CHAPTER XXV.
HYGIENE OF THE RESPIRATORY ORGANS.
495. For man to enjoy the highest degree of health, it is necessary that the impure “venous” blood be properly changed. As this is effected in the lungs by the action of the air, it follows that this element, when breathed, should be pure, or contain twenty-one per cent. of oxygen to about seventy-nine per cent. of nitrogen.
496. The volume of air expelled from the lungs is somewhat less than that which is inspired. The amount of loss varies under different circumstances. An eightieth part of the volume taken into the lungs, or half a cubic inch, may be considered an average estimate.
497. The quality and purity of the air is affected by every respiration. 1st. The quantity of oxygen is diminished. 2d. The amount of carbonic acid is increased. 3d. A certain proportion of watery vapor is ejected from the lungs in the expired air. Of the twenty-one parts of oxygen in the inspired air, only eighteen parts are expired, while the carbonic acid and watery vapor are increased about four per cent. The quantity of nitrogen is nearly the same in the expired as in the inspired air.
Observation. It is now fully ascertained that while the chemical composition of the blood is essentially changed, its 229 weight remains the same, as the carbon and hydrogen discharged are equal to the united weight of the oxygen and nitrogen absorbed.
495–546. Give the hygiene of the respiratory organs. 495. What is necessary that man enjoy the highest degree of health? 496. How does the volume Of expired air compare with that which was inspired? Does this loss vary, and what is an average estimate? 497. How is the purity of the air affected by respiration? How is the inhaled oxygen affected? What effect on the carbonic acid and watery vapor? On the nitrogen? What is said respecting the weight of the blood?
498. If one fourth part of the volume of air received by the lungs at one inspiration is decomposed at one “beat” of the heart, it might be supposed that if the expired air be again received into the lungs, one half of the oxygen would be consumed, and, in a similar ratio, if re-breathed four times, all the oxygen would be consumed. But it does not follow, if the air is thus re-breathed, that the same changes will be effected in the lungs. For air that has been inspired does not part with its remaining oxygen as freely as when it contains the proper amount of this life-giving element, and thus the changes in the impure blood are not so completely effected.
Illustration. In the process of dyeing, each successive article immersed in the dye weakens it; but it does not follow that the dye each time is affected in the same degree, or that the coloring matter by repeated immersions can be wholly extracted. The same principle applies to the exchange of oxygen and carbonic acid gas in the lungs.
499. If the inspired air is free from moisture and carbonic acid, these substances contained in the blood will be more readily imparted to it. When the air is loaded with vapor, they are removed more slowly; but if it is saturated with moisture, no vapor will escape from the blood through the agency of the lungs. This may be illustrated by the following experiment: Take two and a half pounds of water, add to it half a pound of common salt, (chloride of sodium,) and it will readily mix with the water; and to this solution add the same quantity of salt, and it will be dissolved more slowly. Again, add more salt, and it will remain undissolved, as the water has become saturated by the pound before dissolved.
498. Does air that is re-breathed freely impart its oxygen? Why? 499. What is the effect on the blood when the air is free from vapor and carbonic acid? When loaded with vapor? When saturated? How is this illustrated?
500. The principle in this experiment is analogous to that of the union between carbonic gas and atmospheric air. Allen and Pepy showed by experiment, that air which had been once breathed, contained eight and a half per cent. of carbonic acid. They likewise showed, that no continuance of the respiration of the same air could make it take up more than ten per cent. This is the point of saturation.
Experiment. Sink a glass jar that has a stop-cock, or one with a glass stopper, into a pail of water, until the air is expelled from the jar. Fill the lungs with air, and retain it in the chest a short time, and then breathe into the jar, and instantly close the stop-cock. Close the opening of the jar that is under the water with a piece of paper laid on a plate of sufficient size to cover the opening, invert the jar, and sink into it a lighted candle. The flame will be extinguished as quickly as if put in water.[15] Remove the carbonic acid by inverting the jar, and place a lighted candle in it, and the flame will be as clear as when out of the jar.
Observations. 1st. It is familiarly known that a taper will not burn where carbonic acid exists in any considerable quantity, or when there is a marked deficiency of oxygen. From this originated the judicious practice of sinking a lighted candle into a well or pit before descending into it. If the flame is extinguished, respiration cannot there be maintained, and life would be sacrificed should a person venture in, until the noxious air is removed.
500. What did the experiments of Allen and Pepy show? How can the presence of carbonic gas in the expired air be demonstrated? State observation 1st. Observation 2d.
2d. It is the action of carbonic acid upon the respiratory 231 organs, that gives rise to a phenomenon frequently seen in mines and caves. A man may enter these subterranean rooms, and feel no inconvenience in breathing; but the dog that follows him, falls apparently dead, and soon dies if not speedily removed to pure air. This arises from the fact that this gas is heavier than air, and sinks to the bottom of the room or cave.
3d. While it is true that carbonic acid possesses properties that render it unfit to be breathed, it is, notwithstanding, productive of very agreeable effects, when conveyed into the stomach. It forms the sparkling property of mineral waters, and fills the bubbles that rise when beer or cider is fermenting.
501. Pure atmospheric air is best adapted to a healthy action of the system. As the air cannot be maintained pure under all circumstances, the question may be asked, To what degree may the air be vitiated and still sustain life? and what is the smallest quantity of pure air a person needs each minute to maintain good health? Birnan says, that air which contains more than three and a half per cent. of carbonic acid is unfit for respiration, and, as air once respired contains eight and a half per cent. of carbonic acid, it clearly shows that it is not fitted to be breathed again.
502. No physiologist pretends that less than seven cubic feet of air are adequate for a man to breathe each minute, while Dr. Reid allows ten feet. The necessity of fifteen or twenty times the amount of air actually taken into the lungs, arises from the circumstance, that the expired air mixes with and vitiates the surrounding element that has not been inhaled.
503. The quantity of air which different persons actually 232 need, varies. The demand is modified by the size, age, habits, and condition of the body. A person of great size who has a large quantity of blood, requires more air than a small man with a less amount of circulating fluid. Individuals whose labor is active, require more air than sedentary or idle persons, because the waste of the system is greater. On the same principle, the gormandizer needs more of this element than the person of abstemious habits. So does the growing lad require more air than an adult of the same weight, for the reason that he consumes more food than a person of mature years. Habit also exerts a controlling influence. A man who works in the open air suffers more when placed in a small, unventilated room, than one who is accustomed to breathe the confined air of workshops.
Observation 3d. 501. What questions may be asked respecting the inspired air? Give the remark of Birnan. 502. How many cubic feet of air are adequate for a man to breathe each minute? How much does Dr. Reid allow? 503. Mention some reasons why different persons do not require the same amount of air.
504. Air, in which lamps will not burn with brilliancy, is unfitted for respiration. In crowded rooms, which are not ventilated, the air is vitiated, not only by the abstraction of oxygen and the deposition of carbonic acid, but by the excretions from the skin and lungs of the audience. The lamps, under such circumstances, emit but a feeble light. Let the oxygen gas be more and more expended, and the lamps will burn more and more feebly, until they are extinguished.
Illustrations. 1st. The effects of breathing the same air again and again, are well illustrated by an incident that occurred in one of our halls of learning. A large audience had assembled in an ill-ventilated room, to listen to a lecture; soon the lamps burned so dimly that the speaker and audience were nearly enveloped in darkness. The oppression, dizziness, and faintness experienced by many of the audience induced them to leave, and in a few minutes after, the lamps were observed to rekindle, owing to the exchange of pure air on opening the door.
How is it with the laborer? With the gormandizer? With the person that works in the open air? 504. What effect has impure air on a burning lamp? Give the illustration of the effects of impure air on lighted lamps.
2d. In the “Black Hole of Calcutta,” one hundred and forty-six Englishmen were shut up in a room eighteen feet square, with only two small windows on the same side to admit air. On opening this dungeon, ten hours after their imprisonment, only twenty-three were alive. The others had died from breathing impure air.
505. Air that has become impure from the abstraction of oxygen, an excess of carbonic acid, or the excretions from the lungs and skin, has a deleterious effect on the body. When this element is vitiated from the preceding causes, it prevents the proper arterialization, or change in the blood. For this reason, pure air should be admitted freely and constantly into work-shops and dwelling-houses, and the vitiated air permitted to escape. This is of greater importance than the warming of these apartments. We can compensate for the deficiency of a stove, by an extra garment or an increased quantity of food; but neither garment, exercise, nor food will compensate for pure air.
506. School-rooms should be ventilated. If they are not, the pupils will be restless, and complain of languor and headache. Those unpleasant sensations are caused by a want of pure air, to give an adequate supply of oxygen to the lungs. When pupils breathe for a series of years such vitiated air, their life is undoubtedly shortened, by giving rise to consumption and other fatal diseases.
Illustration. A school-room thirty feet square and eight feet high, contains 7200 cubic feet of air. This room will seat sixty pupils, and, allowing ten cubic feet of air to each pupil per minute, all the air in the room will be vitiated in twelve minutes.
Observation. In all school-rooms where there is not adequate 234 ventilation, it is advisable to have a recess of five or ten minutes each hour. During this time, let the pupils breathe fresh air, and open the doors and windows, so that the air of the room shall be completely changed.
Of the effects of breathing impure air. 505. In preserving health, what is of greater importance than warming the room? 506. Why should a school-room be ventilated? Give the illustration.
507. Churches, concert halls, and all rooms designed for a collection of individuals, should be amply ventilated. While the architect and workmen are assiduous in giving these public rooms architectural beauty and splendor, by adorning the ceiling with Gothic tracery, rearing richly carved columns, and providing carefully for the warming of the room, it too frequently happens that no direct provision is made for the change of that element which gives us beauty, strength, and life.
Illustration. A hall sixty feet by forty, and fifteen feet high, contains 36,000 cubic feet of air. A hall of this size will seat four hundred persons; by allowing ten cubic feet of air to each person per minute, the air of the room will be rendered unfit for respiration in nine minutes.
508. Railroad cars, cabins of steam and canal-boats, omnibuses, and stage-coaches, require ample ventilation. In the construction of these public conveyances, too frequently, the only apparent design is, to seat the greatest number of persons, regardless of the quantity and character of the air to maintain health and even life. The character of the air is only realized when, from the fresh, pure air, we enter a crowded cabin of a boat or a closed coach; then the vitiated air from animal excretions and noxious gases is offensive, and frequently produces sickness.
509. The influence of habit is strikingly expressed by Birnan, in the “Art of Warming and Ventilating Rooms:” “Not the least remarkable example of the power of habit is 235 its reconciling us to practices which, but for its influence, would be considered noxious and disgusting. We instinctively shun approach to the dirty, the squalid, and the diseased, and use no garment that may have been worn by another. We open sewers for matters that offend the sight or the smell, and contaminate the air. We carefully remove impurities from what we eat and drink, filter turbid water, and fastidiously avoid drinking from a cup that may have been pressed to the lips of a friend. On the other hand, we resort to places of assembly, and draw into our mouths air loaded with effluvia from the lungs, skin, and clothing of every individual in the promiscuous crowd—exhalations offensive, to a certain extent, from the most healthy individuals; but when arising from a living mass of skin and lungs, in all stages of evaporation, disease, and putridity,—prevented by the walls and ceiling from escaping—they are, when thus concentrated, in the highest degree deleterious and loathsome.”
What suggestion when a school-room is not ventilated? 507. What is said in regard to ventilating churches, concert halls, &c.? State the illustration. 508. What remarks relative to public conveyances? 509. State the influence of habit by Birnan.
510. The sleeping-room should be so ventilated that the air in the morning will be as pure as when retiring to rest in the evening. Ventilation of the room would prevent morning headaches, the want of appetite, and languor—so common among the feeble. The impure air of sleeping-rooms probably causes more deaths than intemperance. Look around the country, and those who are most exposed, who live in huts but little superior to the sheds that shelter the farmer’s flocks, are found to be the most healthy and robust. Headaches, liver complaints, coughs, and a multitude of nervous affections, are almost unknown to them; not so with those who spend their days and nights in rooms in which the sashes of the windows are calked, or perchance doubled, to prevent the keen but healthy air of winter from entering their apartments. Disease and suffering are their constant companions.
510. What is said of the ventilation of sleeping-rooms? What would adequate ventilation prevent? Give a common observation.
Illustration. By many, sleeping apartments twelve feet square and seven feet high, are considered spacious for two persons, and good accommodations for four to lodge in. An apartment of this size contains 1008 cubic feet of air. Allowing ten cubic feet to each person per minute, two occupants would vitiate the air of the room in fifty minutes, and four in twenty-five minutes. When lodging-rooms are not ventilated, we would strongly recommend early rising.
511. The sick-room, particularly, should be so arranged that the impure air may escape, and pure air be constantly admitted into the room. It is no unusual practice in some communities, when a child or an adult is sick of an acute disease, to prevent the ingress of pure air, simply from the apprehension of the attendants, that the patient will contract a cold. Again, the prevalent custom of several individuals sitting in the sick-room, particularly when they remain there for several hours, tends to vitiate the air, and, consequently, to increase the suffering and danger of the sick person. In fevers or inflammatory diseases of any kind, let the patient breathe pure air; for the purer the blood, the greater the power of the system to remove disease, and the less the liability to contract colds.
Observation. Among children, convulsions, or “fits,” usually occur when they are sleeping. In many instances, these are produced by the impure air which is breathed. To prevent these alarming and distressing convulsions, the sleeping-room should be ventilated, and there should be no curtains around the bed, or coverings over the face, as they produce an effect similar to that experienced when sleeping in a small, unventilated room. To relieve a child when convulsed, carry it into the open air.
What is said of the size of sleeping-rooms? 511. What is said of the sick-room? Mention some prevailing customs in reference to these rooms. What is said of convulsions among children?
512. While occupying a room, we are insensible of the 237 gradual vitiation of the air. This is the result of the diminished sensibility of the nervous system, and gradual adaptation of the organs to blood of a less stimulating character. This condition is well illustrated in the hibernating animals. We are insensible of the impure air of unventilated sleeping-rooms, until we leave them for a walk or ride. If they have been closed, we are made sensible of the character of the air as soon as we reënter them, for the system has regained its usual sensibility while inhaling a purer atmosphere.
513. In the construction of every inhabited room, there should be adequate means of ventilation, as well as warming. No room is well ventilated, unless as much pure air is brought into it as the occupants vitiate at every respiration. This can be effected by making an aperture in the ceiling of the room, or by constructing a ventilating flue in the chimney. This should be in contact with the flues for the escape of smoke, but separated from them by a thin brick partition. The hot air in the smoke flues will warm the separating brick partition, and consequently rarefy the air in the ventilating flue. Communication from every room in a house should be had to such flues. The draught of air can be regulated by well-adjusted registers, which in large rooms should be placed near the floor as well as near the ceiling.
514. While provision is made for the escape of rarefied impure air, we should also provide means by which pure air may be constantly admitted into the room, as the crevices of the doors and windows are not always sufficient; and, if they should be adequate, air can be introduced in a more convenient, economical, and appropriate manner. There should be an aperture opposite the ventilating flue, at or near the floor, to connect with the outer walls of the building or external air. 238 But if pure heated air is introduced into the room, it obviates the necessity of the introduction of the external air.[16]
512. Why are we insensible to the gradual vitiation of the air of an unventilated room? 513. What is very important in the building of every inhabited room? How can a room be well ventilated? 514. What is said relative to a communication with the external air?
515. In warming rooms, the hot air furnaces, or box and air-tight stoves converted into hot air furnaces, should be used in preference to the ordinary stoves. The air thus introduced into the room is pure as well as warm. In the adaptation of furnaces to dwelling-houses, &c., it is necessary that the air should pass over an ample surface of iron moderately heated; as a red heat abstracts the oxygen from the contiguous air, and thus renders it unfit to be respired.[17]
Observation. Domestic animals need a supply of pure air as well as man. The cows of cities, that breathe a vitiated air, have, very generally, tubercles. Sheep that are shut in a confined air, die of a disease called the “rot,” which is of a tuberculous character. Interest and humanity require that the buildings for animals be properly ventilated.
515. How should rooms be warmed? What is necessary in the adaptation of furnaces to dwelling-houses?