7: Uncle Sam’s Computers

The modern electronic version of the computer is about fifteen years old, and like most teen-agers, it is a precocious child. To list all the applications in which it has made a place for itself would take several pages and an inclusive listing from Airlines to Zoology. There are hundreds of different types, priced from less than one hundred dollars to more than ten millions. The latter are so expensive that outright purchase is not usually possible for users. Rental or leasing arrangements are therefore available; and there are a growing number of computer centers to which the customer can take or send his work and have it done. There are also do-it-yourself computer facilities, much like those for laundry, dry cleaning, and so forth, as well as installations in trailers that move from place to place. Most require a source of conventional electric power, but there are some portable models that operate on batteries.

Scanning the list of jobs the computer now does, it would seem impossible to classify the varied tasks. Since many machines are versatile, general-purpose types, it is even more difficult to definitely categorize the computer. Dr. John R. Pierce, an expert at the Bell Telephone Laboratories, describes some of the chores done by a digital computer in a typical session at Bell:

Check parts of a computer program used in connection with machine methods for processing manufacturing information.

Process and analyze data on telephone transmission which have been transmitted to the laboratories by teletypewriter and automatically punched on cards for computer processing.

Solve a partial differential equation.

Compute details of the earth’s magnetic field.

Check part of a program used to handle programming cards.

Fit curves to data by translating numerical information into graphs.

Locate an error in a program designed to process psychological data.

These “simple” problems required but three minutes of the computer’s time. A larger task, something like solving 350 mathematical logic theorems from Principia Mathematica, takes a bit longer—eight and a half minutes, to be exact.

Despite this versatility, it is generally possible to break the computer’s capabilities down into broad classifications. First we can say that it does either simple data-processing, or scientific computations. Each of these can then be further subdivided ad infinitum. Examples will be seen as we describe uses of computers on the following pages. Since the government was the first user of computers, beginning back in 1890 with Hollerith’s punched-card machines, we would do well to see what other work it has put the computer to in the years that have elapsed.

The Computer in Washington

An inventory of electronic computers installed in the Federal Government by the end of 1961 totaled 800, with 200 more on order. These figures are exclusive of those for tactical and classified use by the Department of Defense. Some 45,000 people are engaged in computer operations in the government, and a total expenditure of about $1.5 billion is estimated. An indication of the importance accorded the computer by Washington is the Interagency Data Processing Committee, concerned with questions of sharing of computers in geographic areas, setting up of a “library” of applications, and assurance of continued computer operation in the event of attack or other emergency. Users of computers, in addition to the Department of Defense, are the Atomic Energy Commission, Department of Commerce, National Aeronautics and Space Agency, Federal Aviation Agency, Post Office Department, and others for a total of 43 agencies. The Peace Corps, for example, recently announced that it would acquire a computer for use in its work.

Red tape is not the only output from Washington, D.C. Not long ago the Hoover Commission estimated that our Federal Government also produces 25 billion pieces of paper each year! Someone else converted this already impressive statistic into the more startling information that placed end to end these papers would reach the moon four times—in triplicate, of course! Data-processing, then, the handling of information, would seem to be the major part of the computer’s work for Uncle Sam.

The Census Bureau was the first government user of the computer, and it continues to handle its work in this way. In 1951 the government procured a UNIVAC I to take over this onerous chore from its predecessors. Beginning with the 1950 census, the computer has been in operation practically twenty-four hours a day, seven days a week. In its first ten years it performed more than 510 billion mathematical operations in keeping pace with our exploding population. We are producing more than paperwork, it seems. The 1950 census required four years to process. With newer computers the 1960 count will take only half as long despite the population explosion.

Information-handling computers make possible another important phase of the government’s work. In 1936, machines began to process Social Security records, which are becoming a monumental pile of paperwork themselves with close to 100 million accounts that must be kept up to date. Social Security numbers recently turned up in government computers handling another job—that of income-tax bookkeeping.

The U.S. Commissioner of Internal Revenue, Mortimer Caplin, put a pilot system of computer accounting of tax records into operation in January of 1962 in the Atlanta region. In 1963, the Philadelphia Center will follow suit, and by 1966 all income-tax accounting will whiz through tape reels into computers. The figures on tax greenbacks laid end to end are not available, but it is known that 400 miles of magnetic tape will be needed to hold all the records.

The new system will make it tough on the income-tax chiseler. Caplin points out that not only the withholding-tax information from the employer, and forms from the employee, but also dividend statements and other supplementary income information will funnel automatically into John Doe’s portion of the tape. If John is moonlighting, holding down a second job he might forget to mention, the computer will spot it and charge a tax on it. The apprehended tax-dodger may well call the computer an infernal revenue machine.

There are of course many other ways the computer is helping out in the complex problems of government, both Federal and local. The computer has already figured in national elections, making predictions well in advance as to the outcome. Now the machines are being used in the actual voting procedure. In 1952 an IBM computer predicted Eisenhower’s victory within two hours after the first polls closed. In the early days of computer predictions, the men using them were overly cautious and afraid to accept the machine’s word. Techniques and confidence have improved with practice, and in 1960 IBM’s RAMAC predicted victory for Kennedy at 8:12 p.m. election night.

To make accurate predictions, the computer is given information from preceding elections. In 1960 it was fed the results of the 1956, 1952, 1948, and 1928 (because of the religious considerations) elections. Forecasters were able to ask the computer such questions as, “How is Nixon doing compared with Eisenhower’s showing in 1952?” “How is Kennedy doing compared with Al Smith back in 1928?” “Is labor voting as a bloc?” and “How solid is the South?” The computer is now an accepted part of network equipment for election reporting. ABC used the Remington Rand UNIVAC; CBS, IBM RAMAC and other machines; and NBC the RCA 501.

International Business Machines Corp.
Computers are used to predict the results of elections.

In addition to forecasting results, computers are beginning to do other election work. Los Angeles County experimented with a computer method of counting votes in 1960. Greene County, Ohio, used punched cards for ballots for 50,000 voters in a pioneering computer voting system. The cards were processed in a UNIVAC computer at Dayton Air Force Depot. A bolder suggestion is that of political scientist R. M. Goldman of Michigan State University: actual voting by telephone-operated computer!

To solve another problem area in voting, the use of computers was recently proposed at a state congressional hearing in Boston. Redistricting, the bugaboo that led to “gerrymandering,” might well be done by “unbiased” computers which would arrive at an optimum redistricting plan. These unbiased results would be “beyond politics and in the best interests of the voters and the State,” according to the computer expert who proposed the plan.

Moving from voting to a more complicated problem, that of urban renewal, the University of Washington is conducting a survey under federal grant on the extent of deterioration and the causes of decay in Spokane residential, commercial, and industrial areas. The IBM 709 computer makes possible an accurate and extensive survey expected to shed light on areas of arrested development, and on the amount of tax revenue lost because of existing blight.

Electronic Legal Eagle

Some writers see the clearest evidence of the victory of the computer—if indeed we admit to there ever having been any real battle—in the admission by the legal profession that it must begin to chart the legal seas of the computer age.

In 1961 the American Law Institute and the American Bar Association, feeling that the computer will cast its “automated shadow on every phase of society,” conducted a joint three-day seminar in Washington, D.C. Titled “Legal Problems in the Use of Electronic Data Processing in Business, Industry and Law,” the seminar discussed “function and operation of computers and their impact on tort, tax, corporation, labor, contract, banking, sales, antitrust, patent and copyright law, as well as on the law of evidence and trial practice.”

Lawyer Roy Freed of the Philadelphia Bar, in a booklet called “A Lawyer’s Guide Through the Computer Maze,” describes the working of the machine and then poses some challenging legal questions.

What duty does the company acting as a computer service organization have to preserve the confidential nature of the data it processes for its customers?

Can business records placed on magnetic tape be used in evidence, or must the original records be preserved?

How long can corporate management lag behind others in their industry in adopting machine data-processing systems before they expose themselves to a mismanagement charge?

To what extent should the manufacturer of a complex product that has a potential for causing harm try to minimize his liability as a maker by anticipating design defects through simulated operation on the computer?

Other legal experts asked other questions. If an electronically processed check is bounced erroneously, who is responsible? If a noncomputerized railroad has a train wreck, can the road be sued on the premise that the accident would not have occurred with modern traffic controls? Or if the reverse occurs, can an anticomputer claimant win a suit against the machine?

Applications of the computer in patent law may lead to more thorough search in addition to higher speed. This could well clear another bottleneck by issuing fewer and faster patents. But copyright violation problems lie in the possibility of making copies of tapes or other media suitable for the computer’s use. The altering or falsification of computer data also poses a tricky legal problem; there is already a precedent in the Wall Street man who juggled the punched cards on the computer to his own advantage.

Perhaps there was one question none of the lawyers present had the courage to bring up: what if the day comes when the court itself is a computer, and the case is presented to it as a stack of cards, or a prepunched or magnetized tape? Such a mechanized justice was fancifully depicted on a television thriller by Ray Bradbury.

Computers in Khaki

Despite the low IQ it has been accused of, it was inevitable that the computer be drafted. In the 40’s we were desperate. Included in government use of computers are military research, development, and tactical and strategic methods. World War II was a different kind of war, a complicated, electronic war that required advanced methods of operation. At Eastertime in 1942, IBM answered an urgent call from Washington and gathered all available data-processing machines for use by the military. Punched cards kept track of allotments, insurance, and the logistics of running a war. Mobile computing machines operated close to the front lines, and were important enough that a captured German officer was carrying urgent orders to bring in one of these units.

Motorola, Inc., Military Electronics Division
Technician checks circuitry of airborne digital computer.

Besides the mundane effort of mere data-processing, wartime computers did important cloak-and-dagger work as well. A report came in from Allied intelligence that the Germans were working on a frightening new development—an electrically powered cannon. If it were successful we would need some kind of counterweapon. But the dike was leaking in a hundred other places too, and there was not time or equipment to do everything it seemed we might have to do. The answer was to feed some complex mathematics to an IBM computer called the Automatic Sequence Controlled Calculator—mathematics describing the new cannon. The computer cogitated briefly and decided that the Germans were on the wrong track; that the gun would not work. We therefore ignored the threat, letting the Germans waste their valuable time going down the blind alley, and turned our efforts elsewhere.

We have said that World War II was a different kind of war. One new development to bear out this difference was called “Operations Research”—the reduction of any program to mathematical formulas and the investigation of these formulas rather than a conventional, intuitive approach. The technique was pioneered in England, spread to the United States, and is now one of the most powerful tools not only of the military but also of government and business. The computer has made operations research a more powerful technique by permitting the analysis of thousands or millions of possibilities in hours instead of lifetimes.

Back in the days of bows and arrows, the soldier had no need for a computer. Even the rifleman required little more than a simple sight and maybe a bit of Kentucky windage. With the coming of long-range artillery, computers became desirable, and now we have moved into an age of warfare that would be impossible without high-speed computing machines.

In 1948 IBM introduced a computer known as SSEC for Selective Sequence Electronic Calculator. This machine was put to work on a problem for the Los Alamos Atomic Energy Laboratory, a problem called “Hippo.” Hippo was as unwieldy as its name, requiring some nine million involved mathematical operations that would have taken about 1,500 man-years of skilled time. That many mathematicians or that much time was not available, of course, and SSEC clicked through the job in 150 hours by itself. Another computer, the MANIAC, designed by John von Neumann, is credited with beating the Russians to the punch with the hydrogen bomb.

As an outgrowth of operations research, the simulation of war games has become an important part of military work. A number of firms, including System Development Corporation, Technical Operations, Inc., and others, devote much of their time to “playing games” to work out the optimum strategy and tactics for war in case we find it necessary again.

It is perhaps not paradoxical that war be considered a game. As William Cowper said, “War’s a game, which were their subjects wise, Kings would not play at.” The game of chess, conversely, stems from war and its tactics. Indeed, the term checkmate, for victory, comes from the Persian words shah mat, the king is dead.

Through the years many war games have been developed, games which eliminate the physical conflict but preserve the intellectual maneuvering necessary for waging “war.” John von Neumann was one of the more recent to turn his great genius to this subject in the development of his “minimax” theory. This is an outline of a situation in which consequences of decisions depend on the actions of an opponent. We have seen that the computer, though not yet world champion, can play chess; the minimax theory is more grist for its electronic mill.

Tech-ops operates the Combat Operations Research Group for the U.S. Continental Army Command at Fort Monroe, Virginia. Among the games played here with computers are SYNTAC, in which field-experienced officers evaluate new weapons and tactics, and AUTOTAG, a computer simulation of tank-antitank combat. Other projects of this firm include air battle simulations, ship loading and other logistics problems, fallout studies, and defense against missile attacks. The beauty of such schemes is that we will not make the mistake of the Germans with their electric cannon. When the computer blinks “Tilt” or an equivalent, the engineers may have red faces, but no huge amount of time or money will have been spent before they sigh, “Back to the old drawing board!”

Aeronutronic Division, Ford Motor Co.
ARTOC (Army Tactical Operations Central) uses computer techniques for battlefield display and communications to aid field commanders.

At Picatinny Arsenal, computers evaluate ammunition by simulating as many as a thousand battles per item. Design and management studies for projects like Nike-Zeus and Davy Crockett are also conducted at Picatinny. A mobile computer, called MOBIDIC, is designed for field combat use and has been moved in three 30-foot trailers to location with the Seventh Army in Europe. There it handles requisitions for rockets, guided missiles, electronic equipment, and other items. MOBIDIC is just part of the Army’s FIELDATA family of computers that includes helicopter-transported equipment to provide field commanders with fast and accurate data on which to base their risk decisions. Another concept is ARTOC, for Army Tactical Operations Central, an inflatable command post in which computers receive and process information for display on large screens. This is a project of Aeronutronic.

In 1961 an IBM 7090 computer was installed at Ispra, Italy, for use by the European Atomic Energy Commission (EURATOM). The computer would have as its duties the cataloging of technical information on atomic energy, the translation of technical publications, and use in basic research on solutions of Boltzmann equations and other advanced physics used in atomic work. In this country, the National Science Foundation has acknowledged the importance of the computer in scientific investigation by underwriting costs for such equipment for research centers in need of them.

International Business Machines Corp.
Command post of SAGE, the most complex computer application to date.

In the Air

Beyond the realm of war gaming, the computer also forms the heart of the hardware that such simulation and studies develop. SAGE is an example of this, a complex warning system that protects our country from attack. The acronym SAGE is a more dignified and impressive name than the words it stands for—Semi-Automatic Ground Environment, an environment that by 1965 will have cost $61 billion!

Sage is not a single installation, but a vast complex of centers feeding information from Ballistic Missile Early Warning Site radar and airborne radar, from ships, Texas towers, and ground-based radar, and from weather stations into a central control. This control sends the proper signals to defensive rockets, missiles, and aircraft for action against an invader. It does this with one hand, while with the other it keeps tabs on normal military and commercial air traffic.

The System Development Corporation designed and IBM built the SAGE computer, a computer already old-fashioned since it uses vacuum tubes instead of the newer transistor devices. Despite this shortcoming, it does a fantastic job of tracking all the aircraft and missiles in its ken, labeling them for speed, heading, altitude, as well as the vital information of friend or foe, and continuously plans a defense. Since it can monitor civilian traffic as well, SAGE may one day take over control of that too. Thus the money spent will yield a bonus in addition to the protection SAGE has already afforded in its military role.

The Air Force uses airborne computers by the thousands. Indeed, the need for small lightweight computers for applications in aircraft led to early work in the miniaturization of components that made possible tiny computers for missile and space use. Small digital computers were built for “drone” aircraft navigation; now more advanced computers provide “air data,” air-speed, altitude, flight attitude, pressure, and other information.

Other Air Force computers, used in BMEWS radar, take the place of human observers. These smart computers can recognize radar tracks that are potential missile trajectories, discriminate among these tracks to select hostile trajectories, and project them to impact points and times. Called MIPS, for Missile Impact Predictor Set, the computer takes over from its human forerunner who just can’t seem to perform the 200,000 operations a second required to do the job.

Another space-tracking computer called SPADATS has been installed at NORAD Combat Operations Center at Colorado Springs. This computer has the assignment of around-the-clock cataloging of all man-made objects in space, a sizable and growing task. At Vandenberg Air Force Base, the Air Force maintains an EDP, or Electronic Data Processing project with a more earth-bound job of cataloging. Started back in 1957, this project has as its primary task the efficient allocation of manpower for the global Strategic Air Command team.

At nearby Edwards Air Force Base, an IBM 7090 computer is helping to develop the Dyna-Soar manned space glider. This computer is also doing work for the X-15 program, and research on fuels, lunar probes, rocket nozzles, and nose cones. At Tinker Air Force Base in Oklahoma, a new system of keeping track of jet engine parts, so that they go back on the proper engine, uses a recorder “gun” wired to a central control computer. Engine parts are metal tagged with coded letters which the recorder “reads” and transmits to the computer for filing.

Computers play a big part in the “largest and most sophisticated logistic data and message communications system in the world.” Delivered to the Air Force in January of 1962, “Comlognet” connects 450 different air bases and other installations. This system started out modestly, handling about 10 million punched cards a day, and is heralded as only a forerunner of an automatic system which will some day take care of the complete interflow of data among widely separated military and civilian locations.

Besides being part of complex navigation and bombing systems, computers help the Air Force to score the results of practice bombing missions. Computers control the launching of Sidewinder missiles from aircraft and also permit accurate “toss-bombing” of nuclear payloads from fighter bombers. These computers do all the mathematics and let the pilot approach his target from any direction, at any speed and altitude. The new Skybolt ballistic missile, launched from the B-52 bomber, has its own guidance computer, which is actually a digital differential analyzer, a hybrid device like that described in an earlier chapter. One of the largest single computers in the Air Force is that called Finder. Using 70,000 transistors, it does analytical work on electronic countermeasures.

Today there are some 110,000 aircraft flying the skies in this country, about double the number ten years ago. Not only the quantity but also the speed of aircraft has increased, and the job of the aircraft controller has become a nightmare. With the lives of air travelers in his hands, this overworked FAA employee has until recently used the same equipment that served in the days of 180 miles-per-hour piston-engine transports.

We have discussed some examples of the computer as a director of air traffic; the automatic ground-controlled-approach system that lands planes in bad weather without human help is one, the mighty SAGE defense system is another. SAGE may one day take over commercial air traffic: in the meantime, the Federal Aviation Agency relies heavily on smaller computers in locations all over the country.

Originally, general-purpose business computers were put to work processing the vast quantities of data needed to keep traffic flowing along the airways. New, special designs, including those of the Librascope Division of General Precision, Inc., are being added as they become available. Remington Rand UNIVAC is also working on the problem, and UNIVAC equipment has been tested on Strategic Air Command round-robin flights. It has posted as many as eighty in-flight Axes for one mission, a feat that the unaided human controller can only gasp at.

Obviously, control of aircraft cannot be turned over pell-mell from human to computer. The FAA is proceeding cautiously, and a recent report from an industry fact-finding board recommended a “Project Beacon” approach which will continue to rely heavily on radar plus human controllers. But when the problems of communication between man and machine are worked out, no human being can keep track of so many aircraft so accurately, or compute alterations in course to prevent collision and ensure an optimum use of air space as can the computer.


On the Sea

The Navy uses computers too. At the David Taylor Test Basin in Maryland, a UNIVAC LARC is busy doing design work on ship hulls. Other computers mounted in completed Navy vessels perform navigation and gun-ranging functions. At New London, Connecticut, a Minneapolis-Honeywell computer simulates full scale naval battles. Radar and sonar screens in mock submarine command posts show the maneuvering of many ships in realistic simulations. Polaris submarines depend on special computers to launch their missiles, and the missiles themselves mount tiny computers that navigate Polaris to its target. Another computer task was the “sea testing” of the nuclear submarine “Sea Wolf” before it was launched!

Photo courtesy of Litton Systems, Inc.
Airborne computer-indicator system in Hawkeye naval aircraft. This equipment performs task of surveillance, tracking, command and control.

Computers are being used by the Navy in a project that has tremendous applications not only for military application but for civilian use as well. Mark Twain to the contrary, a lot of people have tried to do something about the weather, among them an Englishman named Richardson. Back in 1922 he came up with the idea of predicting the weather for a good-sized chunk of England. Basically his ambitious scheme was sound. Drawing on weather stations for the data, he determined to produce a 24-hour forecast.

Unfortunately for Mr. Richardson, the English, and the world in general, the mathematics required was so complicated that he labored for three months on that first prediction. By then it had lost much of its value—and it was also wrong! The only solution that Richardson could think of was to enlist the aid of about 60,000 helpers who would be packed into a huge stadium. Each of these people would be given data upon which to perform some mathematical operation, and then pass on to the next person in line. Pages would transfer results from one section of the stadium to another, and a “conductor,” armed with a megaphone undoubtedly along with his baton, would “direct” the weather symphony, or perhaps cacaphony. As he lifted his baton, the helpers were to calculate like crazy, when he lowered it they would pass the result along. What Richardson had invented, of course, was the first large-scale computer, a serial computer with human components. For a number of reasons, this colossal machine was never completed. It was obviously much easier to simply damn the weatherman.

Actually, Richardson had stumbled onto something big. He had brought into being the idea of “numerical weather prediction.” It is known that weather is caused by the movement of air and variations in its pressure. Basically it is simple, knowing pressure conditions yesterday and today, to project a line or extrapolate the conditions for tomorrow. If we know the conditions tomorrow, we can then predict or forecast the temperature, precipitation, and winds.

U.S. Navy
Weather map prepared and printed out by computer gives data in graphical form. Enlarged view of weather “picture” (above) shows how it is formed by printed digits representing the pressure at reporting stations.

There was even the mathematics to make this possible in Richardson’s day: the so-called “primitive equations” of the pioneer mathematician Euler. These are six partial differential equations involving velocity, pressure, density, temperature, and so on. But though the principle is simple, the practical application is hopelessly involved—unless you have a stadium filled with 60,000 willing mathematicians or a fast computer of some other type.

In 1950 the stage was finally set for the implementation of numerical weather prediction. First, electronic computers were available. Second, and importantly, mathematician C. G. Rossby had worked some magic with the original primitive equations and reduced them to a single neat equation with only four terms. The new tool is called the Rossby equation. Meteorologists and mathematicians at Princeton’s Institute for Advanced Study decided to combine the Rossby equation, the MANIAC computer, and some money available from the Office of Naval Research. The result was JNWPU, Joint Numerical Weather Prediction Unit, later to become NANWEP, for Navy Numerical Weather Problems Group. It is too bad that pioneer Richardson did not live to see the exploitation of his dream.

What NANWEP does is to take the meteorological data from some 3,000 reporting stations, compare them with those existing yesterday, and print out a weather map for the Northern Hemisphere for tomorrow. Because there are so many more stations reporting than the handful that Richardson used, the number of computations has risen to the astronomical total of about 300,000,000. Despite this, a Control Data Corporation 1604 digital computer does the job in a good bit less time than the three months it took Richardson. NANWEP prints out its weather maps 40 minutes from the time all data are in.

Teletype reports come in from the thousands of weather stations; these are punched on tape and fed to the 1604. Since the information includes geographical position in addition to meteorological data, the computer prints out numbers that form a map of weather coming up. Although the meteorologist adds some clarifying lines by connecting points of equal pressure, the “raw” map with its distinctive shaded areas is meaningful even to the layman.

Further refinements are in the offing. As many as 10,000 weather stations may eventually report to the central computer, which may also learn to accept the teletype information directly with no need for the intermediate step of punching a tape. Although it will be a long time before a positive forecast, exact in every detail, is possible, NANWEP already has lifted weather prediction from the educated guesswork of the older meteorologists to truly scientific forecasting.

It turns out that numerical weather prediction brings with it some bonuses. NANWEP can predict the action of ocean waves three days in advance, in addition to its regular wind, temperature, and precipitation information. So it is now being put to work preparing optimum routes for ships. Here’s the way it would work. A ship sailing from California to Japan requests the best routes for the voyage. Initially the computer is given the ship’s characteristics and told how it will perform in various sea conditions. It then integrates this information with the predicted sea conditions for the first day’s leg, and plots several different courses. Distances the ship would travel on each of these courses are plotted, and a curve is drawn to connect them. Now the computer repeats the process for the next day, so that each of the tentative courses branches out with its own alternates. The process is repeated for each of the five days of the voyage. Then the computer works backward, picking the best route for the entire voyage, and gives the course to be followed for optimum time. If that isn’t sufficiently informative for the captain, he can request and receive not one but three courses: one for the fastest trip regardless of sea condition, another for the fastest trip with waves of only a certain height, and finally a course for the fastest trip through calm water! The advantages of such a service are immediately obvious and give a hint at many other applications of the technique to air travel, truck transport, and so on.

NANWEP is ground-based, of course. There are also airborne weather computers like those of the U.S. Weather Bureau’s National Severe Storm Research Aircraft Project. The Weather Bureau has jumped its computer budget from $1.5 to $2.5 million to extend this and other projects. The compact airborne computers ride along in DC-6 and B-57 aircraft to monitor hurricanes off Florida and tornadoes in the Great Plains area. The computers gather forty different kinds of information and convert it to digital form at thousands of characters a second. Such monitoring of violent weather by means of computers suggests an intriguing use of the machine. Man has long considered the prospect of going the step beyond weather recording and prediction to actually changing or even creating his own weather. He has done a few rather startling things of this kind, admittedly on a small scale but with tremendous implications. Cloud-seeding experiments are samples, as attempts both to induce precipitation and to create or destroy storms. These experiments, though inconclusive, have led to results—including precipitation of lawsuits and ill feeling. Meteorologists attempted to divert a hurricane along the Atlantic coast line once, apparently with results. But the storm swerved too far and the weathermen incurred the justifiable wrath of those living in the area affected. Why not simulate such an experiment in the computer? Besides being safer, it is also far cheaper. In the long run, we may do something about the weather at that.

Computers in Space

There are many points in history when seemingly fortuitous happenings take place. The invention of the printing press appears to have occurred at a fork in the road as literature flowered. The discovery of gasoline and the automobile went hand in hand. So it is with the electronic computer and the spacecraft. Is the computer here because it was needed for such an application, or did it actually cause the advent of space flight? Our conclusions must depend on our belief or disbelief in such things as causality. A realistic view might be merely to applaud and appreciate the confluence of two important streams of thought to make a river that will one day flow to the other planets and finally out of the solar system entirely.

Putting even something so unsophisticated as a brick into orbit would require the plotting of an exact trajectory handily done only by a computer. Sending the Mercury capsule aloft obviously requires a more refined aiming system, and its re-entry into the atmosphere demands a nicety of calculation measured in a fraction of a degree. The same is true for the Russian achievements in sending a space vehicle around the moon, and manned capsules in prolonged orbit. Such navigation can be planned and carried out only by the sophisticated mathematics of a computer. Dr. Wernher von Braun has said that any effective space-vehicle firing program would be impossible without computers and computing techniques.

Not long ago, the mariner could leisurely brace himself on the deck of his vessel and take a noon sight with his sextant. It mattered little if it took him some time to work out the computations; his ship traveled at only a few knots and in only two dimensions. Today the space capsule or missile moves as far in a single minute as a ship might in an entire day, and it moves not across the practically flat surface of the sea but through three-dimensional space in which that third degree of freedom is of vital importance. Not only must the navigation be done with fantastic precision, it must be done in “real time” to be of any value. This is true whether the mathematics is being done by a Mercury capsule or one of our antimissile missiles. Just as Richardson’s weather prediction three months after the fact was of little use, the trajectory of an invading missile will avail us nothing if it takes us thirty minutes to compute. The problem by then, for the survivors, will be one of fallout and not blast.

For this reason a computer is aboard practically every space vehicle that leaves the earth. The Atlas and Titan, the Minuteman and Polaris, all are controlled by tiny digital computers in their innards, supplemented by more complex machines on the ground. These ground computers calculate the trajectory, then monitor the missile to correct its course if necessary. Complex as these functions seem, they are childishly simple by comparison with the kind of calculations that are necessary for lunar or planetary flight.

A mathematician who knew his astronomy could work out the figures necessary to launch a space craft on its flight to Venus, but he would have to start some time before launching day. In fact, it would take forty generations of mathematicians to do the job. The trip itself would consume about four months. At the Jet Propulsion Laboratories of the California Institute of Technology, this 800-year project is planned and flown in thirty seconds by an IBM 7090 computer. For example, the computer tells us that if we had blasted off bright and early on August 17, 1962, we could make it to the Clouded Planet at 10:09 a.m., December 9. The curved trip through space would cover 32,687,000 miles.

The computer, then, not only can perform in real time but can even shrink time. The Venus trip is simulated daily at the Jet Propulsion Laboratories, and tapes stored in the computer cabinets also bear the names Moon, Mars, Saturn, Jupiter, and so on. When the day comes to make the actual voyage, the odds are good that because of what scientists have learned from the computer the trip will go as smoothly as all the simulations. Rather than the planetary voyages, which are still some time off, lunar soft landings will be among the first to demonstrate the accuracy of simulations now being made by General Dynamics, whose Atlas-Centaur will put the lunar rover Surveyor on the moon shortly. Apollo, the three-man lunar spaceship, won’t be far behind.

Not long ago a computer was put to work to see if it could pare down the costs of the Atlas and Thor rocket engines. We have to have such defensive weapons, but the cheaper we can make them the more we can afford. The economy program worked, reducing costs more than a third.

Summary

The computer is on the Washington payroll to stay, and it may well move up the hierarchical ladder there. It was not a comedian but an M.I.T. professor who recently suggested that the computer will replace the bureaucrat. Contending that the computer is inherently more flexible than the bureaucrat, Professor John McCarthy told an Institute of Radio Engineers meeting that the machines will not regiment us. “On the contrary, I think we can expect a great deal more politeness from machines than we have gotten from humans,” he said. His views were debated by other panelists, but the gauntlet seems to have been flung. With a party affiliation, the computer may well run for president someday!

Lichty, © Field Enterprises, Inc.
“It IS human, men!... Besides solving our problems of global strategy, it’s also beginning to jot down its memoirs!”


Business may not be the noblest pursuit, but it is true that men are bringing to it some of the qualities which actuate the explorer, scientist, artist: the zest, the open-mindedness, even the disinterestedness, with which the scientific investigator explores some field of research.

—Earnest Elmo Calkins