BINOCULAR VISION IN SQUINT.

The fact that those who squint do not as a rule have diplopia, while squints depending on paralysis of the ocular muscles are combined with diplopia, was difficult to explain as long as the view was adhered to of identical retinal areas founded on anatomical construction. The first explanation hit upon was that a false identity became established, an inequality of the retinæ; were this the case diplopia must of necessity occur on correction of the squint by tenotomy.

Commencing with the assumption of a congenital identity which led under all circumstances to the occurrence of diplopia as soon as the images of the same object fell in both eyes upon non-identical points of the retinæ, the hypothesis was next advanced that the image of the squinting eye was not perceived, that a constant suppression of the sensations in the squinting eye took place. Suppression of sense-impressions does take place; as soon as our attention is entirely engrossed upon anything, we are in a position to disregard the impressions upon all other organs of sense; they do not reach our consciousness. That visual sensations are easily disregarded may be proved by experiments. Hold a small plane mirror obliquely before one eye, with the brim pressed into the angle of the nose so that the objects lying at the side and behind are seen in the mirror. If the other eye is now used to read with, it is quite easy to disregard the objects seen in the mirror provided that our attention is not attracted to places by a particularly bright light. No doubt those who squint also possess this physiological power, and it is therefore certain that they make use of it under certain circumstances; but the suppression theory necessitates that they should constantly and always do so, since diplopia is bound to occur directly they do not do it.

The absence of double vision is in fact the only evidence that can be adduced in favour of the exclusion theory; this negative fact, however, proves nothing, and is, moreover, capable of other explanations, as soon as one abandons the theory of congenital retinal identity. The examination of those who squint demonstrates the untenability of this theory. People who squint seldom complain of diplopia, but double images can be rendered apparent in a comparatively large proportion of cases, usually with the greatest ease, by covering the best eye with a red glass and squinting with a vertically deviating prism. Many squinters now admit the presence of double images, but their position by no means corresponds to the identity theory, their lateral displacement is far too slight, or patients find themselves unable to localise the position of the image. It sometimes happens that alternating vision with both eyes is mistaken for diplopia, the images are then invariably specified as homonymous; however, with attention it is easy to distinguish this alternating vision from the simultaneous perception of two images of one and the same object.

There can be no doubt that in most cases the position of the double images does not correspond to the principle of identity, and just as little doubt that one to whom double images are easily made apparent cannot possess the confirmed habit of always suppressing the image of the squinting eye. A certain number of cases remain in which it is impossible to produce diplopia; that these, however, do not constantly suppress the image of the squinting eye may be proved in the very simple way I have indicated. An object of fixation is placed in a darkened room, on one side of and behind the squinting eye is placed a small flame, the reflection of which, by means of a plane mirror before the squinting eye is thrown upon its retina. The reflection of the flame is seen on the cornea of the squinting eye, by slight rotation of the glass it can be brought into the area of the pupil, and at the same instant the patient sees the light, the reflection of which can easily be made to coincide with the image of the fixation object seen by the other eye. The experiment has then an entirely objective basis, it always succeeds, a fact on which I lay special stress, even in eyes whose vision is very defective; therefore here also the habit of suppression of the retinal images of the squinting eye is not present.

That the squinting eye really possesses its full share of the visual field can easily be proved (especially in divergent squint) by the aid of a perimeter. The best eye is covered with a red glass, so that the objects projected from the fixation point, as well as the excentric field of vision of this eye, appear red. As soon as the test object moves towards the side of the squinting eye and enters the visual area covered by the latter, it appears in its natural white colour, and this in most cases before it has reached the centre of the retina of this eye.

Another proof that the squinting eye is really used for vision appears to me to lie in the fact that persons who squint, provided of course that the vision of the eye concerned is not very defective, do not show that uncertainty in the estimation of distance, which is apt to prove so troublesome to those who have only monocular vision.

Fig. 1.

If, then, the view of the constant suppression of the retinal images of the squinting eye is untenable, how is it to be explained that squint as the result of paralysis of the ocular muscles causes diplopia, while concomitant squint does not? The answer to this question is clear as soon as we abandon the supposition of a congenital retinal identity, and look instead upon the relation of the eyes to each other as harmonious; identity, or co-ordination as something acquired. Central fixation is congenital and depends upon anatomical conditions, for as the macula lutea is anatomically the most perfect part of the retina, it is natural that the new-born child soon learns to place this part of the retina opposite objects which attract its attention, and therefore those relations of the eyes to each other are naturally developed. For instance, if both eyes (Fig. 1) are directed to the distant point a, the image of point b, situated at the same distance, will fall on the inner half of the retina of the left eye; the left eye will now learn by experience to refer inner retinal images to objects lying to the left of the fixation point; at the same time, however, with binocular fixation, the right eye learns to seek the images of the temporal half of its retina in the left field of vision, and vice versâ. From this it is easy to trace the laws of binocular diplopia. For example, let a in Fig. 2 be the fixation point, while at the same time the image of b belongs in both eyes to the temporal half of the retina. Now, as we have already seen, the right eye has learnt to refer temporal retinal images, to objects lying to the left of the fixation point, while for the same reasons the left eye projects temporal images to the right. While then point a is seen binocularly singly, point b appears double, and certainly the image of the right eye is projected to the left of the fixation point, and that of the left eye to the right of it, in other words, crossed diplopia is present. But the eyes are divergent relative to point b; double images then which occur as a result of divergence (whether relative or absolute) must appear crossed, and one will easily be able to infer that for the same reasons those double images which occur in consequence of convergence, must be homonymous. All this, however, only with the presupposition, that the habit of binocular fixation is already fully developed; any disturbance of the same, in whatever way (by prisms, mechanical displacement of the eyes, paralyses of the ocular muscles, or by those forms of squint which arise after childhood is past) causes the double images to illustrate the law above explained. Certainly diplopia may be absent even then, but only in very rare instances. Now and then this happens in objectively proved ailments of the ocular muscles, where the patients complain of disturbed vision, which disappears immediately on the exclusion of one eye (see Case 12), a method of relief they usually discover for themselves; thus the indistinct vision is seen at once to be a disturbance of binocular vision. Many such patients learn to see the double images which formerly escaped them, after they have been instructed how to do so during the examination. With others, all efforts are in vain, it is impossible to render them conscious of the double images, notwithstanding that the presence of the binocular disturbance of vision proves that the habit of binocular fixation exists. This apparent contradiction is explained, if one reflects that the physiological basis of vision rests on a series of conclusions. The first thing which strikes us as a result of binocular fixation is, that the images of the centres of the retinæ may be referred to one and the same region of the room, and this experience will be retained, even if the images on the centres of the retinæ represent different objects in consequence of paralysis of the ocular muscles; the images are notwithstanding referred to one and the same part of the room, all objects are thrown together promiscuously, and the consequent embarrassment is of course removed directly one eye is shut. The experience of those patients whom it is impossible to render conscious of double images, despite the habit of binocular fixation, reaches up to this point. A second conclusion belongs to diplopia, and for that it is necessary to seek out from the confusion of objects, the two retinal images belonging to one and the same object, and the majority of people, though not all, take this second step also. It is seen at the same time that the opinion held by Donders, that diplopia is absent in squint, does not suffice, for this reason, because the image in the deviating eye is too excentric. What becomes then of the image lying in the centre of the retina?

Fig. 2.

The absence of diplopia in squint may be explained quite simply by the fact that the habit of binocular fixation has not been learnt or has been forgotten; one can learn nothing that cannot be again forgotten. The normal fusion of the visual fields can only develop in consequence of binocular fixation, and diplopia is only possible when some kind of binocular fusion exists. If no binocular fusion exists, then all possibility of diplopia is excluded. And why should those who squint from their earliest childhood not see well with both eyes, but yet with each separately, just as is the case with animals with laterally placed eyes? For example, in Fig. 3 there is convergent squint of the left eye, the right eye fixes the point a, whose retinal image is cast at a' in the left eye; the direction outwards in which these images are projected is discovered by drawing a straight line from a to c (the optical centre of the eye); suffice it to say that point a is seen by each eye in the direction in which it really stands.

Fig. 3.

But although both eyes see at the same time, yet the close relation which in binocular fixation develops between the centres of the retinæ does not occur in squint; firstly, because the retinal area in the squinting eye which corresponds to the fixation point is too excentric, and secondly, because the angle of the squint often changes. In binocular fixation, the fixation point of one retina answers to the corresponding point of the other; in squint, on account of the varying size of the squint angle, if a like relation develops between the eyes, the fixation point of one retina must correspond to a larger area of the other. Possibly this explains a fact that is often to be observed. In those cases of squint where diplopia can easily be caused by covering one eye with a red glass and the other with a vertically deviating prism, the double images disappear on rotation of the prism round the axis of vision, as soon as the angle of the prism reaches an angle of about 45°. The occurrence of double images shows that there exists for the upper and lower parts of the retinæ a community of vision by no means coinciding with the identity principle. The disappearance of the diplopia can be explained by the fact that the variations of the squint angle take place chiefly in the horizontal direction. Therefore the area in the squinting eye that corresponds to the fovea centralis of the fixing eye must be more extensive in the horizontal than in the vertical direction. Alfred Graefe has designated this phenomenon as "regional exclusion." Whilst then a sort of community of vision exists for the upper and lower parts of the retinæ, the sensations of the retinal area lying in the horizontal plane of the macula lutea of the squinting eye must be suppressed. The physiological occurrence of a suppression of the retinal images, as far as we are able to investigate it, always refers to the whole retina; however, the possibility of a "regional exclusion" should not be excluded to begin with; but in the inductive sciences it is for us to ask first, whether an incident really happens, and not whether it is possible. The fact from which Alfred Graefe draws his inference is not, as we have just seen, to be explained in any other way, and the ophthalmoscopic test described on p. 65 proves that also in these cases of "regional exclusion" both eyes are used for vision.

In many cases of periodic squint the condition of binocular vision is very interesting. Binocular fusion may be quite absent even in normal position of the eyes; on the other hand the non-occurrence of diplopia in squint does not prevent the occurrence of perfect binocular fusion with a normal position. In periodic outward squint I have sometimes seen binocular fixation without the existence of binocular fusion; the excluded eye deviates outwards, but as soon as it is free it puts itself into fixation, whilst neither with prisms nor stereoscope can anything other than alternating vision be proved, i. e. neither binocular diplopia nor fusion.

If squint arises when the habit of binocular single vision has become confirmed, diplopia is always present, at least at first; even children of six to seven years old make this statement uninvited, but they soon get accustomed to the new relations, and after a short time it is impossible to make them see double images (see Case 42). Habits cling more closely in adults, therefore that form of convergent squint in particular, which usually develops quickly in myopia of average degree, causes annoying diplopia to last for a longer time. For just when these patients want to employ binocular vision in order to estimate distance correctly, diplopia occurs to hinder and confuse them.

It is otherwise with the relative divergence which is developed in consequence of myopia. At first diplopia is present here for a short time; in this case circumstances are specially favorable to a temporary suppression of the deviating eye; the fixing eye receives large distinct images to which the attention is directed. Meanwhile the relatively divergent eye is usually turned to other more distant objects that furnish indistinct retinal images, from which the attention is easily diverted. The habit of suppression may become so dominant that binocular fixation continues to exist for distant objects and the presence of binocular fusion is easily traceable, while for near objects, which are monocularly fixed with relative divergence, it is impossible to render the patient conscious of the images of the deviating eye.

Considerable squint is by no means necessary for the cessation of normal binocular single vision; slight, frequently recurring deviations are quite sufficient, as in those cases where want of control renders physiological innervation for convergence more difficult. Double images are present here, although not in a troublesome way, as is usual in relative divergence, but binocular single vision does not exist even for distance. The reason for this does not lie in the impossibility of fixing the same object simultaneously with both eyes, for the objectively proved deviation may be extremely slight. A union cannot be obtained even by prisms. If crossed double images are present close together, a prism of a few degrees base inwards suffices to make them homonymous. The habit of binocular single vision is lost, in consequence of that disturbance to the innervation of the interni which is designated as insufficiency of the same.

The stereoscope, as well as the prism, is useful for testing binocular single vision, especially when it is suitably modified for the purpose. The prismatic glasses usually attached to stereoscopes are here quite superfluous. The advantage of the prismatic deviation consists solely in the fact that the centres of the images fixed for the macula lutea on each side can be removed farther from one another than the distance apart of the eyes amounts to, so that a greater extension of the visual area is rendered possible. Ordinary stereoscopic pictures are quite useless for testing binocular vision; it is a question here of employing diagrams, which contain on the one hand very prominent identical figures stimulating binocular fusion but which, on the other hand, offer for each eye special attractions not present in the visual field of the other. Further, it is desirable to regulate the stereoscope so that the glasses are not firmly inserted, but that glasses from the trial case may be applied according to the condition of refraction of the patient and the distance of the stereoscopic images.

The stereoscope is generally used with the greatest advantage in those cases where there is no conspicuous deviation, and by testing binocular vision conclusions may be drawn as to whether normal binocular fusion exists or has disappeared in consequence of the squint.

It is desirable to use both methods of investigation, that with the stereoscope as well as prisms, as each test has its own value. One who at once combines the stereoscopic fields of vision certainly has binocular single vision; in other cases this is only so far lost that the stereoscopic combination does not take place at once but only after some trouble. Care must be taken, especially when one eye has defective vision, that the corresponding visual field contains objects sufficiently large and easily recognisable, as very small objects which do not correspond to the lowered visual acuity are easily overlooked. It sometimes happens that both fields are seen at the same time, but that there is no fusion; finally it happens frequently that there is complete suppression of one visual field. In testing with prisms it may appear doubtful as to whether binocular fusion or suppression of one eye exists; however, the stereoscope at once gives us certain information. It must not be forgotten that the altered relations between the eyes, which are always possible in squint, also appear at the same time; he who sees double with prisms, may yet be able completely to suppress the stereoscopic visual field of one eye. Binocular fusion, suppression of the squinting eye and simultaneous vision with both eyes without binocular fusion can alternate in the same individual. Von Kries has come to the same conclusion, and if our colleague is unable to explain all the phenomena of binocular vision that he could observe in his own case, we need not be astonished if we sometimes hear from our patients statements that appear incomprehensible and unphysiological.

At any rate it is evident that the absence of diplopia in squint can easily be understood, without adopting the arbitrary idea of a constant, habitual suppression of the image of the squinting eye.