed to have definitely abandoned the great Emperor of the French. Most of the students of the universities of Germany were deeply aroused by it, and those who know Körner's and Uhland's songs will have some idea of the depth of patriotic feeling that was stirred in thousands of young German hearts, who thought that now the opportunity for the fatherland to throw off the hated foreign yoke forever, had come at last. Ohm debated with himself whether he should volunteer with the crowds of young men who were so bravely giving up everything, that the fatherland might be free. Two things deterred him. If he went as a soldier, the material assistance he was able to give his father, and which, as the old man was now advancing in years and had spent most of his little savings upon his sons, was needed, would have to be given up. The other motive that kept him at home was, according to his German biographer in the Allgemeine Deutsche Biographie, which we have been following for most of these details, because he felt that what he might be able to accomplish in other fields besides those of battle would eventually prove more beneficial for his fatherland, and indeed for the whole of humanity, than anything he could do as a soldier, even with the patriotic motive to help his country to throw off the yoke of the foreign usurper, which had proven so hard to bear. As we have already seen, it was a characteristic trait of Ohm all through life, that he cherished the idea, which acquired almost the force of a premonition, that he was destined for great things.

Ohm continued his work as a teacher, then, instead of volunteering for the army; but, as might be expected, found the monotonous work of drilling young students in mathematics extremely unsatisfactory after a time. At the end of a year and a half of service at Bamberg, he asked for a change in the conditions of his teaching position. Instead of this, he received a transfer to the Bamberg pro-gymnasium, where he was to teach Latin until a regular teacher was appointed. In spite of his representations that the teaching position offered him was utterly at variance with his talents and his inclinations, he was compelled to accept this occupation for a time, though after some delay there came the assurance that, just as soon as possible, he would be assigned to a position as teacher of mathematics.

In spite of his unfortunate circumstances, which would ordinarily be thought quite enough to keep him from serious work until he was settled in a position more suited to his tastes, he devoted himself to the writing of his first book during this time, and it was published by Enke, in Erlangen, in the spring of 1817. Its title was, "Outlines of the Study of Geometry as a Means of Intellectual Culture." It comprised nearly two hundred pages, and gives the best possible insight into the ability and intelligence of the author, then a young man of only twenty-eight. As a sort of appendix, he gives a short sketch of his father, evidently introduced, not quite so much for the purpose of filially confessing his obligations to the old locksmith mathematician, nor with the idea of repaying some of his immeasurable debt for all the opportunities which the sacrifices of paternal affection had brought into the life of his sons, as to emphasize the excellent educational influence which his father's mathematical training had had upon his boys, and thus prove his thesis as to the value of mathematical studies in education. Few filial tributes were ever more deserved or given more convincingly or with less suggestion of the conventional attitude of son to father.

Now that mathematics has come to occupy probably even a less prominent place in education than it did in Ohm's time, though the burden of his complaint with regard to educational methods was that geometry was not used as a daily developmental subject as much as it should be, it may be interesting to recall some of the reasons which he advanced for urging its greater employment as an instrument for mental training. He thought that rational geometry should occupy a place of honor among our means of education. Its quality as a mode of pure reasoning, though so closely related to the senses, made easy the transition from sensation to thought, which is such an important element in education; while its eminently simple character, though combined with definite demands upon the constructive faculties, made it appropriate in a high degree for the education of the young out of the field of merely imitative use of the intellect, into that of independent thinking and following out of ideas. "Geometry," says Ohm, "when properly taught, not with the fruitless drilling usually employed in teaching it, but in such ways as to secure deep personal attention, must take rank above all other branches of education, in enabling the student to break down the barrier which separates mere understanding from personal investigation. It forces a man whose thoughts were, up to this time, only the repetition of others' thoughts, to think for himself and to light for himself in his own mind the torches which enable him to see things clearly for himself, and not merely in the dimness of the half light that is thrown on them by the explanations of others."

Geometrical methods always had a special fascination for Ohm, and practically all of his books and writings bear the impress of that close dependence of all parts on one another, that absolutely logical connection so characteristic of geometric accuracy of thought. His was the sort of mind likely to be benefited by mathematical training. Such minds are, however, comparatively few, for most men are not rational in any sense of the word, that would make them dependent on logical reasoning. Perhaps it is as well that they are not, for many of those lacking in logic or mathematical accuracy of thought and absoluteness of conclusion, still continue to accomplish much in the world of thought and do much valuable planning for the complexities of human affairs, where strict logic will not always solve the intricate yet incomplete problems that present themselves in human relations, where, indeed, individual unknown factors often make any but an approximate solution impossible.

The opinions of the critics as to Ohm's "Outlines of Geometry" were, as might be easily anticipated, not all flattering, since only a few of the critics were able to place themselves on the ideal standpoint of mathematical subjectivity from which he had written his book. King Frederick William III., of Prussia, is said to have read it with much interest, however, and the royal pleasure doubtless drew attention to Ohm's work, and may have contributed to the fact that, shortly after its publication, in September, 1817, Ohm was invited by the Royal Consistory of Cologne to take the position of head professor of mathematics and physics in the gymnasium of that city. This post was not only honorable, it was also highly remunerative, at least from the standpoint of teachers' wages as they were at that time, and Ohm eagerly accepted the position.

Lamont, who was the director of the Royal Observatory at Munich, has written a memorial of Ohm which contains much valuable information. The body of it is an address delivered at a meeting of the Faculty of the University of Munich in honor of Thaddeus Siber and George Simon Ohm, but its value has been much enhanced by notes added before publication. Siber was a Benedictine who was professor in the philosophical department at Munich, and died the same year as Ohm. Lamont says that he received his information as to intimate details of Ohm's life from his brother, Prof. Martin Ohm, of Berlin. His sketch is, therefore, absolutely authoritative. Lamont says with regard to this period of teaching at Cologne: "Ohm's first position of importance, in any way worthy of his talents, was the professorship of mathematics at the large Jesuit gymnasium in Cologne, in 1817, where the special gift that he possessed, of making the study of mathematics not only comprehensible but attractive to boys, brought him success and recognition."

For nearly ten years Ohm had the opportunity to put into practice in this Jesuit gymnasium of the Rhineland, the principles which he had so much at heart, for he was apparently given the full freedom of his department of teaching. He succeeded so well that he received wide and hearty recognition for his work. The mathematical studies of the Cologne gymnasium stood higher than had ever been the case before, and this was all Ohm's work. In the years before his teaching in the Rhenish city, those who were distinguished in mathematics at the University of Bonn had not come, as a rule, from Cologne, but from other places; but now nearly all the mathematical prize-takers of Bonn came from among Ohm's students, and the best of the candidates for teaching positions in physics and mathematics had also, as a rule, had the advantages of his training.

Among the best of his scholars at this time was the afterwards well-known mathematician, Lejeune-Dirichlet, who taught in Berlin with Jacobi and Steiner and succeeded Gauss in Göttingen. Another of his most distinguished pupils was the astronomer Heis, who occupied a modest position at the Munster Academy, but whose merits were above the post which he occupied, and who was distinguished for the excellency of his original work and his ability as a mathematician. One very interesting fact with regard to Ohm's teaching, was that he was successful in catching and holding the interest not only of those of his students who were later to specialize in mathematics, but also of those who took up mathematics only as a subject for mental development, that was to be applied to other purposes later in life, and who found Ohm's teaching of the greatest possible service. Among these, the well-known German literary man, Jacob Venedey, of Cologne, has expressed his affection and gratitude for his old teacher in a very striking way in his sketch of the cathedral at Cologne, written in the banishment that came to so many vigorous German thinkers after the failure of the revolution of '48. In sending a copy of this to Ohm, Venedey says: "Honored Sir:—It will perhaps be a source of wonder to you that a student who apparently learned so little from you and your colleagues that he must now earn his bread by writing, should continue to cherish for you the liveliest gratitude. It is not the fault of mathematics that only the dimmest recollection of them remains with me. I shall never forget the personality of my professor, however, nor his ways and methods of teaching. I frequently recount your way with us boys, and I have the liveliest remembrance of your influence as a teacher. There are seldom weeks, there never is a month, when I fail to recall you. This is no mere compliment that I am paying to you, since I know you too well to think that flattery would mean anything to you, as it would be unworthy of you, and I for my part am not one of those who like to bandy compliments. I have often wished to meet you again, and a hundred times I thought that I saw you because some one at a distance had something that recalled you. I may say to you that you accomplished something for me in those days of teaching that I would not have been able to accomplish for myself. I can only think of you, then, with the highest feelings of reverence approaching what might well be called love. It will be a happy day, indeed, for me if I am ever in a position to make an hour of existence happier for you in any way."

While Ohm so zealously continued his instruction in both the upper classes of the gymnasium, he never lost from sight that higher aim of original research and investigation to which his genius disposed him.

His choice of a subject for original investigation wavered for a long time between mathematics and physics, but, as he himself declared, his experience having shown him that authority was prone to play a large role in mathematics, while the field was more open for personal research and observation in physics, he resolved to take up that department for his special studies, consoled by the idea that physics cannot be properly pursued without mathematics. Looking around to select a subject that would serve as a striking preface to his work in this department, though resolved at the same time to avoid one where he would be without rivalry, he found it all ready to his hand in what one of his contemporaries called the enigmatic phenomena of the galvanic current. This was to prove a fortunate selection, indeed, both for himself and the opportunity afforded his genius as well as for the science of electricity itself.

He then began a series of investigations, always experimental in character, and with the mathematical explanations of the phenomena observed carefully worked out. Accounts of these studies appeared from time to time in the year-book for Chemistry and Physics, issued by Schweigger. After some ten years, these were collected together, or at least the principal portions of them, and published in the second half of the year-book for the year 1826. The apparatus for his experiments was fortunately at command in the gymnasium at Cologne, but without his mechanical skill, obtained from his experience as a locksmith when a boy, it would have been impossible so to vary his experiments and modify his instruments as to bring out many of the phenomena that he succeeded in demonstrating. Nearly all of the great discoverers in science have been handy men possessed of mechanical skill, and this is as true for medicine, as I have shown in "Makers of Modern Medicine,"[24] though it might perhaps not be expected, as it is here in electricity, where it seems very natural.

Ohm felt, in 1826, that he had succeeded in exhausting nearly all that he could learn for himself, and as he wished to have opportunities for further study, and especially for further reading, he asked for an academic furlough that would carry him over the next year. The work that he had already accomplished was beginning to be appreciated, and after discussion of the papers that he had published up to that time, the requested furlough was promptly granted; and in a letter in which the school authorities praised his school work as well as his original investigations, they allowed him to take the sabbatic year for the furtherance of science on one-half the usual salary, though with the condition also that more would be allowed to him in case this seemed necessary and the conditions justified it.

This furlough was perhaps the most important event in Ohm's life. He employed it in bringing to a focus the ideas with regard to electricity which had been gradually worked out in his mind during the past ten years. In May, 1827, within six months after the beginning of his exclusive devotion to the subject, Ohm's article on the mathematics of the galvanic current appeared. It proved a scientific achievement of the first rank, that was to be epoch-making in the domain of electricity. It settled the conditions under which electrical tension exists in various bodies, and made it clear that there is a fundamental law of electrical conduction which could be expressed by an easy, simple formula.

Ohm's preface to his little book, that was to work such a revolution in electricity and was to remain for all time one of the classics in this department of science, is typical of the man in many ways. Its modesty could not very well be exceeded. Its simplicity constitutes in itself an appeal to the reader's interest. I know nothing in the literature of the history of science quite like it in these regards, unless it be the preface of Auenbrugger's little book on percussion, in which he laid the foundation of modern clinical diagnosis.[25] The two men have many more qualities in common than the authorship of modest prefaces to their books. Both of them were geniuses whose names the aftertime will not willingly let die, and both of them accomplished their work apart from the stream of university life in their time, and met with a like fate in the neglect, for some time at least, by their distinguished colleagues of the important discoveries that they had made. Ohm's preface deserves to be quoted because of its classic quality:

"I herewith present to the public a theory of galvanic electricity as a special part of electrical science in general, and shall successively, as time, inclination and means permit, arrange more such portions together into a whole, if this first essay shall in some degree repay the sacrifice it has cost me. The circumstances in which I have hitherto been placed have not been suitable either to encourage me in the pursuit of novelties or to enable me to become acquainted with works relating to the same department of literature throughout its whole extent. I have, therefore, chosen for my first attempt a department of science in which I have the least to apprehend competition.

"May the well-disposed reader accept whatever I have accomplished with the same love for science as that with which it is sent forth!—The Author, Berlin, May 1st, 1827."

In his preface to the American edition of the "Galvanic Circuit Investigated Mathematically,"[26] Mr. Thomas D. Lockwood, vice-president of the American Institute of Electrical Engineers, said of this masterpiece of Ohm's: "A sufficient reason for republishing an English translation of the wonderful book of Professor G. S. Ohm is the difficulty with which the only previous translation (that of Taylor's Scientific Memoirs) is procurable.

"Besides this, however, the intrinsic value of the book is so great that it should be read by all electricians who care for more than superficial knowledge.

"It is most remarkable to note, at this time, how completely Ohm stated his famous law that the electromotive force divided by the resistance is equal to the strength of the current."

With regard to the book as a whole, Mr. Lockwood says, after suggesting certain anticipations of Ohm's ideas which had been made in the preceding century: "Ohm's work stands alone, and, reading it at the present time, one is filled with wonder at the prescience, respect for his patience and prophetic soul, and admiration of the immensity and variety of ground covered by his little book, which is indeed his best monument."

Like many another great discovery in physical science, Ohm's work failed to receive the immediate appreciation which it deserved. It cannot be said, however, that it failed to attract attention. It would be easier, indeed, to forgive the scientists of the day if this were true. Not long after its appearance, abstracts from it were made by Fechner in Leipzig, by Pfaff in Erlangen, and Poggendorff in Berlin, which showed that these scientists understood very clearly the significance and comprehended the wide application of Ohm's law as claimed by its author. From these men there was no question of hostile criticism. Professor Pohl, of the University of Berlin, however, in the Berlin "Year-book of Scientific Criticism," did not hesitate to express his utter disagreement, and declared that Ohm's work was fallacious and should be rejected. Other writers of the time treated Ohm's article more or less indifferently, as a merely conventional contribution to science.

Professor Pohl's opinion was taken to represent the conclusions of the faculty of the University of Berlin, especially noted for mathematical ability. This was to prove a serious hindrance to Ohm in the university career which he had planned for himself. At Berlin they had the ear of the Minister of Education, and it was not long before Ohm felt that the criticisms of his work were making themselves felt in a direction unfavorable to him. Not long after the appearance of his book, there came a disagreement between Ohm and the educational authorities. Ohm felt that this was due to failure to recognize the significance of his work, and that under the circumstances he could not hope for the appreciation that would provide him with the opportunities he deserved. He insisted on sending in his resignation as a teacher. Nothing could change his determination in the matter, not even the pleas of his former scholars, and his resignation had to be accepted.

Ohm had hoped for a teaching position in a university. The Minister of Education declared that, while his work as a teacher had been accomplished with careful industry and diligence and conscientious attention to duty, the ministry regretted that, in spite of thorough appreciation of him and admiration for his excellent work as a scientist, they could not find for him a position outside of the gymnasium. How utterly trivial the conventional expressions sound, now that we know that they brought about for the time being the interruption of one of the most brilliant scientific careers in Europe. Of course, the geese cannot be expected to appreciate the swans, and it was not the minister's fault, but that of some of Ohm's own colleagues. The next six years of his life, the precious years between 38 and 44, Ohm had to give up the idea of teaching in a university, and devote himself to some private tutoring in Berlin, with a stipend of about three hundred dollars a year, miserable enough, yet sufficient, as would appear, for Ohm's simple mode of life. This he owed to the kindness of Gen. Radowitz, who employed him to teach mathematics in a military school in Berlin.

At the end of this time, when he was nearly 45 years of age, his unfortunate situation attracted the attention of King Ludwig I., of Bavaria, who offered him the chair of professor of physics at the Polytechnic School in Nuremberg, which had recently by royal rescript been raised to the status of a Royal Institute, with the same rank in educational circles as a lyceum for the study of humanities. Here Ohm's duties were shortly to be multiplied. He became the inspector of scientific instruction, after having occupied for some time the professorship of mathematics, and later became the rector of the Polytechnic School, a position which he held for some ten years, fulfilling its duties with the greatest conscientiousness and fidelity.

Ohm continued his work at Nuremberg for more than fifteen years. During this time, he succeeded in making his mark in every one of the departments of physics. He is usually considered as owing his reputation as an experimental and mathematical scientist to his researches in electricity. As a matter of fact, every branch of physics was illuminated by his work, and perhaps nothing shows the original genius of the man better than the fact that everything which he took up revealed new scientific aspects in his hands. The only wonder is that he should have remained so long in a subordinate position in the educational world at Nuremberg, and received his appointment as university professor of physics at Munich only in 1849.

In the midst of the administrative educational work that came to him at Nuremberg, Ohm did not neglect original investigation, but somehow succeeded in finding time for experiment and study. Having made a cardinal discovery in electricity, of the value of which surely no one was more aware than himself, Ohm might have been expected, as soon as his new post gave him the opportunity, to devote himself quite exclusively to this department of science. Instead, he turned for a time to the related subjects of sound, heat and light, devoting himself especially to their mathematics. He did this, as he said himself, to complete for his own satisfaction his knowledge of the scientific foundations of the imponderables, as heat, light and electricity were then called, but also because he wished, for the sake of his students, to get closely in touch with what had been accomplished by recent investigators in physics.

It is almost a universal rule in science, that no matter how distinguished an investigator may be, he makes but one cardinal discovery. Ohm, however, was destined, after having brilliantly illuminated electricity by the discovery of a great law, to throw nearly as bright a light on the domain of acoustics; and there is a law in this department of physics which is deservedly called by his name, though it is often associated with that of Helmholtz. Helmholtz himself was always most emphatic in his insistence on Ohm's priority in the matter, and constantly speaks of the law in question by Ohm's name.

Perhaps no better evidence of the breadth of Ohm's interest in science, his supreme faculty for experimentation, or the originality of his investigating genius, can be found than the fact that he thus discovered, by experimental and mathematical methods, the solution to important problems in two such distinct departments of physical science as electricity and acoustics. Before his time, the question of electrical resistance was absolutely insoluble. The problem in acoustics was not less obscure, as may be judged from the fact that, though some of the best physicists and mathematicians of Europe during the eighteenth century—and there were giants in those days, among others, Brook Taylor in England, D'Alembert in France, Johann Bernoulli and Euler in Germany, and finally, Daniel Bernoulli—had devoted themselves to its solution, it remained nevertheless unsolved. Here, as in electricity, the simplicity of the solution which Ohm found shows how direct were his methods of thinking and how thorough his modes of investigation. Perhaps the most striking feature of Ohm's work in acoustics, and, above all, his solution of an important problem in music, is the fact that he himself, unlike most of his German compatriots, had no ear for music and no liking for it.

In his address delivered at the public meeting of the Royal Bavarian Academy of Sciences at Munich, in March, 1889, the hundredth anniversary of the birth of Ohm, Eugene Lommel, in discussing the scientific work of Ohm, said: "Inasmuch as his law in acoustics furnished the clearest insight into the hitherto incomprehensible nature of musical tones, it dominates the acoustics of to-day no less completely than Ohm's law of the electric current dominates the science of electricity."[27] This law concerns the resolution of tones into their constituents. The ideas laid down by Ohm were almost absolutely novel. They were so new that none of the workers in acoustics could think that Ohm had made a great discovery. His law states that the human ear perceives only pendulum-like vibration as a simple tone. Every other periodic motion it resolves into a collection of pendulum-like vibrations, which it then hears in the sound as a series of single tones, fundamentals and overtones. Ohm arrived at this law from mathematical considerations, making use of Fourier's series; for its experimental verification he was compelled to use the well-cultivated ear of a friend, inasmuch as he was himself, as we have said, quite devoid of musical appreciation.

Ohm's results were too distant from the accustomed ideas of investigators of sound at that time to be accepted by them. Seebeck, who was one of the most prominent scientists of the time in acoustics, did not hesitate to criticise severely, just as Pohl had made little of Ohm's law of the electric current. While, however, foreigners were to teach German scientists the value of the advance that their great colleague in electricity had made, the privilege of pointing out the significance of his work in sound was to be a compatriot's good fortune. It was nearly a score of years, however, before this vindication was to take place. Then Helmholtz, a decade after Ohm's death, furnished the experimental means which enabled even the unskilled ear to resolve a sound into its simple partial tones, and revolutionized the theory of music by his classic work, "The Science of the Perception of Sound," which is based entirely on Ohm's law of acoustics.

Ohm, in the appendix to his work, "The Galvanic Circuit treated mathematically," dared to suggest certain speculations with regard to the ultimate structure of matter. He said: "There are properties of space-filling matter which we are accustomed to look upon as belonging to it. There are other properties which heretofore we have been inclined to look upon as accidents or guests of matter, which abide with it from time to time. For these properties man has thought out causes, if not foreign, at least extrinsic, and they pass as immaterial independent phases of nature under the names light, heat, electricity, etc. It must be possible so to conceive the structure of physical bodies that, along with the properties of the first class, at the same time and necessarily those of the second shall be given."

It is all the more interesting to come upon Ohm's speculations on this subject of the ultimate constitution of matter, because within a few years of his time, Pasteur, then only a comparatively young man, had also been taken with the idea of getting at the constitution of matter by his observations upon dissymmetry, which he abandoned after a time, however, because he found other and more practical subjects to devote himself to, though he never gave up the thought that he might some time return to them and perhaps discover the underlying principles of matter from observations in this subject. It was not until the last five years of his life, when Ohm was already past sixty, that he was to enjoy the satisfaction of an ambition which he had cherished from his earliest years as a teacher, and which, in spite of untoward circumstances, had been a precious stimulus in his work. For some twenty years he had hoped some time to be able to devote himself to the investigation of the physical constitution of matter. Unfortunately, when the opportunity came, the manifold duties of his teaching position prevented the completion of his great work, and doubtless robbed his generation and ours of a precious heritage in the mathematics of the structure of matter, which would doubtless have been of the greatest possible value.

It is of course idle to speculate as to what he might have accomplished if left to his original investigation. The problem which he now took up was much more difficult than any of his preceding tasks. It would have seemed, however, quite as hopeless to those who lived before Ohm's laws, to look for a single complete law of the resistance of the electrical current in the circuit or of the overtones in music, as it is to us to think of a simple mathematical formula for atomic relations. What Ohm accomplished in these other cases by his wonderful power of eliminating all the unnecessary factors in the problem, would surely have helped him here. The main power of genius, after all, is its faculty of eliminating the superfluous, which always obscures the real question at issue to such a degree for ordinary minds, that they are utterly unable to see even the possibility of a simple solution of it. Art has been defined as the elimination of the superfluous; discovery in science might well be defined in the same terms. Under the circumstances, we cannot help regretting that Ohm was not allowed the time and the opportunity to work out the thoughts with which he was engaged. It would have been even more satisfactory if the precious years of his ripe middle age had not been wasted in trivial, conventional tasks, so that he might have been permitted to devote his academic leisure, sooner than was actually the case, to the problem which had been so constantly in mind since he made his great generalization in the laws of electricity.

Unfortunately, most of Ohm's time had now to be taken up with his teaching duties. Only for his self-sacrifice in the matter, his success as a teacher would doubtless have been less marked. Science itself must have suffered, however, from this pre-occupation of mind with a round of conventional duties, since Ohm could no longer devote his time to original research. In the meantime, his great discovery was coming to its own. During these ten years since the publication of his book, a number of distinguished physicists in every country—Poggendorff, and especially Fechner, in Germany, Jacobi and Lenz in Russia, Henry in America, Rosenkoeld in Sweden, and De Heer in Holland—took up the problems of the current strength of electricity as set forth in Ohm's law, and confirmed his conclusion by their investigations along similar lines. The French physicist and member of the Academy of Sciences, Pouillet, applied Ohm's ideas to thermo-electricity and pyro-electricity, employing his terms and bringing his work to the notice of foreigners generally, so that a translation of Ohm's work was made into English.

Ohm's work at once attracted the attention that it deserved in England. The Royal Society conferred on him the Copley Medal, which had been founded as a reward for important discoveries in the domain of natural knowledge. Before Ohm's time only one other German scientist, Carl Friedrich Gauss, of Göttingen, had ever been thus honored. The words employed by the Royal Society in conferring this distinction showed how thoroughly the representatives of English science appreciated Ohm's work. They said that he had set forth the laws of the electric current very clearly, and thus accomplished the solution of a problem which was as important in the realm of applied science as it had hitherto been in the schools. Recognition now became the rule, and Ohm had the satisfaction of having all his colleagues in the physical sciences acknowledge the significance of his work.

Ohm's recognition, then, came from foreigners first, and only afterwards from his fellow-countrymen. Immediate appreciation might have meant much for him, and even this tardy recognition gave him renewed courage and new strength to go on with his work. He gave effective expression at once to his gratitude and to the stimulus that had been afforded him by the dedication to the Royal Society of London of the great work, "Contributions to molecular Physics," which he planned.

The year after he received the Copley Medal, he was made a Foreign Associate of the Royal Society of England, and from this time on his discoveries began to find their way into text-books as fundamental doctrines in the science of electricity. German and foreign scientific bodies followed the English example so happily set for them, and began to give him their recognition as a physicist of the first rank. Ohm's further observations were, for a time, not accepted so readily as his first law. The reason for this was that Ohm was so far ahead of his times that there was not as yet in existence a suitable electroscope to test their truth. Finally, the invention of an exact electrometer by Dellman, and its application by Professor Kohlrausch, of Marburg, made the experimental confirmation of all his work quite as significant as for his law.

It is a striking reflection on Ohm's career, though not very encouraging for the discoverer in science, to realize that some important discoveries, which thus proved eventually quite as epoch-making as his law, had lain for practically ten years neglected, and their magnificently endowed author had been allowed to eke out a rather difficult existence in teaching, not in the important department of science in which he was so great a master, but in certain conventional phases of mathematics which might very well have been taught by almost anyone who knew the elements of higher mathematics. Ohm's case is not a solitary phenomenon in the history of science, however, but rather follows the rule, that a genuine novelty is seldom welcomed by the leaders of science at any given moment; but, on the contrary, rather decried, and its discoverer always frigidly put in his proper place by those who resent his audacity in presuming to teach them something new in their own science.

Having thus illuminated electricity and acoustics, Ohm turned his attention to the department of optics. His power to simplify difficulties and get at the heart of obscure problems is illustrated by his contribution to this subject, made while he was professor of physics in the University of Munich. Optics had early engaged his attention, and in 1840 he published a paper in Poggendorff's Annalen, bearing the title, "A Description of some simple and easily managed Arrangements for making the Experiment of the Interference of Light." With his usual faculty for simplifying things, he showed that the interference prisms which were made so carefully by the French could be constructed from common plate-glass. He was indeed able to demonstrate that a simple strip from the edge of a piece of such glass could be used for this purpose.

He pursued this absorbing subject until 1852-53, and then set himself the difficult task of developing a general theory of these phenomena of interference which are so rich in form and color. The problem was indeed alluring, but some of the best minds in nineteenth century science in Europe had been engaged at it, without bringing much order out of the chaos, and it would have looked quite unpromising to anyone but Ohm, to whom, the greater the difficulty of a subject, the more the attraction it possessed. With his wonderful power of synthesis and his capacity to discover a clue to the way through a maze of difficulties, Ohm succeeded in finding a formula of great simplicity and beauty and which covered all the individual colors. It was only after he had reached his conclusions and was actually publishing his results, that the German scientist found that he had been anticipated by Professor Langberg, of Christiania, in Norway, with regard to the principal points of his investigation, though not as to all its details. Professor Langberg[28] had published his article in the Norwegian Magazine for Natural Sciences in 1841, and an abstract of it had appeared the following year in the first complementary volume (Erganzungsband) of Poggendorff's Annalen.

Of this publication by Professor Langberg, Ohm had known absolutely nothing. He had even gone to some pains to find out, before undertaking his own investigation, whether anything had been published on the matter. At the sessions of the German Naturalists' Association, held in 1852, he had called the attention of many prominent physicists and mineralogists who were present at that meeting to the colored concentric ellipses which occur in connection with certain crystals used in the investigation of polarization. He asked whether these had ever been seen before, or whether anything had been written about them. All of those whom he consulted declared that they had not observed them, and that, so far as they knew, nothing had been published with regard to them. Accordingly, Ohm proceeded with his work, only to find, after its formal publication, that he had been almost entirely anticipated and that the merit of original discovery belonged to his Norwegian colleague.

When his attention was called to the publication, Ohm was perfectly ready to acknowledge the priority of Professor Langberg's claim and to give him all the credit that belonged to his discovery. At the beginning of the second part of his article, he said:

"I know not whether I should consider it lucky or unlucky that the extremely meritorious work of Langberg should have entirely escaped me and should have been lost to general recollection. Certain it is that, if I had had any knowledge of it before, my present investigations, which were occasioned by this elliptical system, would not have been made and I would have been spared a deal of work. In that case, however, a number of other and scarcely less important scientific principles would have remained hidden for the time being at least. Under the circumstances, the profound truth of the old proverb, 'Man proposes, but God disposes,' has been brought home to me again. What originally set me investigating this subject now proves to be without interest for science, since the problem has been solved before. On the other hand, a number of things of which I had no hint at all at the beginning of my researches, have come to take its place and compensate for it."

Perhaps nothing will show better than this, Ohm's disposition toward that Providence which overrules everything, and somehow, out of the mixture of good and evil in life, accomplishes things that make for the great purpose of creation. His eminently inquiring attitude towards science, which had on three occasions led him to tackle problems that had puzzled the greatest of experimental scientists, has been shown. He must have been, above all things, a man of a scientific turn of mind, in the sense that he was not ready to accept what had previously been accepted even by distinguished authorities in science, but was ready to look for new clews that would lead him to simpler explanations than any that had been offered before. In spite of this inquiring disposition, so eminently appropriate to the scientist, and constituting the basis of his success as an experimenter and scientific synthesist, he seems to have no doubts about the old explanation of the creation nor the all-wise directing power of a Divine Providence. This is all the more interesting, because already the materialistic view of things, which claims to know nothing except what can be learned from the matter around us, had begun to make its way in Europe, especially in scientific circles, but Ohm remained untouched by it.

Another example of this same state of mind in Ohm is to be found in the preface to his last great work, his contribution to molecular physics, in which he hoped to sum up all that he could discover and demonstrate mathematically with regard to the constitution of matter. He knew that he was taking up a work that would require many years and much laborious occupation of mind. He realized, too, that his duties as professor of physics and mathematics as well as the directorship of the museum and the consultancy to the department of telegraphs, left him comparatively little time for the work. He foresaw that he might not be able to finish it, yet hoped against hope that he would. In the preface to the first volume, he declared that he would devote himself to it at every possible opportunity, and that he hoped that God would spare him to complete it. This simplicity of confidence in the Almighty is indeed a striking characteristic of the man.

The work which Ohm began thus with such humble trust in God, was to contain his conclusions concerning the nature, size, form and mode of action of the atom, with the idea of being able to deduce, by the aid of analytical mechanics, all the phenomena of matter. Unfortunately, he was spared only to write the first, an introductory volume which bears the title, "Elements of the analytical geometry of space on a system of oblique co-ordinates." This did not touch, as he confesses, the ultimate problem he had in mind. The second volume was to have contained the dynamics of the structures of bodies, and a third and fourth were to be devoted to the physical investigation of the atom and its relation to other atoms and matter in general.

Ohm devoted himself, however, with too much ardor to his duties as teacher, to allow himself to give the time to his own work that would have enabled him to finish it. Among other things that he did for his students was to complete a text-book of physics. He confesses that he had always felt an aversion to working at a text-book, and yet was impelled to take up the task because he felt that in electricity, in sound and in optics, the only way in which his students would get his ideas, many of which were the result of his own work, was to have a text-book by himself, and he felt bound in duty to do this for them, as he had accepted the position of instructor. He succeeded in completing the book very rapidly by lithographing his lectures immediately after delivery and distributing copies to his classes.

It is almost needless to say that the work was, in its way, thoroughly original. It was accomplished with the ease with which he was always able to do things; but, unfortunately, the strain of the work told on him at his years much more than when, as a younger man, he was able to work without fatigue. He acknowledges, at the close of the preface, that the task has been too great, and that he should not have undertaken its accomplishment, and especially not in the hasty way in which it was done. This preface was dated Easter, 1854. Within a few months, Ohm's strength began to fail, and the end was not long in coming.

According to the translation of the address of Lommel, as it appeared in the Annual Report of the Smithsonian Institute for 1851, Ohm died as the result of repeated attacks of epilepsy, on July 6th, 1854. The date is correct; the mode of death, however, is surely reported under a misunderstanding. The physician who hears of epilepsy is prone at once to inquire as to its origin, and to wonder how long the patient had been suffering from it. There are no reports of previous attacks of epilepsy, and the sudden development of genuine epilepsy in fatal form at the age of 65 is quite unlikely.

His German biographer, Bauernfeind, who is quoted by Lommel as one of the authorities for the details of Ohm's life, and who was a pupil and intimate friend, gives quite a different account. Up to the very last day of his life, Ohm continued his lectures. His duties as professor appealed to his conscience as no others. On Thursday, July 6th, 1854, he delivered his last lecture. That night at ten o'clock he died. The cause of his death was given as a repeated apopleptic stroke. It is evidently because of the occurrence of more apopleptic seizures than one, that the assertion of epilepsy was introduced unto the account of his death.

For some days before his death, Ohm had been very weak, but had continued to fulfil every duty. To us in the modern time, it may seem surprising that there should be lectures in a university in July; but the second semester of the university year in Germany is not supposed to come to a close until the first of August, when the summer vacation begins, and lectures are continued until well on into July. The manner of Ohm's death, as told by his biographer friend, at once corrects the idea of epilepsy, and also shows that his passing came without any of the preliminary suffering that makes death a real misfortune. A half hour before his death, he had been entertaining some friends with lively recollections of the events of his early life in Cologne and Treves. He had been quite gay in the stories that he told, and almost boyishly happy in the recollections of those early days. For one for whom duty had meant so much in life, and who had always tried so faithfully to fulfil it, no happier call to higher things could possibly be imagined than that which came to Ohm.

On the following Sunday he was followed to the grave by numbers of friends, by all his colleagues and by most of the students of the Munich University. The university felt that it had suffered a great loss, and no signs of its grief were felt to be too much. Ohm was buried in the old Munich graveyard, where his bones still rest, beneath the simple memorial not unworthy of the modest scientist who did his work patiently and quietly, yet with never-failing persistency; who cared not for the applause of the multitude, and accomplished so much quite independently of any of the ordinary helps from others and from great educational institutions that are often supposed to be almost indispensably necessary for the accomplishment of original scientific work.

Ohm's personal appearance will be of interest to many of those to whom his discoveries have made him appeal as one of the great original thinkers in modern science. He was almost small in stature, even below middle height; and those who remember Virchow, may get something of an idea of his appearance when told that those who saw Ohm and knew Virchow, considered that there was a certain reminder of each other in the two men. According to his intimate friend and biographer, he had a very expressive face, with a high, somewhat doubled forehead. His eyes were deep and full of intelligence. His mouth, very sharply defined, betrayed, at the first glance, at once the earnest thinker and the pleasant man of friendly disposition. He was always restful and never seemed to be distracted. He talked but little, but his conversation was always interesting, and, except when he was in some particularly serious mood, was always likely to have a vein of light humor in it. He did not hesitate to introduce a sparkle of wit now and then into his lectures, and especially knew how gently to make fun of mistakes made by his pupils, yet in such a way as not to hurt their feelings, but to make them realize the necessity for more careful thought before giving answers, and for appreciating principles before speculating on them. He was particularly careful not to do anything that would offend his students in any way, and it is to this care that the success of his method of teaching has been especially attributed.

His habits of life were from the beginning of his career simple, and they continued to be so until the end. He was never married, and he himself attributed this to the unfavorable condition of his material resources at the beginning of his career as a teacher, and the fact that the improvement in these did not really come until he was well past fifty years of age. He once confessed to a friend that he missed those modest pleasures of family life which do so much to give courage and strength for the greater as well as the lesser sufferings of life. Most of his years of teaching he spent in boarding houses. Only after his appointment to the professorship at Munich was he able to have a dwelling for himself, which was presided over by a near relative.

Ohm is remembered as a teacher rather than as an educational administrator. His pupils recall him as one who was able to be eminently suggestive, while at the same time he succeeded in making it easy to acquire the details of information. The didactic lecture, as a method of teaching, did not appeal to him, and his success was due to the application of quite other methods. He realized how much personal influence meant, and the peculiarity of his system of teaching was an almost uninterrupted lively personal intercourse with his pupils. Demonstrations and exercises at the board always occupied the first half of his two-hour lesson, and only the other half was devoted to the setting forth of new matter. In this way, Ohm succeeded not only in influencing each student according to his personal endowments, but he also began the training of future teachers by giving them a living example of what their work should be.

The success of Ohm as a teacher was recognized on all sides. His attitude towards his scholars was very different from that which was assumed by many teachers. Instead of being a mere conveyer of scientific information, he was himself "a high priest of science," as one of his pupils declared, supplying precious inspiration, and not merely pointing out the limits of lessons and finding out whether they were known, but making work productively interesting, while neglecting none of the details. His pupils became distinguished engineers, and as this is the period in which the state railroads were being built, there was plenty of opportunity for them to apply the instruction they had received. Not only were the reports of the Royal Commission of Inspection repeated evidence of Ohm's success as a teacher, but the technical schools which were under the care of Ohm's disciples soon came to be recognized as far above the average, and as representing not only the successful teaching of technics on his part, but also the influence that his example as a teacher had in forming others to carry on the work.

How much Ohm was beloved by those who knew him best can be properly appreciated from the following passage from the panegyric delivered in Munich in 1855, not long after his death, by Professor Lamont, who had known him intimately: "Nature," he said, "conferred upon Ohm goodness of heart and unselfishness to an unusual degree. These precious qualities formed the groundwork of all his intercourse with his fellows. Despite the underlying strength of his character, which kept him faithfully at work during all his career, whenever there was question of merely personal advantage to himself, he preferred to yield to pressure from without, rather than rouse himself to resistance, and he thus avoided all bitterness in life. The unfortunate events which forced him, during the early part of his career, from an advantageous position back into private life, did not produce any misanthropic feelings in him, and when later a brilliant recognition gave him that rank in the world of science which by right belonged to him, his simplicity of conduct was not in any way modified, nor was the modesty of his disposition at all altered." In a word, Ohm was one of those rare geniuses whose magnanimity placed him above the vicissitudes of fortune. His power to do original work was not disturbed by the opposition which a really new discoverer invariably meets, but his unfailing equanimity was just as little exalted into conceit and pretentiousness by the praise which so justly came to him once the real significance of his scientific work dawned upon the world.

With the realization of all that Ohm's Work meant in the department of electricity, it is easy to understand how his name deserves a place in the science for all time. In order permanently to honor his memory, the International Congress of Electricians, which met at Paris in 1881, confirmed the action of the British Association of 1861, by giving the name ohm to the unit of electrical resistance. This is an ideal monument to the great worker. It is as simple and modest a reward as even he would have wished, expressing as it does, the gratitude of succeeding generations of scientists for all time.