CHAPTER IX.

PHYSIOLOGY OF THE MUSCLES.

161. The muscles exercise great influence upon the system. It is by their contraction that we are enabled to pursue different employments. By their action the farmer cultivates his fields, the mechanic wields his tools, the sportsman pursues his game, the orator gives utterance to his thoughts, the lady sweeps the keys of the piano, and the young are whirled in the mazy dance. As the muscles bear so intimate a relation to the pleasures and employments of man, a knowledge of the laws by which their action is governed, and the conditions upon which their health depends, should be possessed by all.

162. The peculiar characteristic of muscular fibres is contractility, or the power of shortening their substance on the application of stimuli, and again relaxing when the stimulus is withdrawn. This is illustrated in the most common movements of life. Call into action the muscles that elevate the arm, by the influence of the will, or mind, (the common stimulus of the muscles,) and the hand and arm are raised; withdraw this influence by a simple effort of the will, and the muscles, before rigid and tense, become relaxed and yielding.

163. The contractile effect of the muscles, in producing the varied movements of the system, may be seen in the bending of the elbow. The tendon of one extremity of the muscle is attached to the shoulder-bone, which acts as a fixed point; the tendon of the other extremity is attached to one of the bones 77 of the fore-arm. When the swell of the muscle contracts, or shortens, its two extremities approach nearer each other, and by the approximation of the terminal extremities of the muscle, the joint at the elbow bends. On this principle, all the joints of the system are moved. This is illustrated by fig. 45.

161–172. Give the physiology of the muscles. 161. What are some of the influences exerted by the muscles on the system? 162. What is peculiar to muscular fibres? How is this illustrated? 163. Explain how the movements of the system are effected by the contraction of the muscles.

Fig. 45.

Fig. 45. A representation of the manner in which all of the joints of the body are moved. 1, The bone of the arm above the elbow. 2, One of the bones below the elbow. 3, The muscle that bends the elbow. This muscle is united, by a tendon, to the bone below the elbow, (4,) at the other extremity, to the bone above the elbow, (5,) 6, The muscle that extends the elbow. 7, Its attachment to the point of the elbow. 8, A weight in the hand to be raised. The central part of the muscle 3 contracts, and its two ends are brought nearer together. The bones below the elbow are brought to the lines shown by 9, 10, 11. The weight is raised in the direction of the curved line. When the muscle 6 contracts, the muscle 3 relaxes and the fore-arm is extended.

Experiments. 1st. Clasp the arm midway between the shoulder and elbow, with the thumb and fingers of the opposite hand. When the arm is bent, the inside muscle will become hard and prominent, and its tendon at the elbow rigid, while the muscle on the opposite side will become flaccid. Extend the arm at the elbow, and the outside muscle will swell and become firm, while the inside muscle and its tendon at the elbow will be relaxed.

Explain fig. 45. Give experiment 1st.

78

2d. Clasp the fore-arm about three inches below the elbow, then open and shut the fingers rapidly, and the swelling and relaxation of the muscles on the opposite sides of the arms, alternating with each other, will be felt, corresponding with the movement of the fingers. While the fingers are bending, the inside muscles swell, and the outside ones become flaccid; and, while the fingers are extending, the inside muscles relax, and the outside ones swell. The alternate swelling and relaxation of antagonist muscles may be felt in the different movements of the limbs.

164. Each fibre of the several muscles receives from the brain, through the nervous filament appropriated to it, a certain influence, called nervous fluid, or stimulus. It is this that induces contraction, while the suspension of this stimulus causes relaxation of the fibres. By this arrangement, the action of the muscular system, both as regards duration and power, is, to a limited extent, under the control of the mind. The more perfect the control, the better the education of the muscular system; as is seen in the graceful, effective, and well-educated movements of musicians, dancers, skaters, &c.

165. The length of time which a muscle may remain contracted, varies. The duration of the contraction of the voluntary muscles, in some measure, is in an inverse ratio to its force. If a muscle has contracted with violence, as when great effort is made to raise a heavy weight, relaxation will follow sooner than when the contraction has been less powerful, as in raising light bodies.

166. The velocity of the muscular contraction depends on the will. Many of the voluntary muscles in man contract with great rapidity, so that he is enabled to utter distinctly 79 fifteen hundred letters in a minute; the pronunciation of each letter requiring both relaxation and contraction of the same muscle, thus making three thousand actions in one minute. But the contraction of the muscles of some of the inferior animals surpasses in rapidity those of man. The race-horse, it is said, has run a mile in a minute; and many birds of prey will probably pass not less than a thousand miles daily.

Give experiment 2d. 164. With what is each muscular fibre supplied? What effect has this stimulus on the muscles? 165. how long does a voluntary muscle remain contracted? 166. On what is the velocity of muscular contraction dependent? How many letters may be pronounced in a minute?

167. The functions of the involuntary muscles are necessary the digestion of food, the absorption and circulation of the nutritive fluids. They could not be trusted with safety to the control of the will, lest the passions or the indiscretions of the person should continually avert those operations so necessary to health, and even to life. The Divine Builder of this complicated machine has wisely ordered that the muscles upon which these motions depend, shall act under the impression of their proper stimulants, without the control of the individual.

168. Again, there are certain operations which could not be safely intrusted to the absolute government of the voluntary muscles, or entirely removed from their control. Thus life can be supported only a few minutes without breathing; but it would be impossible to perform the daily vocations of life if we were compelled to breathe at all times, or at perfectly regular intervals.

169. It has been observed that, among men of the same size, a wide difference exists in their strength and activity—qualities which depend upon the size and number of the nerves, the size and activity of the brain, and the education, or training of the muscles. Men having large nerves leading 80 to the muscles, with the brain active, and muscles well trained will perform feats of strength and agility, that other men, of the same size, cannot effect. Rope-dancers, harlequins, and other performers of feats, are persons thus constituted.

How many contractions and relaxations of the same muscle? What is said of the rapidity of muscular contractions in other animals? 167. When are the involuntary muscles called into action? Why would it not have been safe to trust these important operations to the exclusive control of the will? 168. Give an instance where some of the muscles act under the government of the will, conjoined with those that are involuntary. 169. On what does the difference in muscular activity and strength depend?

170. Persons with small muscles, and largely developed nervous systems, will sometimes exhibit very great muscular power for a time; but it will not be of long continuance, unless the brain is functionally diseased, as in hysteria, delirium of fever, insanity, &c. Men of large muscles and small nerves can never perform feats of great strength; but they have the power of endurance, and are better capacitated for continued labor. Thus we cannot judge of the ability of persons to make exertions and continue them, by their stature alone. Strength, and the power of endurance, are the result of a combination of well-developed muscles, large nerves, and a full-sized, healthy, and active brain.

Observation. The muscles of fishes are large, and the nerves distributed to them, comparatively small. The muscles of birds are small, but their fibres are very compact. The nerves appropriated to the muscles that are called into action in flying, are large as well as numerous.

171. The contractile portion of a muscle is, in general, at a distance from the part to be moved. Thus the principal muscles that move the fingers are situated upon the forearm; and when the limb is nearly or quite extended, the angle formed by the part to be moved and the contractile muscles is small. Again, the attachment of the muscles to the part to be moved is near the joint that forms the fulcrum, (fig. 45.) By these arrangements there is a loss of power; but we are compensated for this disadvantage by increased celerity of movement, beauty of form, and adaptation of the limbs to the varied pursuits of man.

170. What is said of those persons who have small muscles and largely developed nervous systems? Of those who have large muscles and small nerves? Upon what do strength and the power of endurance depend? 171. Why is there a loss of power in the action of the muscles?

81

Illustration. The muscle that bends the elbow acts at disadvantage, and this is greatest when the arm is nearly or quite extended, as the angle of action is then least. This disadvantage is further increased by the attachment of the motive muscles near the joint.

172. The number of muscles which are called into action in the movements of the different joints, varies. The hinge-joints, as the elbow, have two sets of muscles—one to bend the joint, the other to extend it. The ball and socket joints, as the shoulder, are not limited to mere flexion and extension. No joint in the system has the range of movement that is possessed by that of the shoulder. By the action of the muscles attached to the arm, it is not only carried upward and forward, but forward and backward. Hence the arm may be moved at any angle, by a combined action of its muscles.

Observation. “Could we behold properly the muscular fibres in operation, nothing, as a mere mechanical exhibition, can be conceived more superb than the intricate and combined actions that must take place during our most common movements. Look at a person running or leaping, or watch the motions of the eye. How rapid, how delicate, how complicated, and yet how accurate, are the motions required! Think of the endurance of such a muscle as the heart, that can contract, with a force equal to sixty pounds, seventy-five times every minute, for eighty years together, without being weary.”

Note. It would be a profitable exercise for pupils to press their fingers upon prominent muscles, and, at the same time, vigorously contract them, not only to learn their situations, but their use; as the one that bends the arm, 14, fig. 46.

How is this illustrated? 172. Do all joints require the same number of muscles, when called into action? How many are called into action in the movement of the elbow? What is their office? What is said of the movement of the ball and socket joint?

84

Fig 46.

Fig. 46. An anterior view of the muscles of the body. 1. The frontal swell of the occipito-frontalis. 2, The orbicularis palpebrarum. 3, The levator labli superioris. 4, The zygomaticus major. 5, The zygomaticus minor. 6, The masseter. 7, The orbicularis oris. 8, The depressor labli inferioris. 9. The platysma myodes. 10, The deltoid. 11, The pectoralis major. 12, The latissimus dorsi. 14, The biceps flexor cubiti. 15, The triceps extensor cubiti. 16, The supinator radii longus. 18, The flexor carpi radialis longior. 19, The flexor communis digitorum. 20, The annular ligament. 21, The palmar fascia. 22, The obliquus externus abdominis. 26, The psoas magnus. 27, The adductor longus. 28, The sartorius. 29, The rectus femoris. 30, The vastus externus. 31, The vastus internus. 32, The tendon patellæ. 33, The gastrocnemius. 34, The tibialis anticus. 36, The tendons of the extensor digitorum communis.

Fig 47.

Fig. 47. A posterior view of the muscles of the body. 3, The complexus. 4, The splenius. 5, The masseter. 6, The sterno-cleido mastoideus. 7, The trapezius. 8, The deltoid. 10, The triceps extensor. 13, The tendinous portion of the triceps. 14, The anterior edge of the triceps. 15, The supinator radii longus. 17, The extensor communis digitorum. 18, The extensor ossis metacarpi pollicis. 19, The tendons of the extensor communis digitorum. 20, The olecranon process of the ulna and insertion of the triceps. 21, The extensor carpi ulnaris. 22, The extensor communis digitorum. 24, The latissimus dorsi. 25, Its tendinous origin. 26, The obliquus externus. 27, The gluteus medius. 28, The gluteus magnus. 29, The biceps flexor cruris. 30, The semi-tendinosus. 31, 32, The gastrocnemius. 33, The tendo Achillis.

Practical Explanation. The muscle 1, fig. 46, by its contraction, raises the eyebrows. The muscle 2, fig. 46, closes the eyelids. The muscle 3, fig. 46, elevates the upper lip. The muscles 4, 5, fig. 46, elevate the angles of the mouth. The muscles 6, fig. 46, and 5, fig. 47, bring the teeth together. The muscle 7, fig. 46, closes the mouth. The muscle 8, fig. 46, depresses the lower lip. The muscles 9, fig. 46, and 6, fig. 47, bend the neck forward. The muscles 3, 4, fig. 47, elevate the head and chin. The muscle 22, fig. 46, bends the body forward, and draws the ribs downward. The muscle 11, fig. 46, brings the shoulder forward. The muscle 7, fig. 47, draws the shoulder back. The muscles 10, fig. 46, and 8, fig. 47, elevate the arm. The muscles 11, fig. 46, and 24, fig. 47, bring the arm to the side. The muscle 14, fig. 46, bends the arm at the elbow. The muscle 10, fig. 47, extends the arm at the elbow. The muscles 16, 18, fig. 46, bend the wrist and fingers. The muscle 19 bends the fingers. The muscles 18, 21, 23, fig. 47, extend the wrist. The muscle 23, fig. 47, extends the fingers. The muscles 26, 27, 28, fig. 46, bend the lower limbs on the body, at the hip. The muscle 28, fig. 46, draws one leg over the other, (the position of a tailor when sewing.) The muscles 27, 28, fig. 47, extend the lower limbs on the body, at the hip. The muscles 29, 30, 31, fig. 46, extend the leg at the knee. The muscles 29, 30, fig. 47, bend the leg at the knee. The muscles 34, 36, fig. 46, bend the foot at the ankle, and extend the toes. The muscles 31, 32, 33, fig. 47, extend the foot at the ankle.

Note. Let the anatomy and physiology of the muscular system be reviewed, in form of topics, from figs 46, 47, or from the anatomical outline plates No. 3 and 4.


85