[82] CHAPTER VII—DIRECT LARYNGOSCOPY

Importance of Mirror Examination of the Larynx.—The presence of the direct laryngoscope incites spasmodic laryngeal reflexes, and the traction exerted somewhat distorts the tissues, so that accurate observations of variations in laryngeal mobility are difficult to obtain. The function of the laryngeal muscles and structures, therefore, can best be studied with the laryngeal mirror, except in infants and small children who will not tolerate the procedure of indirect laryngoscopy. A true idea of the depth of the larynx is not obtained with the mirror, and a view of the ventricles is rarely had. With the introduction of the direct laryngoscope it is found that the larynx is funnel shaped, and that the adult cords are situated about 3 cm. below the aryepiglottic folds; the cords also assume their true shelf-like character and take on a pinkish or yellowish tinge, rather than the pearly white seen in the mirror. They are not to any extent differentiated by color from the neighboring structures. Their recognition depends almost wholly on form, position and movement.

Accurate observation is stimulated in all pathologic cases by making colored crayon sketches, however crude, of the mirror image of the larynx. The location of a growth may be thus graphically recorded, so that at the time of operation a glance will serve to refresh the memory as to its site. It is to be constantly kept in mind, however, that in the mirror image the sides are reversed because of the facing positions of the examiner and patient. Direct laryngoscopy is the only method by which the larynx of children can be seen. The procedure need require less than a minute of time, and an accurate diagnosis of the condition present, whether papilloma, foreign body, diphtheria, paralysis, etc., may be thus obtained. The posterior pharyngeal wall should be examined in all dyspneic children for the possible existence of retropharyngeal abscess.

[PLATE II—DIRECT AND INDIRECT LARYNGEAL VIEWS FROM AUTHOR'S OIL-COLOR DRAWINGS FROM LIFE: 1, Epiglottis of child as seen by direct laryngoscopy in the recumbent position. 2, Normal larynx spasmodically closed, as is usual on first exposure without anesthesia. 3, Same on inspiration. 4, Supraglottic papillomata as seen on direct laryngoscopy in a child of two years. 5, Cyst of the larynx in a child of four years, seen on direct laryngoscopy without anesthesia. 6, Indirect view of larynx eight weeks after thyrotomy for cancer of the right cord in a man of fifty years. 7, Same after two years. An adventitious band indistinguishable from the original one has replaced the lost cord. 8, Condition of the larynx three years after hemilaryngectomy for epithelioma in a patient fifty-one years of age. Thyrotomy revealed such extensive involvement, with an open ulceration which had reached the perichondrium, that the entire left wing of the thyroid cartilage was removed with the left arytenoid. A sufficiently wide removal was accomplished without removing any part of the esophageal wall below the level of the crico-arytenoid joint. There is no attempt on the part of nature to form an adventitious cord on the left side. The normal arytenoid drew the normal cord over, approximately to the edge of the cicatricial tissue of the operated side. The voice, at first a very hoarse whisper, eventually was fairly loud, though slightly husky and inflexible. 9, The pharynx seen one year after laryngectomy for endothelioma in a man aged sixty-eight years. The purple papilla; anteriorly are at the base of the tongue, and from this the mucosa slopes downward and backward smoothly into the esophagus. There are some slight folds toward the left and some of these are quite cicatricial. The epiglottis was removed at operation. The trachea was sutured to the skin and did not communicate with the pharynx. (Direct view.)]

Contraindications to Direct Laryngoscopy.—There are no absolute contraindications to direct laryngoscopy in any case where direct laryngoscopy is really needed for diagnosis or treatment. In extremely dyspneic patients, if the operator is not confident in his ability for a prompt and sure introduction of a bronchoscope, it may be wise to do a tracheotomy first.

Instructions to the Patient.—Before beginning endoscopy the patient should be told that he will feel a very disagreeable pressure on his neck and that he may feel as though he were about to choke. He must be gently but positively made to understand (1) that while the procedure is alarming, it is absolutely free from danger; (2) that you know just how it feels; (3) that you will not allow his breath to be shut off completely; (4) that he can help you and himself very much by paying close attention to breathing deeply and regularly; (5) and that he must not draw himself up rigidly as though "walking on ice," but must be easy and relaxed.

Direct Laryngoscopy. Adult Patient.—Before starting, every detail in regard to instrumental equipment and operating room assistants, (including an assistant to hold the arms and legs of the patient) must be complete. Preparation of the patient and the technic of local anesthesia have been discussed in their respective chapters. The dorsally recumbent patient is draped with (not pinned in) a sterile sheet. The head, covered by sterile towels, is elevated, and slight extension is made at the occipitoatloid joint by the left hand of the first assistant. The bite block placed on the assistant's right thumb is inserted into the left angle of the patient's open mouth (see Fig. 50).

The laryngoscope must always and invariably be held in the left hand, and in such a manner that the greatest amount of traction is made at the swell of the horizontal bar of the handle, rather than on the vertical bar.

The right hand is then free for the manipulation of forceps, and the insertion of the bronchoscope or other instrument. During introduction, the fingers of the right hand retract the upper lip so as to prevent its being pinched between the laryngoscope and the teeth. The introduction of the direct laryngoscope and exposure of the larynx is best described in two stages. 1. Exposure and identification of the epiglottis. 2. Elevation of the epiglottis and all the tissues attached to the hyoid bone, so as to expose the larynx to direct view.

First Stage.—The spatular end of the laryngoscope is introduced in the right side of the patient's mouth, along the right side of the anterior two-thirds of the tongue. It was the German method to introduce the laryngoscope over the dorsum of the tongue but in order to elevate this sometimes powerful muscular organ considerable force may be required, which exercise of force may be entirely avoided by crowding the tongue over to the left. When the posterior third stage of the tongue is reached, the tip of the laryngoscope is directed toward the midline and the dorsum of the tongue is elevated by a lifting motion imparted to the laryngoscope. The epiglottis will then be seen to project into the endoscopic field, as seen in Fig. 54.

[FIG. 54.—End of the first of direct laryngoscopy, recumbent adult patient. The epiglottis is exposed by a lifting motion of the spatular tip on the tongue anterior to the epiglottis.]

Second Stage.—The spatular end of the laryngoscope should now be tipped back toward the posterior wall of the pharynx, passed posterior to the epiglottis, and advanced about 1 cm. The larynx is now exposed by a motion that is best described as a suspension of the head and all the structures attached to the hyoid bone on the tip of the spatular end of the laryngoscope (Fig. 55). Particular care must be taken at this stage not to pry on the upper teeth; but rather to impart a lifting motion with the tip of the speculum without depressing the proximal tubular orifice. It is to be emphasized that while some pressure is necessary in the lifting motion, great force should never be used; the art is a gentle one. The first view is apt to find the larynx in state of spasm, and affords an excellent demonstration of the fact that the larynx can he completely closed without the aid of the epiglottis. Usually little more is seen than the two rounded arytenoid masses, and, anterior to them, the ventricular bands in more or less close apposition hiding the cords (Fig. 56). With deep general anesthesia or thorough local anesthesia the spasm may not be present. By asking the patient to take a deep breath and maintain steady breathing, or perhaps by requesting a phonatory effort, the larynx will open widely and the cords be revealed. If the anterior commissure of the larynx is not readily seen, the lifting motion and elevation of the head should be increased, and if there is still difficulty in exposing the anterior commissure the assistant holding the head should with the index finger externally on the neck depress the thyroid cartilage. If by this technic the larynx fails to be revealed the endoscopist should ask himself which of the following rules he has violated.

[FIG. 55.—Schema illustrating the technic of direct laryngoscopy on the recumbent patient. The motion is imparted to the tip of the laryngoscope as if to lift the patient by his hyoid hone. The portion of the table indicated by the dotted line may be dropped or not, but the back of the head must never go lower than here shown, for direct laryngoscopy; and it is better to have it at least 10 cm. above the level of the table. The table may be used as a rest for the operator's left elbow to take the weight of the head. (Note that in bronchoscopy and esophagoscopy the head section of the table must be dropped, so as to leave the head and neck of the patient out in the air, supported by the second assistant.)]

[FIG. 56.—Endoscopic view at the end of the second stage of direct laryngoscopy. Recumbent patient. Larynx exposed waiting for larynx to relax its spasmodic contraction.]

RULES FOR DIRECT LARYNGOSCOPY 1. The laryngoscope must always be held in the left hand, never in the right. 2. The operator's right index finger (never the left) should be used to retract the patient's upper lip so that there is no danger of pinching the lip between the instrument and the teeth. 3. The patient's head must always be exactly in the middle line, not rotated to the right or left, nor bent over sidewise; and the entire head must be forward with extension at the occipitoatloid joint only. 4. The laryngoscope is inserted to the right side of the anterior two-thirds of the tongue, the tip of the spatula being directed toward the midline when the posterior third of the tongue is reached. 5. The epiglottis must always be identified before any attempt is made to expose the larynx. 6. When first inserting the laryngoscope to find the epiglottis, great care should be taken not to insert too deeply lest the epiglottis be overridden and thus hidden. 7. After identification of the epiglottis, too deep insertion of the laryngoscope must be carefully avoided lest the spatula be inserted back of the arytenoids into the hypo-pharynx. 8. Exposure of the larynx is accomplished by pulling forward the epiglottis and the tissues attached to the hyoid bone, and not by prying these tissues forward with the upper teeth as a fulcrum. 9. Care must be taken to avoid mistaking the ary-epiglottic fold for the epiglottis itself. (Most likely to occur as the result of rotation of the patient's head.) 10. The tube should not be retained too long in place, but should be removed and the patient permitted to swallow the accumulated saliva, which, if the laryngoscope is too long in place, will trickle down the trachea and cause cough. (Swallowing is almost impossible while the laryngoscope is in position.) The secretions may be removed with the aspirator. 11. The patient must be instructed to breathe deeply and quietly without making a sound.

[88] Difficulties of Direct Laryngoscopy.—The larynx can be directly exposed in any patient whose mouth can be opened, although the ease varies greatly with the type of patient. Failure to expose the epiglottis is usually due to too great haste to enter the speculum all the way down. The spatula should glide slowly along the posterior third of the tongue until it reaches the glossoepiglottic fossa, while at the same time the tongue is lifted; when this is done the epiglottis will stand out in strong relief. The beginner is apt to insert the speculum too far and expose the hypopharynx rather than the larynx. The elusiveness of the epiglottis and its tendency to retreat downward are very much accentuated in patients who have worn a tracheotomic cannula; and if still wearing it, the patient can wait indefinitely before opening his glottis. Over extension of the patient's head is a frequent cause of difficulty. If the head is held high enough extension is not necessary, and the less the extension the less muscular tension there is in the anterior cervical muscles. Only one arytenoid eminence may be seen. The right and the left look different. Practice will facilitate identification, so that the endoscopist will at once know which way to look for the glottis.

Of the difficulties that pertain to the operator himself the greatest is lack of practice. He must learn to recognize the landmarks even though a high degree of spasm be present. The epiglottis and the two rounded eminences corresponding to the arytenoids must be in the mind's eye, for it is only on deep, relaxed inspiration that anything like a typical picture of the larynx will be seen. He must know also the right from the left arytenoid when only one is seen in order to know whether to move the lip of the laryngoscope to the right or the left for exposure of the interior of the larynx.

Instruments for Direct Laryngoscopy.—In undertaking direct laryngoscopy one must always be prepared for bronchoscopy, esophagoscopy, and tracheotomy, as well. Preparations for bronchoscopy are necessary because the pathological condition may not be found in the larynx, and further search of the trachea or bronchi may be required. A foreign body in the larynx may be aspirated to a deeper location and could only be followed with the bronchoscope. Sudden respiratory arrest might occur, from pathology or foreign body, necessitating the inserting of the bronchoscope for breathing purposes, and the insufflation of oxygen and amyl nitrite. Trachectomy might be required for dyspnea or other reasons. It might be necessary to explore the esophagus for conditions associated with laryngeal lesions, as for instance a foreign body in the esophagus causing dyspnea by pressure. In short, when planning for direct laryngoscopy, bronchoscopy, or esophagoscopy, prepare for all three, and for tracheotomy. A properly done direct laryngoscopy would never precipitate a tracheotomy in an unanesthetized patient; but direct laryngoscopy has to deal so frequently with laryngeal stenosis, that routine preparation for tracheotomy a hundred unnecessary times is fully compensated for by the certainty of preparedness when the rare but urgent occasion arises.

Direct Laryngoscopy in Children.—The epiglottis in children is usually strongly curled, often omega shaped, and is very elusive and slippery. The larynx of a child is very freely movable in the neck during respiration and deglutition, and has a strong tendency to retreat downward during examination, and thus withdraw the epiglottis after the arytenoids have been exposed. In following down with the laryngoscope the speculum is prone to enter the hypopharynx. Lifting in this location will expose the mouth of the esophagus and shut off the larynx, and may cause respiratory arrest. Practice, however, will soon develop a technic and ability to recognize the landmarks in state of spasm, so that on exposing the approximated arytenoid eminences the endoscopist will maintain his position and wait for the larynx to open. The procedure should be done without any form of anesthesia for the following reasons: 1. Anesthesia is unnecessary. 2. It is extremely dangerous in a dyspneic patient. 3. It is inadmissable in a patient with diphtheria. 4. If anesthesia is to be used, direct laryngoscopy will never reach its full degree of usefulness, because anesthesia makes a major procedure out of a minor one. 5. Cocain in children is dangerous, and its application more annoying than the examination.

Inducing a Child to Open its Mouth (Author's Method).—The wounding of the child's mouth, gums, and lips, in the often inefficacious methods with gags, hemostats, raspatories, etcetera, are entirely unnecessary. The mouth of any child not unconscious can be opened quickly and without the slightest harm by passing a curved probe between the clenched jaws back of the molars and down back of the tongue toward the laryngopharynx. This will cause the child to gag, when its mouth invariably opens.

[91] CHAPTER VIII—DIRECT LARYNGOSCOPY (Continued)

Technic of Laryngeal Operations.—Preparation of the patient and anesthesia have been mentioned under their respective chapters. The prime essential of successful laryngeal operations is perfect mastery of continuous left-handed laryngeal exposure. The right hand must be equally trained in the manipulation of forceps, and the right eye to gauge depth. Blood and secretions are best removed by a suction tube (Fig. 9) inserted through the laryngoscope, or directly into the pharynx outside the laryngoscope.

For the removal of benign growths the author's papilloma forceps, Fig. 29, or the laryngeal grasping forceps shown in Fig. 17 will prove more satisfactory than any form of cutting forceps. These growths should be removed superficially flush with the normal structure. The crushing of the base incident to the plucking off of the growth causes its recession. By this conservative method damage to the cords and impairment of the voice are avoided. For growths in the anterior portion of the larynx, and in fact for the removal of most small benign growths, the anterior commissure laryngoscope is especially adapted. Its shape allows its introduction into the vestibule of the larynx, and if desired it may be introduced through the glottic chink for the treatment of subglottic conditions. It will not infrequently be observed that a pedunculated subglottic growth which is found with difficulty will be pulled upward into view by the gauze swab introduced to remove secretions. The growth is then often held tightly between the approximated cords for a few seconds—perhaps long enough to grasp it with forceps.

[92] Removal of Growth from the Laryngeal Ventricle.—After exposing the larynx in the usual manner, if the head is turned strongly to the right, the tip of the laryngoscope, directed from the right side of the mouth, may be used to lift the left ventricular hand and thus expose the ventricle, from which a growth may be removed in the usual manner (Fig. 57). The right ventricle is exposed by working from the left side of the mouth.

[FIG. 57.-Schema illustrating the lateral method of exposing a growth in the ventricle of Morgagni, by bending the patient's head to the opposite side, while the second assistant externally fixes the larynx with his hand. M, Patient's mouth; T, thyroid cartilage; R, right side; L, left. V, B, ventricular band. C, C, vocal cord. The circular drawing indicates the endoscopic view obtainable by this method. The tube, E, is dropped to the corner of the mouth, B, and the tube is inserted down to R. The lip of the spatula can then be used to lift the ventricular band so as to expose more of the ventricle. The drawing shows an unusually shallow ventricle.]

Taking a Laryngeal Specimen for Diagnosis.—The diagnosis of carcinoma, sarcoma, and some other conditions can be made certain only by microscopic study of tissue removed from the growth. The specimen should be ample but will necessarily be small. If the suspected growth be small it should be removed entire, together with some of the basal tissues. If it is a large growth, and there are objections to its entire removal, the edge of the growth, including apparently normal as well as neoplastic tissue, is necessary. If it is a diffuse infiltrative process, a specimen should be taken from at least two locations. Tissue for biopsy is to be taken with the punch forceps shown in Fig. 28 or that in Fig. 33. The forceps may be inserted through the tube or from the angle of the mouth; the "extubal" method (see Fig. 58).

[FIG. 58.—Schema illustrating removal of a tumor from the upper part of the larynx by the author's "extubal" method for large tumors. The large alligator basket punch forceps, F, is inserted from the right corner of the mouth and the jaws are placed over the tumor, T, under guidance of the eye looking through the laryngoscope, L. This method is not used for small tumors. It is excellent for amputation of the epiglottis with these same punch forceps or with the heavy snare.]

Removal of large benign tumors above the cords may be done with the snare or with the large laryngeal punch forceps. Both are used in the extubal method.

Amputation of the epiglottis for palliation of odynophagia or dysphagia in tuberculous or malignant disease, is of benefit when the ulceration is confined to this region; though as to tuberculosis the author feels rather conservatingly inclined. Early malignancy of the extreme tip can be cured by such means. The function of the epiglottis seems to be to split the food bolus and direct its portions laterally into the pyriform sinuses, rather than to take any important part in the closure of the larynx. Following the removal of the epiglottis there is rarely complaint of food entering the larynx. The projecting portion of the epiglottis may be amputated with a heavy snare, or by means of the large laryngeal punch forceps (Fig. 33).

Endoscopic Operations for Laryngeal Stenosis.—Web formations may be excised with sliding punch forceps, or if the web is due to contraction only, incision of the true band may allow its retraction. In some instances liberation of adhesions will favor the formation of adventitious vocal cords. A sharp anterior commissure is a large factor in good phonation.

Endoscopic evisceration of the larynx will cure a few cases of laryngeal cicatricial stenosis, and should be tried before resorting to laryngostomy. A sliding punch forceps is used to remove all the tissue in the larynx out to the perichondrium, but care should be taken in cicatricial cases to avoid removing any part of either arytenoid cartilage. In cases of posticus paralysis the excision may include portions of the vocal processes of the arytenoids. Ventriculocordectomy is preferable to evisceration. The ventricular floor is removed with punch forceps (Fig. 33) first on one side, then after two months, on the other.

Vocal Results.—A whispering voice can always be had as long as air can pass through the larynx, and this may be developed to a very loud penetrating stage whisper. If the arytenoid motility has been uninjured the repeated pulls on the scar tissue may draw out adventitious bands and develop a loud, useful, though perhaps rough and inflexible voice.

Galvano-cauterization is the best method of treatment for chronic subglottic edema or hyperplasia such as is seen in children following diphtheria, when the stenosis produced prevents extubation or decannulation. The utmost caution should be used to avoid deep cauterizations; they are almost certain to set up perichondritis which will increase the stenosis. Some of the most difficult cases that have come to the author have been previously cauterized too deeply.

Galvano-cautery puncture of tuberculous infiltrations of the larynx at times yields excellent results in cases with mild pulmonary lesions, and has quite replaced the use of the curette, lactic acid, and other caustics. The direct method of exposing the larynx renders the application of the cautery point easy and accurate. In severely stenosed tuberculous larynges a tracheotomy should first be done, for though the reaction is slight it might be sufficient to close a narrowed glottis. The technic is the usual one for laryngeal operations. Local anesthesia suffices. The larynx is exposed. The rheostat having been previously adjusted to heat the electrode to nearly white heat, the circuit is broken and the electrode introduced cold. When the point is in contact with the desired location the current is turned on and the point thrust in as deeply as desired. Usually it should penetrate until a firm resistance is felt; but care must be used not to damage the cricoarytenoid joint. The circuit is broken at the instant of withdrawal. Punctures should be made as nearly as possible perpendicular to the surface, so as to minimize the destruction of epithelium and thus lessen the reaction. A minute gray fibrous slough detaches itself in a few days. Cautery puncture should be repeated every two or three weeks, selecting a new location each time, until the desired result is obtained. Great caution, as mentioned above, must be used to avoid setting up perichondritis. Many cases of laryngeal tuberculosis will recover as quickly by silence and a general antituberculous regime.

Radium, in form of capsules or of needles inserted in the tissues may be applied with great accuracy; but the author is strongly impressed with pyriform sinus applications by the Freer method.

After-care of endolaryngeal operations includes careful cleansing of the teeth and mouth; and if the extrinsic area of the larynx is involved in the wound, sterile liquid food and water should be given for four days. The patient should be watched for complications by a special nurse who is familiar with the signs of laryngeal dyspnea (q.v.). Complications during endolaryngeal operations are rare. Dyspnea may require tracheotomy. Idiosyncrasy to cocain, or the sight or taste of blood may nauseate the patient and cause syncope. Serious hemorrhage could occur only in a hemophile. The careless handling of a bite block might damage a frail tool or dental fixture.

Complications after endolaryngeal operations are unusual. Carelessness in asepsis has been known to cause cervical cellulitis. Emphysema of the neck has occurred. Edema of the larynx occasionally occurs, and might necessitate tracheotomy. Serious bleeding after operation is very rare except in bleeders. Hemorrhage within the larynx can be stopped by the introduction of a roll of gauze from above, tracheotomy having been previously performed. Morphin subcutaneously administered, has a constricting action on the vessels which renders it of value in controlling hemorrhage.