PATAGONIA.

With the exception perhaps of the hill of S. Antonio (600 feet high) in the Gulf of S. Matias, which has never been visited by a geologist, crystalline rocks are not met with on the coast of Patagonia for a space of 380 miles south of the S. Ventana. At this point (latitude 43 degrees 50 minutes), at Points Union and Tombo, plutonic rocks are said to appear, and are found, at rather wide intervals, beneath the Patagonian tertiary formation for a space of about three hundred miles southward, to near Bird Island, in latitude 48 degrees 56 minutes. Judging from specimens kindly collected for me by Mr. Stokes, the prevailing rock at Ports St. Elena, Camerones, Malaspina, and as far south as the Paps of Pineda, is a purplish-pink or brownish claystone porphyry, sometimes laminated, sometimes slightly vesicular, with crystals of opaque feldspar and with a few grains of quartz; hence these porphyries resemble those immediately to be described at Port Desire, and likewise a series which I have seen from P. Alegre on the southern confines of Brazil. This porphyritic formation further resembles in a singularly close manner the lowest stratified formation of the Cordillera of Chile, which, as we shall hereafter see, has a vast range, and attains a great thickness. At the bottom of the Gulf of St. George, only tertiary deposits appear to be present. At Cape Blanco, there is quartz rock, very like that of the Falkland Islands, and some hard, blue siliceous clay-slate.

At Port Desire there is an extensive formation of the claystone porphyry, stretching at least twenty-five miles into the interior: it has been denuded and deeply worn into gullies before being covered up by the tertiary deposits, through which it here and there projects in hills; those north of the bay being 440 feet in height. The strata have in several places been tilted at small angles, generally either to N.N.W. or S.S.E. By gradual passages and alternations, the porphyries change incessantly in nature. I will describe only some of the principal mineralogical changes, which are highly instructive, and which I carefully examined. The prevailing rock has a compact purplish base, with crystals of earthy or opaque feldspar, and often with grains of quartz. There are other varieties, with an almost truly trachytic base, full of little angular vesicles and crystals of glassy feldspar; and there are beds of black perfect pitchstone, as well as of a concretionary imperfect variety. On a casual inspection, the whole series would be thought to be of the same plutonic or volcanic nature with the trachytic varieties and pitchstone; but this is far from being the case, as much of the porphyry is certainly of metamorphic origin. Besides the true porphyries, there are many beds of earthy, quite white or yellowish, friable, easily fusible matter, resembling chalk, which under the microscope is seen to consist of minute broken crystals, and which, as remarked in a former chapter, singularly resembles the upper tufaceous beds of the Patagonian tertiary formation. This earthy substance often becomes coarser, and contains minute rounded fragments of porphyries and rounded grains of quartz, and in one case so many of the latter as to resemble a common sandstone. These beds are sometimes marked with true lines of aqueous deposition, separating particles of different degrees of coarseness; in other cases there are parallel ferruginous lines not of true deposition, as shown by the arrangement of the particles, though singularly resembling them. The more indurated varieties often include many small and some larger angular cavities, which appear due to the removal of earthy matter: some varieties contain mica. All these earthy and generally white stones insensibly pass into more indurated sonorous varieties, breaking with a conchoidal fracture, yet of small specific gravity; many of these latter varieties assume a pale purple tint, being singularly banded and veined with different shades, and often become plainly porphyritic with crystals of feldspar. The formation of these crystals could be most clearly traced by minute angular and often partially hollow patches of earthy matter, first assuming a FIBROUS STRUCTURE, then passing into opaque imperfectly shaped crystals, and lastly, into perfect glassy crystals. When these crystals have appeared, and when the basis has become compact, the rock in many places could not be distinguished from a true claystone porphyry without a trace of mechanical structure.

In some parts, these earthy or tufaceous beds pass into jaspery and into beautifully mottled and banded porcelain rocks, which break into splinters, translucent at their edges, hard enough to scratch glass, and fusible into white transparent beads: grains of quartz included in the porcelainous varieties can be seen melting into the surrounding paste. In other parts, the earthy or tufaceous beds either insensibly pass into, or alternate with, breccias composed of large and small fragments of various purplish porphyries, with the matrix generally porphyritic: these breccias, though their subaqueous origin is in many places shown both by the arrangement of their smaller particles and by an oblique or current lamination, also pass into porphyries, in which every trace of mechanical origin and stratification has been obliterated.

Some highly porphyritic though coarse-grained masses, evidently of sedimentary origin, and divided into thin layers, differing from each other chiefly in the number of embedded grains of quartz, interested me much from the peculiar manner in which here and there some of the layers terminated in abrupt points, quite unlike those produced by a layer of sediment naturally thinning out, and apparently the result of a subsequent process of metamorphic aggregation. In another common variety of a finer texture, the aggregating process had gone further, for the whole mass consisted of quite short, parallel, often slightly curved layers or patches, of whitish or reddish finely granulo-crystalline feldspathic matter, generally terminating at both ends in blunt points; these layers or patches further tended to pass into wedge or almond-shaped little masses, and these finally into true crystals of feldspar, with their centres often slightly drusy. The series was so perfect that I could not doubt that these large crystals, which had their longer axes placed parallel to each other, had primarily originated in the metamorphosis and aggregation of alternating layers of tuff; and hence their parallel position must be attributed (unexpected though the conclusion may be), not to laws of chemical action, but to the original planes of deposition. I am tempted briefly to describe three other singular allied varieties of rock; the first without examination would have passed for a stratified porphyritic breccia, but all the included angular fragments consisted of a border of pinkish crystalline feldspathic matter, surrounding a dark translucent siliceous centre, in which grains of quartz not quite blended into the paste could be distinguished: this uniformity in the nature of the fragments shows that they are not of mechanical, but of concretionary origin, having resulted perhaps from the self-breaking up and aggregation of layers of indurated tuff containing numerous grains of quartz,—into which, indeed, the whole mass in one part passed. The second variety is a reddish non-porphyritic claystone, quite full of spherical cavities, about half an inch in diameter, each lined with a collapsed crust formed of crystals of quartz. The third variety also consists of a pale purple non-porphyritic claystone, almost wholly formed of concretionary balls, obscurely arranged in layers, of a less compact and paler coloured claystone; each ball being on one side partly hollow and lined with crystals of quartz.