OTHER SMALL POWER DEVELOPMENTS

Mr. John T. McDonald, who has a farm about five miles from Delhi, Delaware county, N. Y., some ten years ago began making good use of a power development from a small stream on his farm. He lights his house and buildings, runs saws, grinders and various machines in a little shop on rainy days and in the winter. His [dam was made from stone and earth] from the nearby fields and cost very little. It forms a pond, covering, when full, about four and one-half acres of land. The pond is well stocked with trout and other fish, and each winter Mr. McDonald cuts about 500 tons of ice from it. Mr. McDonald turns on the water at his dam by means of an electric switch at the house and regulates the voltage also in a similar manner. From the pond the water is led through a hydraulic race, or canal, about 900 feet long, to one of the farm buildings where the waterwheels are installed. The head, or fall, at this point is about 15 feet and there are three waterwheels of the turbine type: one that develops 25 horsepower, another that develops 6 horsepower and a third that develops about 3 horsepower. The large wheel is used to run a sawmill and feed mill. The 6-horsepower wheel drives an electric generator, or dynamo, which furnishes the electric lights, and also electricity for driving the small motors about the place. The 3-horsepower wheel runs the small saws, machine tools, etc., in Mr. McDonald’s shop.

A few miles east from Mr. Van Wagenen’s farm in Schoharie county is another small power development owned by Mr. Frank Caspar. He has installed two waterwheels on a small creek and uses the power from them to drive the machinery in a table and furniture factory. He has another small waterwheel of the turbine type driving a little dynamo which generates electricity for electric light. Mr. Caspar lights his factory buildings, his home, a neighboring church and the main street in the village with electricity from this little dynamo. An ingenious device of his own invention makes it possible to start and stop the power from the house by simply pulling a wire which operates a valve in a small water pipe, from which water under pressure is let into a hydraulic cylinder. This causes the piston of the cylinder to rise, and the piston being directly connected to a gate in the water pipe inlet, allows the water to flow into the waterwheel. When it is desired to stop the plant, a pull on the companion wire causes the reverse operation to take place and the power is shut off.

Farm Power Development of John T. McDonald,
Delaware Co., N. Y.

Near the village of Berlin, in eastern Rensselaer county, N. Y., there is a small power development owned by Mr. Arthur Cowee. His source of power is a small trout brook which flows through the farm. Mr. Cowee is a producer of fancy gladiolus bulbs, on a large scale. His principal power development, consisting of a 36-inch impulse waterwheel, under a pressure due to a fall of about 210 feet, is used mostly for the purpose of operating a circular saw and other machinery connected with a sawmill. The water is diverted from the natural channel of the brook at a considerable distance from the place where the waterwheel is installed and is carried in an artificial channel, about four feet wide and three feet deep, around the side of the hill, where it runs into a shallow basin which has been excavated by Mr. Cowee at a suitable location. By means of this basin, or artificial pond, practically all of the flow of the brook may be stored during the night and used to operate the waterwheel during the day. In this manner the full power value of the brook is realized. There is a ten-inch, cast-iron pipe line, about 1680 feet long, which runs from the pond down the side of the hill to the waterwheel. This pipe line was placed under ground from three to four feet in order to avoid freezing in the winter. Mr. Cowee estimates that the development, including the diverting dam and canal, pond, pipe line, waterwheel, circular saw and accessories, cost him a total of about $7000. He states that he can saw about 4000 feet of lumber in a day with this power.

In addition to this development, Mr. Cowee also has a small impulse waterwheel in his bulb house. This wheel is operated by water furnished from the system of the local water company. It is directly connected to a small electric generator which furnishes electricity sufficient for 157 sixteen-candle-power carbon-filament lamps which are installed throughout the bulb house. The generator does not produce enough electric current to run all of these lights at the same time, but it will operate as many as forty-five or fifty lights at one time, which is all that is necessary to meet the requirements.

Mr. D. F. Paine of Wadhams, Essex county, N. Y., has a dam at the outlet of Lincoln pond. The water surface, when the pond is full, is about twelve feet above the normal and spreads over an extensive tract of low, marshy land. The pond thus formed is about three miles long and from one-quarter to three-quarters of a mile wide. The water is conducted from the dam to the penstock, a distance of about a mile and a half, securing a fall of 320 feet. At this point Mr. Paine has constructed a power house, where he generates electricity which he transmits to Mineville for use in the mines. This power is transmitted a distance of about eight miles.

At Chazy, N. Y., near the western shore of Lake Champlain and at a point about fifteen miles north of the city of Plattsburg, there is located a modern stock and dairy farm which, in its operation, exemplifies the manifold advantages to be derived from the use of hydro-electric power for electric lighting and for the various power requirements of the farm. This farm, which is owned by Mr. W. H. Miner and is called “Heart’s Delight,” covers an area of 5160 acres. About 1200 acres are cultivated, 1200 acres are in pasture and the remainder in woodland. The output consists of live stock and dairy products, all crops grown on the farm being fed to the stock and only finished products being shipped out. The live stock includes registered Percheron and Belgian horses, pure-bred, short-horn Durham and Guernsey cattle, Dorset sheep and high-grade hogs for the production of sausage, hams and bacon. There are also poultry and squabs, and a fish hatchery for the propagation of trout. The entire output goes directly to high-grade hotels in New York, Washington and Chicago.

Power House, “Heart’s Delight” Farm

Two streams pass through the southern portion of the farm, the smaller one being known as Tracy brook and the larger one as Chazy river. It was decided to provide the farm with electricity for light and power. Enough water power was found in these streams to furnish a cheap and reliable source of energy. Accordingly, a hydro-electric plant was installed several years ago and has given such satisfaction that the equipment has been increased from time to time, and some novel applications have resulted. Three small concrete dams were built across Tracy brook to form storage reservoirs. A concrete penstock, or pipe, 44 inches in diameter and 670 feet long, carries the water from the downstream reservoir to a concrete power house, where a fall of 19 feet is secured.

Alternating Current Transmission Line,
“Heart’s Delight” Farm

The power house equipment consists of two water turbines automatically governed and directly connected respectively to one 30-kilowatt and one 12½-kilowatt, 220-volt, direct current generators. The current is transmitted over a pole line, a mile and a quarter long, to a central station in the main group of farm buildings.

Electric Cooking Outfit

Another dam was built across the Chazy river. This is of concrete, and, after passing through screens at the intake gate house, built into the dam, the water flows through a concrete penstock, 48 inches wide by 60 inches high and 630 feet long, to the [power house] where a fall of 30 feet is obtained. There are two turbines here, belt connected to alternating current generators, and the current is [transmitted over a pole line], nearly three miles long, to the central station.

An auxiliary to the water-power development consists of two hydraulic rams, pumping water from one of the Tracy brook reservoirs to a 60,000-gallon tank, 100 feet above the ground, for fire protection for the buildings.

There are in all about twenty-five motors installed in the various buildings. The electric current actuates these motors, which are used to drive or operate numerous machines and labor-saving devices.

Motor-driven Vacuum Pump

For milking machines and vacuum cleaners

An entire load of hay is lifted from the wagon and stored in the mow by a ten-horsepower motor. A root-cutting machine is operated by a two-horsepower motor mounted on the ceiling. A one and one-half horsepower motor drives a vacuum pump, which operates the milking machines; five machines are used, each of which will milk two cows simultaneously. A one and one-half horsepower motor runs the cream separator, and a three-horsepower motor drives the big churn; and motors are used for driving the water pumps, as well as the brine-circulating pumps in the ice-making plant. A grist mill, driven by electric motor, is part of the farm equipment, and the sausage-chopping and mixing machines are driven by a four-horsepower motor. Roots for the sheep are cut by a machine driven by motors of one and one-half and two horsepower, and food for the fish is prepared by a grinding machine driven by a two-horsepower motor. Wood-working machines and machine tools are driven by motors in the carpenter and machine shops. In addition to the uses already mentioned, the electric power is also used to pump water, shear the sheep, clip the horses, wash, dry and iron the clothes, heat the house, cook the food, freeze the ice cream, cool the house in the summer, curl the ladies’ hair and play the piano.

The “Heart’s Delight” farm power equipment is much more extensive than would be warranted on a farm of ordinary size, but the installation serves to illustrate the extent to which the application of power may be carried, on an unusually large produce farm. In many instances a community of farmers could develop such a water power and distribute the power among themselves to mutual advantage and profit.