III.

On the 29th of May, the engine called the "Samson," (weighing 10 tons 2 cwt., with 14-inch cylinders, and 16-inch stroke; wheels 4 feet 6 inches diameter, both pairs being worked by the engine; steam 50 lbs. pressure, 130 tubes) was attached to 50 wagons, laden with merchandise; net weight about 150 tons; gross weight, including wagons, tender, &c., 223 tons 6 cwt. The engine with this load travelled from Liverpool to Manchester (30 miles) in 2 h. and 40 min., exclusive of delays upon the road for watering, &c., being at the rate of nearly 12 miles an hour. The speed varied according to the inclinations of the road. Upon a level, it was 12 miles an hour; upon a descent of 6 feet in a mile, it was 16 miles an hour: upon a rise of 8 feet in a mile, it was about 9 miles an hour. The weather was calm, the rails very wet; but the wheels did not slip, even in the slowest speed, except at starting, the rails being at that place soiled and greasy with the slime and dirt to which they are always exposed at the stations. The coke consumed in this journey, exclusive of what was raised in getting up the steam, was 1762 lbs., being at the rate of a quarter of a pound per ton per mile.

(94.) From the above experiments it appears that a locomotive engine, in good working order, with its full complement of load, is capable of transporting weights at an expense in fuel amounting to about 4 ounces of coke per ton per mile. The attendance required on the journey is that of an engine-man and a fire-boy; the former being paid 1s. 6d. for each trip of 30 miles, and the latter 1s. In practice, however, we are to consider, that it rarely happens that the full complement of load can be sent with the engines; and when lesser loads are transported, the proportionate expense must for obvious reasons, be greater.

The practical expenditure of fuel on the Liverpool and Manchester line may, perhaps, be fairly estimated at half a pound of coke per ton per mile.

(95.) Having explained the power and efficiency of these locomotive engines, it is now right to notice some of the defects under which they labour.

The great original cost, and the heavy expense of keeping the engines used on the railway in repair, have pressed severely on the resources of the undertaking. One of the best constructed of the later engines costs originally about 800l. It may be hoped that, by the excitement of competition, the facilities derived from practice, and from the manufacture of a greater number of engines of the same kind, some reduction of this cost may be effected. The original cost, however, is far from being the principal source of expense: the wear and tear of these machines, and the occasional fracture of those parts on which the greatest strain has been laid, have greatly exceeded what the directors had anticipated. Although this source of expense must be in part attributed to the engines not having yet attained that state of perfection, in the proportion and adjustment of their parts, of which they are susceptible, and to which experience alone can lead, yet there are some obvious defects which demand attention.

The heads of the boilers are flat, and formed of iron, similar to the material of the boilers themselves. The tubes which traverse the boiler were, until recently, copper, and so inserted into the flat head or ends as to be water-tight. When the boiler is heated, the tubes are found to expand in a greater degree than the other parts of the boiler; which frequently causes them either to be loosened at the extremities, so as to cause leakage, or to bend from want of room for expansion. The necessity of removing and refastening the tubes causes, therefore, a constant expense.

It will be recollected that the fire-place is situated at one end of the boiler, immediately below the mouths of the tubes: a powerful draught of air, passing through the fire, carries with it ashes and cinders, which are driven violently through the tubes, and especially the lower ones, situated near the fuel. These tubes are, by this means, subject to rapid wear, the cinders continually acting upon their interior surface. After a short time it becomes necessary to replace single tubes, according as they are found to be worn, by new ones; and it not unfrequently happens, when this is neglected, that tubes burst. After a certain length of time the engines require new tubing, which is done at the expense of about 70l., allowing for the value of the old tubes. This wear of the tubes might possibly be avoided by constructing the fire-place in a lower position, so as to be more removed from their mouths; or, still more effectually, by interposing a casing of metal, which might be filled with water, between the fire-place and those tubes which are the most exposed to the cinders and ashes. The unequal expansion of the tubes and boilers appears to be an incurable defect, if the present form of the engine be retained. If the fire-place and chimney could be placed at the same end of the boiler, so that the tubes might be recurved, the unequal expansion would then produce no injurious effect; but it would be difficult to clean the tubes if they were exposed, as they are at present, to the cinders. The next source of expense arises from the wear of the boiler-head, which is exposed to the action of the fire. These require constant patching and frequent renewal.

A considerable improvement has lately been introduced into the method of tubing, by substituting brass for copper tubes. We are not aware that the cause of this improvement has been discovered; but it is certain, whatever be the cause, that brass tubes are subject to considerably slower wear than copper.

It has been said by some whose opinions are adverse to the advantage of railways, but more especially to the particular species of locomotive engines now under consideration, that the repairs of one of these engines cost so great a sum as 1500l. per annum, and that the directors now think of abandoning them, or adopting either stationary engines or horse-power. As to the first of these statements I must observe, that the expense of repairs of such machines should never be computed in reference to time, but rather to the work done, or the distance travelled over. I have ascertained that engines frequently travel a distance of from 25,000 to 30,000 miles before they require new tubing. During that work, however, single tubes are, of course, occasionally renewed, and other repairs are made, the expense of which may safely be stated as under the original cost of the engine. The second statement, that the company contemplate substituting stationary engines, or horses, for locomotives, is altogether at variance with the truth. Whatever improvements may be contemplated in locomotives, the directors assuredly have not the slightest intention of going back in the progress of improvement, in the manner just mentioned.

The expense of locomotive power having so far exceeded what was anticipated at the commencement of the undertaking, it was thought advisable, about the beginning of the year 1834, to institute an inquiry into the causes which produced the discrepancy between the estimated and actual expenses, with a view to the discovery of some practical means by which they could be reduced. The directors of the company, for this purpose, appointed a sub-committee of their own body, assisted by Mr. Booth, their treasurer, to inquire and report respecting the causes of the amount of this item of their expenditure, and to ascertain whether any and what measures could be devised for the attainment of greater economy. A very able and satisfactory report was made by this committee, or, to speak more correctly by Mr. Booth.

It appears that, previous to the establishment of the railway, Messrs. Walker and Rastrick, engineers, were employed by the company to visit various places where steam power was applied on railways, for the purpose of forming an estimate of the probable expense of working the railway by locomotive and by fixed power. These engineers recommended the adoption of locomotive power, and their estimate was, that the transport might be effected at the rate of .278 of a penny, or very little more than a farthing per ton per mile. In the year 1833, five years after this investigation took place, it was found that the actual cost was .625 of a penny, or something more than a halfpenny per ton per mile, being considerably above double the estimated rate. Mr. Booth very properly directed his inquiries to ascertain the cause of this discrepancy, by comparing the various circumstances assumed by Messrs. Walker and Rastrick, in making their estimate, with those under which the transport was actually effected. The first point of difference which he observed was the speed of transport: the estimate was founded on an assumed speed of ten miles an hour, and it was stated that a fourfold speed would require an addition of 50 per cent. to the power, without taking into account wear and tear. Now the actual speed of transport being double the speed assumed in the statement, Mr. Booth holds it to be necessary to add 25 per cent. on that score.

The next point of difference is in the amount of the loads: the estimate is founded upon the assumption, that every engine shall start with its full complement of load, and that with this it shall go the whole distance. "The facts, however, are," says Mr. Booth, "that, instead of a full load of profitable carriage from Manchester, about half the wagons come back empty, and, instead of the tonnage being conveyed the whole way, many thousand tons are conveyed only half the way; also, instead of the daily work being uniform, it is extremely fluctuating." It is further remarked, that in order to accomplish the transport of goods from the branches and from intermediate places, engines are despatched several times a day, from both ends of the line, to clear the road; the object of this arrangement being rather to lay the foundation of a beneficial intercourse in future, than with a view to any immediate profit. Mr. Booth makes a rough estimate of the disadvantages arising from these circumstances by stating them at 33 per cent. in addition to the original estimate.

The next point of difference is the fuel. In the original estimate coal is assumed as the fuel, and it is taken at the price of five shillings and tenpence per ton: now the act of parliament forbids the use of coal which would produce smoke; the company have, therefore, been obliged to use coke, at seventeen shillings and sixpence a ton. Taking coke, then, to be equivalent to coal, ton for ton, this would add .162 to the original estimate.

These several discrepancies being allowed for, and a proportional amount being added to the original estimate, the amount would be raised to .601 of a penny per ton per mile, which is within one fortieth of a penny of the actual cost. This difference is considered to be sufficiently accounted for by the wear and tear produced by the very rapid motion, more especially when it is considered that many of the engines were constructed before the engineer was aware of the great speed that would be required.

"What then," says Mr. Booth, in the Report already alluded to, "is the result of these opposite and mutually counteracting circumstances? and what is the present position of the company in respect of their moving power? Simply, that they are still in a course of experiment, to ascertain practically the best construction, and the most durable materials, for engines required to transport greater weights, and at greater velocities, than had, till very recently, been considered possible; and which, a few years ago, it had not entered into the imagination of the most daring and sanguine inventor to conceive: and, farther, that these experiments have necessarily been made, not with the calm deliberation and quiet pace which a salutary caution recommends,—making good each step in the progress of discovery before advancing another stage,—but amidst the bustle and responsibilities of a large and increasing traffic; the directors being altogether ignorant of the time each engine would last before it would be laid up as inefficient, but compelled to have engines, whether good or bad; being aware of various defects and imperfections, which it was impossible at the time to remedy, yet obliged to keep the machines in motion, under all the disadvantages of heavy repairs, constantly going on during the night, in order that the requisite number of engines might be ready for the morning's work. Neither is this great experiment yet complete; it is still going forward. But the most prominent difficulties have been in a great measure surmounted, and your committee conceive, that they are warranted in expecting, that the expenditure in this department will, ere long, be materially reduced, more especially when they consider the relative performances of the engines at the present time compared with what it was two years ago."

In the half year ending 31st December, 1831, the six best engines performed as follows:—

Miles.
Planet9,986
Mercury11,040
Jupiter11,618
Saturn11,786
Venus12,850
Etna8,764
———
Making in all66,044
———

In the half year ending 31st December, 1833, the six best engines performed as follows:—

Miles.
Jupiter16,572
Saturn18,678
Sun15,552
Etna17,763
Ajax11,678
Firefly15,608
———
Making in all95,851
———

(96.) The advantages derivable from railroads are greatly abridged by the difficulty arising from those changes of level to which all roads are necessarily liable; but in the case of railroads, from causes peculiar to themselves, these changes of level occasion great inconvenience. To explain the nature of these difficulties, it will be necessary to consider the relative proportion which must subsist between the power of traction on a level and on an inclined plane. On a level railroad the force of traction necessary to propel any load, placed on wheel carriages of the construction now commonly used, may perhaps be estimated at 7-1/2 pounds,[28] for every ton gross in the load; that is to say, if a load of one ton gross were placed upon wheel carriages upon a level railroad, the traces of horses drawing it would be stretched with a force equivalent to 7-1/2 pounds. If the load amounted to two or three tons, the tension of the traces would be increased to 15 or 22-1/2 pounds, and so on. The necessity of this force of traction, arising from the want of perfect smoothness in the road, and from the friction of the wheels and axles of the carriages, must be the same whether the road be level or inclined; and consequently, in ascending an inclined plane, the same force of traction will be necessary in addition to that which arises from the tendency of the load to fall down the plane. This latter tendency is always in the proportion of the elevation of the plane to its length; that is to say, a plane which rises 1 foot in 100 will give a weight of 100 tons a tendency to fall down the plane amounting to 1 ton, and would therefore add 1 ton to the force of traction necessary for such a load on a level.

Now since 7-1/2 pounds is very nearly the 300th part of a ton, it follows that if an inclination upon a railroad rises at the rate of 1 foot in 300, or, what is the same, 17-1/2 feet in a mile, such an acclivity will add 7-1/2 pounds per ton to the force of traction. This acclivity therefore would require a force of traction twice as great as a level. In like manner a rise of 35 feet in a mile would require three times the force of traction of a level, 52-1/2 feet in a mile four times that force, and so on. In fact, for every 7 feet in a mile which an acclivity rises, 3 pounds per ton will be added to the force of traction. If we would then ascertain the power necessary to pull a load up any given acclivity upon a railroad, we must first take 7-1/2 pounds as the force necessary to overcome the common resistance of the road, and then add 3 pounds for every 7 feet which the acclivity rises per mile. For example, suppose an acclivity to rise at the rate of 70 feet in a mile, the force of traction necessary to draw a ton up it would be thus calculated:—

Friction7-1/2 lbs.
70 feet = 10 times 3 lbs.30
———
Total force37-1/2

It will be apparent, therefore, that if a railroad undulates by inclined planes, even of the most moderate inclinations, the propelling power to be used upon it must be of such a nature as to be capable of increasing its intensity in a great degree, according to the elevation of the planes which it has to encounter. A plane which rises 52-1/2 feet per mile presents to the eye scarcely the appearance of an ascent, and yet requires the power of traction to be increased in a fourfold proportion.

It is the property of animal power, that within certain limits its energy can be put forth at will, according to the exigency of the occasion; but the intensity of mechanical power, in the instance now considered, cannot so conveniently be varied, except indeed within narrow limits.

In the application of locomotive engines upon railways the difficulty arising from inclined planes has been attempted to be surmounted by several methods, which we shall now explain.

1. Upon arriving at the foot of the plane the load is divided, and the engine carries it up in several successive trips, descending the plane unloaded after each trip. The objection to this method is the delay which it occasions,—a circumstance which is incompatible with a large transport of passengers. From what has been stated, it would be necessary, when the engine is fully loaded on a level, to divide its load into four parts, to be successively carried up when the incline rises 52 feet per mile. This method has been practised in the transport of merchandise occasionally, when heavy loads were carried on the Liverpool and Manchester line, upon the Rainhill incline.

2. A subsidiary or assistant locomotive engine may be kept in constant readiness at the foot of each incline, for the purpose of aiding the different trains, as they arrive, in ascending. The objection to this mode is the cost of keeping such an engine with its boiler continually prepared, and its steam up. It would be necessary to keep its fire continually lighted, whether employed or not; otherwise, when the train would arrive at the foot of the incline, it should wait until the subsidiary engine was prepared for work. In cases where trains would start and arrive at stated times, this objection, however, would have less force. This method is at present generally adopted on the Liverpool and Manchester line. This method, however, cannot be profitably applied to planes of any considerable length.

3. A fixed steam engine may be erected on the crest of the incline, so as to communicate by ropes with the train at the foot. Such an engine would be capable of drawing up one or two trains together, with their locomotives, according as they would arrive, and no delay need be occasioned. This method requires that the fixed engine should be kept constantly prepared for work, and the steam continually up in the boiler. This expedient is scarcely compatible with a large transit of passengers, except at the terminus of a line.

4. In working on the level, the communication between the boiler and the cylinder in the locomotives may be so restrained by partially closing the throttle valve, as to cause the pressure upon the piston to be less in a considerable degree than the pressure of steam in the boiler. If under such circumstances a sufficient pressure upon the piston can be obtained to draw the load on the level, the throttle valve may be opened on approaching the inclined plane, so as to throw on the piston a pressure increased in the same proportion as the previous pressure in the boiler was greater than that upon the piston. If the fire be sufficiently active to keep up the supply of steam in this manner during the ascent, and if the rise be not greater in proportion than the power thus obtained, the locomotive will draw the load up the incline without further assistance. It is, however, to be observed, that in this case the load upon the engine must be less than the amount which the adhesion of its working wheels with the railroad is capable of drawing; for this adhesion must be adequate to the traction of the same load up the incline, otherwise whatever increase of power might be obtained by opening the throttle valve, the drawing wheels would revolve without causing the load to advance. This method has been generally practised upon the Liverpool and Manchester line in the transport of passengers; and, indeed, it is the only method yet discovered, which is consistent with the expedition necessary for that species of traffic. The objections to this method are, the necessity of maintaining a much higher pressure in the boiler than is sufficient for the purposes of the load upon more level parts of the line.

In the practice of this method considerable aid may be derived also by suspending the supply of feeding water during the ascent. It will be recollected that a reservoir of cold water is placed in the tender which follows the engine, and that the water is driven from this reservoir into the boiler by a forcing-pump, which is worked by the engine itself. This pump is so constructed that it will supply as much cold water as is equal to the evaporation, so as to maintain constantly the same quantity of water in the boiler. But it is evident, on the other hand, that the supply of this water has a tendency to check the rate of evaporation, since in being raised to the temperature of the water with which it mixes, it must absorb a considerable portion of the heat supplied by the fire. With a view to accelerate the production of steam, therefore, in ascending the inclines, the engine-man may suspend the action of the forcing-pump, and thereby stop the supply of cold water to the boiler; the evaporation will go on with increased rapidity, and the exhaustion of water produced by it will be repaid by the forcing-pump on the next level, or still more effectually on the next descending incline. Indeed the feeding pump may be made to act in descending an incline if necessary, when the action of the engine itself is suspended, and when the train descends by its own gravity, in which case it will perform the part of a brake upon the descending train.

This method, on railroads intended for passengers, may be successfully applied on inclines which do not exceed 18 feet in a mile; and, with a sacrifice of the expense of locomotive power, inclines so steep as 36 feet in a mile may be worked in this manner. As, however, the sacrifice is considerable, it will, perhaps, be always better to work the more steep inclines by assistant engines.

5. The mechanical connexion between the piston of the cylinder and the points of contact of the working wheels with the road may be so altered, upon arriving at the incline, as to give the piston a greater power over the working wheels. This may be done in an infinite variety of ways, but hitherto no method has been suggested sufficiently simple to be applicable in practice; and even were any means suggested which would accomplish this, unless the intensity of the impelling power were at the same time increased, it would necessarily follow that the speed of the motion would be diminished in exactly the same proportion as the power of the piston over the working wheels would be increased. Thus, on the inclined plane, which rises 55 feet per mile, upon the Liverpool line, the speed would be diminished to nearly one fourth of its amount upon the level.

Whatever be the method adopted to surmount inclined planes upon a railway, inconvenience attends the descent upon them. The motion down the incline by the force of gravity is accelerated; and if the train be not retarded, a descent of any considerable length, even at a small elevation, would produce a velocity which would be attended with great danger. The shoe used to retard the descent down hills on turnpike roads cannot be used upon railroads, and the application of brakes to the faces of the wheels is likewise attended with some uncertainty. The friction produced by the rapid motion of the wheel sometimes sets fire to wood, and iron would be inadmissible. The action of the steam on the piston may be reversed, so as to oppose the motion of the wheels; but even this is attended with peculiar difficulty.

From all that has been stated, it will be apparent that, with our present knowledge, considerable inclines are fatal to the profitable performance on a railway, and even small inclinations are attended with great inconvenience.[29]

(97.) To obtain from the locomotive steam engines now used on the railway the most powerful effects, it is necessary that the load placed on each engine should be very considerable. It is not possible, with our present knowledge, to construct and work three locomotive engines of this kind, each drawing a load of 30 tons, at the same expense and with the same effect as one locomotive engine drawing 90 tons. Hence arises what must appear an inconvenience and difficulty in applying these engines to one of the most profitable species of transport—the transport of passengers. It is impracticable, even between places of the most considerable intercourse to obtain loads of passengers sufficiently great at each trip to maintain such an engine working on a railway.[30] The difficulty of collecting so considerable a number of persons, at any stated hour, to perform the journey, is obvious; and therefore, the only method of removing the inconvenience is to cause the same engine which transports passengers also to transport goods, so that the goods may make up the requisite supplement to the load of passengers. In this way, provided the traffic in goods be sufficient, such engines may start with their full complement of load, whatever be the number of passengers.

(98.) In comparing the extent of capital, and the annual expenditure of the Liverpool and Manchester line, and adopting it as a modulus in estimating the expenses of similar undertakings projected elsewhere, there are several circumstances to which it is important to attend. I have already observed on the large waste of capital in the item of locomotive engines which ought to be regarded as little more than experimental machines, leading to a rapid succession of improvements. Most of these engines are still in good working order, but have been abandoned for the reasons already assigned. Other companies will, of course, profit by the experience which has been thus purchased at a high price by the Liverpool Company. This advantage in favour of future companies will go on increasing until such companies have their works completed.

A large portion of the current expense of a line of railway is independent of its length; and is little less for the line connecting Liverpool and Manchester, than it would be for a line connecting Birmingham with Liverpool or London.

The establishments of resident engineers, coach and wagon yards, &c. at the extremities of the line, would be little increased by a very great increase in the length of the railway; and the same observation will apply to other heads of expenditure.

It has been the practice of the canal companies between Liverpool and Manchester to warehouse the goods transported between these towns, without any additional charge beyond the price of transport. The Railway Company, in competing with the canals, were, of course, obliged to offer like advantages: this compelled them to invest a considerable amount of capital in the building of extensive warehouses, and to incur the annual expense of porterage, salaries, &c. connected with the maintenance of such storage. In a longer line of railway such expenses (if necessary at all) would not be proportionally increased.

(99.) The comparison of steam-transport with the transport by horses, even when working on a railway, exhibits the advantage of this new power in a most striking point of view. To comprehend these advantages fully, it will be necessary to consider the manner in which animal power is expended as a means of transport. The portion of the strength of a horse available for the purpose of a load depends on the speed of a horse's motion. To this speed there is a certain limit, at which the whole power of the horse will be necessary to move his own body, and at which, therefore, he is incapable of carrying any load; and, on the other hand, there is a certain load which the horse is barely able to support, but incapable of moving with any useful speed. Between these two limits there is a certain rate of motion at which the useful effect of the animal is greatest. In horses of the heavier class, this rate of motion may be taken on the average as that of 2 miles an hour; and in the lighter description of horses, 2-1/2 miles an hour. Beyond this speed, the load which they are capable of transporting diminishes in a very rapid ratio as the speed increases: thus, if 121 express the load which a horse is able to transport a given distance in a day, working at the rate of four miles an hour, the same horse will not be able to transport more than the load expressed by 64, the same distance, at 7 miles an hour; and, at 10 miles an hour, the load which he can transport will be reduced to 25. The most advantageous speed at which a horse can work being 2 miles an hour, it is found that, at this rate, working for 10 hours daily, he can transport 12 tons, on a level railway, a distance of 20 miles; so that the whole effect of a day's work may be expressed by 240 tons carried 1 mile.

But this rate of transport is inapplicable to the purposes of travelling; and therefore it becomes necessary, when horses are the moving power, to have carriages for passengers distinct from those intended for the conveyance of goods; so that the goods may be conveyed at that rate of speed at which the whole effect of the horse will be the greatest possible; while the passengers are conveyed at that speed which, whatever the cost, is indispensably necessary. The weight of an ordinary mail-coach is about two tons; and, on a tolerably level turnpike road, it travels at the rate of 10 miles an hour. At this rate, the number of horses necessary to keep it constantly at work, including the spare horses indispensably necessary to be kept at the several stages, is computed at the rate of a horse per mile. Assuming the distance between London and Birmingham at 100 miles, a mail-coach running between these two places would require 100 horses; making the journey to and from Birmingham daily. The performance, therefore, of a horse working at this rate may be estimated at 2 tons carried 2 miles per day, or 4 tons carried 1 mile in a day. The force of traction on a good turnpike road is at least 20 times its amount on a level railroad. It therefore follows, that the performance of a horse on a railroad will be 20 times the amount of its performance on a common road under similar circumstances. We may, therefore, take the performance of a horse working at 10 miles an hour, on a level railroad, at 80 tons conveyed 1 mile daily.

The best locomotive engines used on the Liverpool railway are capable of transporting 150 tons on a level railroad at the same rate; and, allowing the same time for stoppage, its work per day would be 150 tons conveyed 200 miles, or 30,000 tons conveyed 1 mile; from which it follows, that the performance of one locomotive engine of this kind is equivalent to that of 7500 horses working on a good turnpike road, or to 375 horses working on a railway. The consumption of fuel requisite for this performance, with the most improved engines used at present on the Manchester and Liverpool line, would be at the rate of eight[31] ounces of coke per ton per mile, including the waste of fuel incurred by the stoppages. Thus the daily consumption of fuel, under such circumstances, would amount to 15000 lbs. of coke; and 2 lbs. of coke daily would perform the work of one horse on a good turnpike road; and 40 lbs. of coke daily would perform the work of one horse on a railway.

In this comparison, the engine is taken at its most advantageous speed, while horse-power is taken at its least advantageous speed, if regard be only had to the total quantity of weight transported to a given distance. But, in the case above alluded to, speed is an indispensable element; and steam, therefore, possesses this great advantage over horse power, that its most advantageous speed is that which is at once adapted to all the purposes of transport, whether of passengers or of goods.

(100.) The effects of steam compared with horse-power, at lower rates of motion, will exhibit the advantages of the former, though in a less striking degree. An eight-horse wagon commonly weighs 8 tons, and travels at the rate of 2-1/2 miles an hour. Strong horses working in this way can travel 8 hours daily; thus each horse performs 20 miles a day. The performance, therefore, of each horse may be taken as equivalent to 20 tons transported 1 mile; and his performance on a railway being 20 times this amount, may be taken as equivalent to 400 tons transported 1 mile a day. The performance of a horse working in this manner is, therefore, 5 times the performance of a horse working at 10 miles an hour; the latter effecting only the performance of 4 tons transported 1 mile per day on a good turnpike road, or 80 tons on a railway. We shall hence obtain the proportion of the performance of horses working in wagons to that of a locomotive steam engine. Since 2 lbs. of coke are equivalent to the daily performance of a horse in a mail-coach, and 40 lbs. on a railway, at 10 miles an hour, it follows that 10 lbs. will be equivalent to the performance of a horse on a turnpike road, and 200 lbs. on a railway, at 2-1/2 miles an hour. Since a locomotive engine can perform the daily work of 7500 mail-coach horses, it follows that it performs the work of 1500 wagon horses.

These results must be understood to be subject to modifications in particular cases, and to be only average calculations. Different steam-engines, as well as different horses, varying in their performance to a considerable extent; and the roads on which horses work being in different states of perfection, and subject to different declivities, the performance must vary accordingly.

In the practical comparison, also, of the results of so powerful an agent as steam applied on railways, with so slight a power as that of horses on common roads, it must be considered that the great subdivision of load, and frequent times of starting, operate in favour of the performance of horses; inasmuch as it would oftener occur that engines capable of transporting enormous weights would start with loads inferior to their power, than would happen in the application of horse-power, where small loads may start at short intervals. This, in fact, constitutes a practical difficulty in the application of steam engines on railroads; and will, perhaps, for the present, limit their application to lines connecting places of great intercourse.

The most striking effect of steam power, applied on a railroad, is the extreme speed of transport which is attained by it; and it is the more remarkable, as this advantage never was foreseen before experience proved it. When the Liverpool and Manchester line was projected, the transport of heavy goods was the object chiefly contemplated; and although an intercourse in passengers was expected, it was not foreseen that this would be the greatest source of revenue to the proprietors. The calculations of future projectors will, therefore, be materially altered, and a great intercourse in passengers will be regarded as a necessary condition for the prosperity of such an undertaking.

If this advantage of speed be taken into account, horse-power can scarcely admit of any comparison whatever with steam-power on a railway. In the experiments which I have already detailed, it appears that a steam engine is capable of drawing 90 tons at the rate of about 20 miles an hour, and that it could transport that weight twice between Liverpool and Manchester in about 3 hours. Two hundred and seventy horses working in wagons would be necessary to transport the same load the same distance in a day. It may be objected, that this was an experiment performed under favourable circumstances, and that assistance was obtained at the difficult point of the inclined plane. In the ordinary performance, however, of the engines drawing merchandise, where great speed is not attempted, the rate of motion is not less than 15 miles an hour. In the trains which draw passengers, the chief difficulty of maintaining a great speed arises from the stoppages on the road to take up and let down passengers. There are two classes of carriages at present used: the first class stops but once, at a point half-way between Liverpool and Manchester, for the space of a few minutes. This class performs the thirty miles in an hour and a half, and sometimes in 1 hour and 10 minutes. On the level part of the road its common rate of motion is 27 miles an hour; and I have occasionally marked its rate, and found it above 30 miles an hour.

But these, which are velocities obtained in the regular working of the engines for the transport of passengers and goods, are considerably inferior to the power of the present locomotives with respect to speed. I have made some experimental trips, in which more limited loads were placed upon the engines, by which I have ascertained that very considerably increased rates of motion are quite practicable. In one experiment I placed a carriage containing 36 persons upon an engine, with which I succeeded in obtaining the velocity of about 48 miles an hour, and I believe that an engine loaded only with its own tender has moved over 15 miles in 15 minutes.

It will then perhaps be asked, if the engines possess these great capabilities of speed, why they have not been brought into practical operation on the railroad, where, on the other hand, the average speed when actually in motion, does not exceed 25 miles an hour? In answer to this it may be stated, that the distance of 30 miles between Liverpool and Manchester is performed in an hour and a half, and that 10 trains of passengers pass daily between these places: the mail, also, is transmitted three times a day between them. It is obvious that any greater speed than this, in so short a distance, would be quite needless. When, however, more extended lines of road shall be completed, the circumstances will be otherwise, and the despatch of mails especially will demand attention. Full trains of passengers, commonly transported upon the Manchester railroad, weigh about 50 tons gross: with a lighter load, a lighter and more expeditious engine might be used. The expense of transport with such an engine would of course be increased; but for this the increased expedition there would be ample compensation. When, therefore, London shall have been connected with Liverpool, by a line of railroad through Birmingham, the commercial interest of these places will naturally direct attention to the greatest possible expedition of intercommunication. For the transmission of mails, doubtless, peculiar engines will be built, adapted to lighter loads and greater speed. With such engines, the mails, with a limited number of passengers, will be despatched; and, apart from any possible improvement which the engines may hereafter receive, and looking only at their present capabilities, I cannot hesitate to express my conviction that such a load may be transported at the rate of above 60 miles an hour. If we may indulge in expectations of what the probable improvements of locomotive steam engines may effect, I do not think that even double that speed is beyond the limits of mechanical probability. On the completion of the line of road from the metropolis to Liverpool we may, therefore, expect to witness the transport of mails and passengers in the short space of three hours. There will probably be about three posts a day between these and intermediate places.

The great extension which the application of steam to the purpose of inland transport is about to receive from the numerous railroads which are already in progress, and from a still greater number of others which are hourly projected, impart to these subjects of inquiry considerable interest. Neither the wisdom of the philosopher, nor the skill of the statistician, nor the foresight of the statesman is sufficient to determine the important consequences by which the realization of these schemes must affect the progress of the human race. How much the spread of civilization, the diffusion of knowledge, the cultivation of taste, and the refinement of habits and manners depend upon the easy and rapid inter-mixture of the constituent elements of society, it is needless to point out. Whilst population exists in detached and independent masses, incapable of transfusion amongst each other, their dormant affinities are never called into action, and the most precious qualities of each are never imparted to the other. Like solids in physics, they are slow to form combinations; but when the quality of fluidity has been imparted to them, when their constituent atoms are loosened by fusion, and the particles of each flow freely through and among those of the other, then the affinities are awakened, new combinations are formed, a mutual interchange of qualities takes place, and compounds of value far exceeding those of the original elements are produced. Extreme facility of intercourse is the fluidity and fusion of the social masses, from whence such an activity of the affinities results, and from whence such an inestimable interchange of precious qualities must follow. We have, accordingly, observed, that the advancement in civilization and the promotion of intercourse between distant masses of people have ever gone on with contemporaneous progress, each appearing occasionally to be the cause or the consequence of the other. Hence it is that the urban population is ever in advance of the rural in its intellectual character. But, without sacrificing the peculiar advantages of either, the benefits of intercourse may be extended to both, by the extraordinary facilities which must be the consequence of the locomotive projects now in progress. By the great line of railroad which is in progress from London to Birmingham, the time and expense of passing between these places will probably be halved, and the quantity of intercourse at least quadrupled, if we consider only the direct transit between the terminal points of the line; but if the innumerable tributary streams which will flow from every adjacent point be considered, we have no analogies on which to build a calculation of the enormous increase of intercommunication which must ensue.

Perishable vegetable productions necessary for the wants of towns must at present be raised in their immediate suburbs; these, however, where they can be transported with a perfectly smooth motion at the rate of twenty miles an hour, will be supplied by the agricultural labourer of more distant points. The population engaged in towns, no longer limited to their narrow streets, and piled story over story in confined habitations, will be free to reside at distances which would now place them far beyond reach of their daily occupations. The salubrity of cities and towns will thus be increased by spreading the population over a larger extent of surface, without incurring the inconvenience of distance. Thus the advantages of the country will be conferred upon the town, and the refinement and civilization of the town will spread their benefits among the rural population.[32]

(101.) The quantity of canal property in these countries gives considerable interest to every inquiry which has for its object the relative advantage of this mode of transport, compared with that of railways, whether worked by horses or by steam-power; and this interest has been greatly increased by the recent extension of railway projects. This is a subject which I shall have occasion, in another work, to examine in all its details; and, therefore, in this place I shall advert to it but very briefly.

When a floating body is moved on a liquid, it will suffer a resistance, which will depend partly upon the transverse section of the part immersed, and partly on the speed with which it is moved. It is evident that the quantity of the liquid which it must drive before it will depend upon that transverse section, and the velocity with which it will impel the liquid will depend upon its own speed. Now, so long as the depth of its immersion remains the same, it is demonstrable that the resistance will increase in proportion to the square of the speed; that is, with a double velocity there will be a fourfold resistance, with a triple velocity a ninefold resistance, and so on. Again, if the part immersed should be increased or diminished by any cause, the resistance, on that account alone, will be increased or diminished in the same proportion.

From these circumstances it will be apparent that a vessel floating on water, if moved with a certain speed, will require four times the impelling force to carry it forward with double the speed, unless the depth of its immersion be diminished as its speed is increased.

Some experiments which have been made upon canals with boats of a peculiar construction, drawn by horses, have led to the unexpected conclusion, that, after a certain speed has been attained, the resistance, instead of being increased, has been diminished. This fact is not at variance with the law of resistance already explained. The cause of the phenomenon is found in the fact, that when the velocity has attained a certain point, the boat gradually rises out of the water; so that, in fact, the immersed part is diminished. The two conditions, therefore, which determine the resistance, thus modify each other: while the resistance is, on the one hand, increased in proportion to the square of the speed, it is, on the other hand, diminished in proportion to the diminution of the transverse section of the immersed part of the vessel. It would appear that, at a certain velocity, these two effects neutralise each other; and, probably, at higher velocities the immersed part may be so much diminished as to diminish the resistance in a greater degree than it is increased by the speed, and thus actually to diminish the power of traction.

It is known that boats are worked on some of the Scottish canals, and also on the canal which connects Kendal with Preston, by which passengers are transported, at the rate of about ten miles an hour, exclusive of the stoppages at the locks, &c. The power of horses, exerted in this way, is, of course, exerted more economically than they could be worked at the same speed on common roads; and, probably, it is as economical as they would be worked by railroad. It is, probably, more economical than the transport of passengers by steam upon railroads; but the speed is considerably less, nor, from the nature of the impelling power, is it possible that it can be increased.

There is reason to suppose that a like effect takes place with steam vessels. Upon increasing the power of the engines in some of the Post Office steam packets, it has been found, that, while the time of performing the same voyage is diminished, the consumption of fuel is also diminished. Now, since the consumption of fuel is in the direct ratio of the moving power, and the latter in the direct ratio of the resistance, it follows that the resistance must in this case be likewise diminished.

(102.) When a very slow rate of travelling is considered, the useful effects of horse-power applied on canals is somewhat greater than the effect of the same power applied on railways; but at all speeds above three miles an hour, the effect on railways is greater; and when the speed is considerable, the canal becomes wholly inapplicable, while the railway loses none of its advantages. At three miles an hour, the performance of a horse on a canal and a railway is in the proportion of four to three to the advantage of the canal; but at four miles an hour his performance on a railway has the advantage in very nearly the same proportion. At six miles an hour, a horse will perform three times more work on a railway than on a canal. At eight miles an hour, he will perform nearly five times more work.

But the circumstance which, so far as respects passengers, must give railways, as compared with canals, an advantage which cannot be considered as less than fatal to the latter, is the fact, that the great speed and cheapness of transit attainable upon a railway by the aid of steam-power will always secure to such lines not only a monopoly of the travelling, but will increase the actual amount of that source of profit in an enormous proportion, as has been already made manifest between Liverpool and Manchester. Before the opening of the railway there were about twenty-five coaches daily running between Liverpool and Manchester. If we assume these coaches on the average to take ten persons at each trip, it will follow that the number of persons passing daily between these towns was about 500. Let us, then, assume that 3000 persons passed weekly. This gives in six months 78,000. In the six months which terminated on the 31st of December 1831, the number of passengers between the same towns, exclusive of any taken up on the road, was 256,321; and if some allowance be made for those taken up on the road, the number may be fairly stated at 300,000. At present there is but one coach on the road between Liverpool and Manchester; and it follows, therefore, that, besides taking the monopoly of the transit in travellers, the actual number has been already increased in a fourfold proportion.

The monopoly of the transit of passengers thus secured to the line of communication by railroad will always yield so large a profit as to enable merchandise to be carried at a comparatively low rate.

In light goods, which require despatch, it is obvious that the railroad will always command the preference; and the question between that mode of communication and canals is circumscribed to the transit of those classes of heavy goods in which even a small saving in the cost of transport is a greater object than despatch.

(103.) The first effect which the Liverpool railroad produced on the Liverpool and Manchester canals was a fall in the price of transport; and at this time, I believe, the cost of transport per ton on the railroads and on the canals is the same. It will, therefore, be naturally asked, this being the case, why the greater speed and certainty of the railroad does not in every instance give it the preference, and altogether deprive the canals of transport? This effect, however, is prevented by several local and accidental causes, as well as by direct influence and individual interest. A large portion of the commercial and manufacturing population of Liverpool and Manchester have property invested in the canals, and are deeply interested to sustain them in opposition to the railway. Such persons will give the preference to the canals in their own business, and will induce those over whom they have influence to do so in every case where speed of transport is not absolutely indispensable.

Besides these circumstances, the canal communicates immediately with the shipping at Liverpool, and it ramifies in various directions through Manchester, washing the walls of many of the warehouses and factories for which the goods transported are destined. The merchandise is thus transferred from the shipping to the boat, and brought directly to the door of its owner, or vice versâ. If transported by the railway, on the other hand, it must be carried to the station at one extremity; and, when transported to the station at the other, it has still to be carried to its destination in different parts of the town.

These circumstances will sufficiently explain why the canals still retain, and may probably continue to retain, a share of the traffic between these great marts.

CHAPTER XI.
LOCOMOTIVE ENGINES ON TURNPIKE ROADS.

Railways and Turnpike Roads compared. — Mr. Gurney's inventions. — His Locomotive Steam Engine. — Its performances. — Prejudices and errors. — Committee of the House of Commons. — Convenience and safety of Steam Carriages. — Hancock's Steam Carriage. — Mr. N. Ogle. — Trevithick's invention. — Proceedings against Steam Carriages. — Turnpike Bills. — Steam Carriage between Gloucester and Cheltenham. — Its discontinuance. — Report of the Committee of the Commons. — Present State and Prospects of Steam Carriages.

(104.) We have hitherto confined our observations to steam-power as a means of transport applied on railways, but modern speculation has not stopped here. Several attempts have been made, and some of them attended with considerable success, to work steam-carriages on turnpike roads. The practicability of this project has been hitherto generally considered to be very questionable; but if we carry back our view to the various epochs in the history of the invention of the steam engine, we shall find the same doubt, and the same difficulty, started at almost every important step in its progress. In comparing the effect of a turnpike road with that of a railway, there are two circumstances which obviously give facility and advantage to the railway. One is, that the obstructions to the rolling motion of the wheels, produced by the inequalities of the surface, are very considerably less on a railway than on a road; less in the proportion of at least 1 to 20. This proportion, however, must depend much on the nature of the road with which the railway is compared. It is obvious that a well-constructed road will offer less resistance than one ill constructed; and it is ascertained that the resistance of a Macadamised road is considerably more than that of a road well paved with stones: the decision of this question, therefore, must involve the consideration of another, viz. whether roads may not be constructed by pavement or otherwise, smoother and better adapted to carriages moved in the manner of steam-carriages than the roads now used for horse-power?

But besides the greater smoothness of railroads compared with turnpike roads, they have another advantage, which we suspect to have been considerably exaggerated by those who have opposed the project for steam-carriages on turnpike roads. One of the laws of adhesion, long since developed by experiment, and known to scientific men, is, that it is greater between the surfaces of bodies of the same nature than between those of a different nature. Thus between two metals of the same kind it is greater than between two metals of different kinds. Between two metals of any kind it is greater than between metal and stone, or between metal and wood. Hence, the wheels of steam-carriages running on a railroad have a greater adhesion with the road, and therefore offer a greater resistance to slip round without the advance of the carriage, than wheels would offer on a turnpike road; for on a railroad the iron tire of the wheel rests in contact with the iron rail, while on a common road the iron tire rests in contact with the surface of stone, or whatever material the road may be composed of. Besides this, the dust and loose matter which necessarily collect on a common road, when pressed between the wheels and the solid base of the road act somewhat in the manner of rollers, and give the wheels a greater facility to slip than if the road were swept clean, and the wheels rested in immediate contact with its hard surface. The truth of this observation is illustrated on the railroads themselves, where the adhesion is found to be diminished whenever the rails are covered with any extraneous matter, such as dust or moist clay. Although the adhesion of the wheels of a carriage with a common road, however, be less than those of the wheels of a steam-carriage with a railroad, yet still the actual adhesion on turnpike roads is greater in amount than has been generally supposed, and is quite sufficient to propel carriages dragging after them loads of large amount.

The relative facility with which carriages are propelled on railroads and turnpike roads equally affects any moving power, whether that of horses or steam engines; and whether loads be propelled by the one power or the other, the railroad, as compared with the turnpike road, will always possess the same proportionate advantage; and a given amount of power, whether of the one kind or the other, will always perform a quantity of work less in the same proportion on a turnpike road than on a railroad. But, on the other hand, the expense of original construction, and of maintaining the repairs of a railroad, is to be placed against the certain facility which it offers to draught.

In the attempts which have been made to adapt locomotive engines to turnpike roads, the projectors have aimed at the accomplishment of two objects: first, the construction of lighter and smaller engines; and, secondly, increased power. These ends, it is plain, can only be attained, with our present knowledge, by the production of steam of very high temperature and pressure, so that the smallest volume of steam shall produce the greatest possible mechanical effect. The methods of propelling the carriage have been in general similar to that used in the railroad engines, viz. either by cranks placed on the axles, the wheels being fixed upon the same axles, or by connecting the piston-rods with the spokes of the wheels, as in the engine represented in [fig. 55]. In some carriages, the boiler and moving power, and the body of the carriage which bears the passengers, are placed on the same wheels. In others, the engine is placed on a separate carriage, and draws after it the carriage which transports the passengers, as is always the case on railways.

The chief difference between the steam engines used on railways, and those adapted to propel carriages on turnpike roads, is in the structure of the boiler. In the latter it is essential that, while the power remains undiminished, the boiler should be lighter and smaller. The accomplishment of this has been attempted by various contrivances for so distributing the water, as to expose a considerable quantity of surface in contact with it to the action of the fire; spreading it in thin layers on flat plates; inserting it between plates of iron placed at a small distance asunder, the fire being admitted between the intermediate plates; dividing it into small tubes, round which the fire has play; introducing it between the surfaces of cylinders placed one within another, the fire being admitted between the alternate cylinders,—have all been resorted to by different projectors.

(105.) First and most prominent in the history of the application of steam to the propelling of carriages on turnpike roads, stands the name of Mr. Goldsworthy Gurney, a medical gentleman and scientific chemist, of Cornwall. In 1822, Mr. Gurney succeeded Dr. Thompson as lecturer on chemistry at the Surrey Institution; and, in consequence of the results of some experiments on heat, his attention was directed to the project of working steam carriages on common roads; and since 1825 he has devoted his exertions in perfecting a steam engine capable of attaining the end he had in view. Numerous other projectors, as might have been expected, have followed in his wake. Whether they, or any of them, by better fortune, greater public support, or more powerful genius, may outstrip him in the career on which he has ventured, it would not, perhaps, at present, be easy to predict. But whatever be the event, to Mr. Gurney is due, and will be paid, the honour of first proving the practicability of the project; and in the history of the adaptation of the locomotive engine to common roads, his name will stand before all others in point of time, and the success of his attempts will be recorded as the origin and cause of the success of others in the same race.

The incredulity, opposition, and even ridicule, with which the project of Mr. Gurney was met, are very remarkable. His views were from the first opposed by engineers, without one exception. The contracted habit of mind, sometimes produced by an education chiefly, if not exclusively, directed to a merely practical object, subsequently confirmed by exclusively practical pursuits, may, perhaps, in some degree, account for this. But, I confess, it has not been without surprise that I have observed, during the last ten years, the utter incredulity which has prevailed among men of general science on this subject,—an incredulity which the most unequivocal practical proof has scarcely yet dispelled. "Among scientific men," says Mr. Gurney, "my opinion had not a single supporter, with the exception of the late Dr. Wollaston."

The mistake which so long prevailed in the application of locomotives on railroads, and which, as we have shown, materially retarded the progress of that invention, was shared by Mr. Gurney. Without reducing the question to the test of experiment, he took for granted, in his first attempts, that the adhesion of the wheels with the road was too slight to propel the carriage. He was assured, he says, by eminent engineers, that this was a point settled by actual experiment. It is strange, however, that a person of his quickness and sagacity did not inquire after the particulars of these "actual experiments." So, however, it was; and, taking for granted the inability of the wheels to propel, he wasted much labour and skill in the contrivance of levers and propellers, which acted on the ground in a manner somewhat resembling the feet of horses, to drive the carriage forward. After various fruitless attempts of this kind, the experience acquired in the trials to which they gave rise at last forced the truth upon his notice, and he found that the adhesion of the wheels was not only sufficient to propel the carriage heavily laden on level roads, but was capable of causing it to ascend all the hills which occur on ordinary turnpike roads. In this manner it ascended all the hills between London and Barnet, London and Stanmore, Stanmore Hill, Brockley Hill, and mounted Old Highgate Hill, the last at one point rising one foot in nine.

It would be foreign to my present object to detail minutely all the steps by which Mr. Gurney gradually improved his contrivance. This, like other inventions, has advanced by a series of partial failures; but it has at length attained that state, in which, by practice alone, on a more extensive scale, a further degree of perfection can be obtained.

(106.) The boiler of this engine is so constructed that there is no part of it, not even excepting the grate-bars, in which metal exposed to the action of the fire is out of contact with water. If it be considered how rapidly the action of an intense furnace destroys metal when water is not present to prevent the heat from accumulating, the advantage of this circumstance will be appreciated. I have seen the bars of a new grate, never before used, melted in a single trip between Liverpool and Manchester; and the inventor of another form of locomotive engine has admitted to me that his grate-bars, though of a considerable thickness, would not last more than a week. In the boiler of Mr. Gurney, the grate-bars themselves are tubes filled with water, and form, in fact, a part of the boiler itself. This boiler consists of three strong metal cylinders placed in a horizontal position one above the other. A section, made by a perpendicular or vertical plane, is represented in [fig. 62]. The ends of the three cylinders, just mentioned, are represented at D, H, and I. In the side of the lowest cylinder D are inserted a row of tubes, a ground plan of which is represented in [fig. 63]. These tubes, proceeding from the side of the lowest cylinder D, are inclined slightly upwards, for a reason which I shall presently explain. From the nature of the section, only one of these tubes is visible in [fig. 62]. at C. The other extremities of these tubes at A are connected with the same number of upright tubes, one of which is expressed at E. The upper extremities G of these upright tubes are connected with another set of tubes K, equal in number, proceeding from G, inclining slightly upwards, and terminating in the second cylinder H.

Fig. 62.

Fig. 63.

An end view of the boiler is exhibited in [fig. 64]., where the three cylinders are expressed by the same letters. Between the cylinders D and H there are two tubes of communication B, and two similar tubes between the cylinders H and I. From the nature of the section these appear only as a single tube in [fig. 62]. From the top of the cylinder I proceeds a tube N, by which steam is conducted to the engine.

Fig. 64.

It will be perceived that the space F is enclosed on every side by a grating of tubes, which have free communication with the cylinders D and H, which cylinders have also a free communication with each other by the tubes B. It follows, therefore, that if water be supplied to the cylinder I, it will descend through the tubes, and first filling the cylinder D and the tubes C, will gradually rise in the tubes B and E, will next fill the tubes K and the cylinder H. The grating of water pipes C E K forms the furnace, the pipes C being the fire-bars, and the pipes E and K being the back and roof of the stove. The fire-door, for the supply of fuel, appears at M, [fig. 64]. The flue issuing between the tubes F is conducted over the tubes K, and the flame and hot air are carried off through a chimney. That portion of the heat of the burning fuel, which in other furnaces destroys the bars of the grate, is here expended in heating the water contained in the tubes C. The radiant heat of the fire acts upon the tubes K, forming the roof of the furnace, on the tube E at the back of it, and partially on the cylinders D and H, and the tubes B. The draft of hot air and flame passing into the flue at A, acts upon the posterior surfaces of the tubes E, and the upper sides of the tubes K, and finally passes into the chimney.

As the water in the tubes C E K is heated, it becomes specifically lighter than water of a less temperature, and consequently acquires a tendency to ascend. It passes, therefore, rapidly into H. Meanwhile the colder portions descend, and the inclined positions of the tubes C and K give play to this tendency of the heated water, so that a prodigiously rapid circulation is produced, when the fire begins to act upon the tubes. When the water acquires such a temperature that steam is rapidly produced, steam bubbles are constantly formed in the tubes surrounding the fire; and if these remained stationary in the tubes, the action of the fire would not only decompose the steam, but render the tubes red hot, the water not passing through them to carry off the heat. But the inclined position of the tubes, already noticed, effectually prevents this injurious consequence. A steam bubble which is formed either in the tubes C or K, having a tendency to ascend proportional to its lightness as compared with water, necessarily rushes upwards; if in C towards A, and if in K towards H. But this motion of the steam is also aided by the rapid circulation of the water which is continually maintained in the tubes, as already explained, otherwise it might be possible, notwithstanding the levity of steam compared with water, that a bubble might remain in a narrow tube without rising. I notice this more particularly, because the burning of the tubes is a defect which has been erroneously, in my opinion, attributed to this boiler. To bring the matter to the test of experiment, I have connected two cylinders, such as D and H, by a system of glass tubes, such as represented at C E K. The rapid and constant circulation of the water was then made evident: bubbles of steam were formed in the tubes, it is true; but they passed with great rapidity into the upper cylinder, and rose to the surface, so that the glass tubes never acquired a higher temperature than that of the water which passed through them.

This I conceive to be the chief excellence of Mr. Gurney's boiler. It is impossible that any part of the metal of which it is formed can receive a greater temperature than that of the water which it contains; and that temperature, as is obvious, can be regulated with the most perfect certainty and precision. I have seen the tubes of this boiler, while exposed to the action of the furnace, after that action has continued for a long period of time, and I have never observed the soot which covers them to redden, as it would do if the tube attained a certain temperature.

Every part of the boiler being cylindrical, it has the form which, mechanically considered, is most favourable to strength, and which, within given dimensions, contains the greatest quantity of water. It is also free from the defects arising from unequal expansion, which are found to be most injurious in tubular boilers. The tubes C and K can freely expand in the direction of their length, without being loosened at their joints, and without straining any part of the apparatus; the tubes E, being short, are subject to a very slight degree of expansion; and it is obvious that the long tubes, with which they are connected, will yield to this without suffering a strain, and without causing any part of the apparatus to be loosened.

When water is converted into steam, any foreign matter which may be combined with it is disengaged, and is deposited on the bottom of the vessel in which the water is evaporated. All boilers, therefore, require occasional cleansing, to prevent the crust thus formed from accumulating; and this operation, for obvious reasons, is attended with peculiar difficulty in tubular boilers. In the case before us, the crust of deposited matter would gather and thicken in the tubes C and K, and if not removed, would at length choke them. But besides this, it would be attended with a still worse effect; for, being a bad conductor, it would intercept the heat in its transit from the fire to the water and would cause the metal of the tube to become unduly heated. Mr. Gurney of course foresaw this inconvenience, and contrived an ingenious chemical method of removing it by occasionally injecting through the tubes such an acid as would combine with the deposite, and carry it away. This method was perfectly effectual; and although its practical application was found to be attended with difficulty in the hands of common workmen, Mr. Gurney was persuaded to adhere to it by the late Dr. Wollaston, until experience proved the impossibility of getting it effectually performed, under the circumstances in which boilers are commonly used. Mr. Gurney then adopted the more simple, but not less effectual, method of removing the deposite by mechanical means. Opposite the mouths of the tubes, and on the other side of the cylinders D and H, are placed a number of holes, which, when the boiler is in use, are stopped by pieces of metal screwed into them. When the tubes require to be cleaned these stoppers are removed, and an iron scraper is introduced through the holes into the tubes, which being passed backwards and forwards, removes the deposite. The boiler may be thus cleaned by a common labourer in half a day, at an expense of about 1s. 6d.

The frequency of the periods at which a boiler of this kind requires cleaning must depend, in a great degree, on the nature of the water which is used; one in daily use with the water of the river Thames would not require cleaning more than once in a month. Mr. Gurney states that with water of the most unfavourable description, once a fortnight would be sufficient.

(107.) In the more recent boilers constructed by Mr. Gurney, he has maintained the draught through the furnace, by the method of projecting the waste steam into the chimneys; a method so perfectly effectual, that it is unlikely to be superseded by any other. The objection which has been urged against it in locomotive engines, working on turnpike roads, is, that the noise which it produces has a tendency to frighten horses.

In the engines on the Liverpool road, the steam is allowed to pass directly from the eduction pipe of the cylinder to the chimney, and it there escapes in puffs corresponding with the alternate motion of the pistons, and produces a noise, which, although attended with no inconvenience on the railroad, would certainly be objectionable on turnpike roads. In the engine used in Mr. Gurney's steam-carriage, the steam which passes from the cylinders is conducted to a receptacle, which he calls a blowing box. This box serves the same purpose as the upper chamber of a smith's bellows. It receives the steam from the cylinders in alternate puffs, but lets it escape into the chimney in a continued stream by a number of small jets. Regular draught is by this means produced, and no noise is perceived. Another exit for the steam is also provided, by which the conductor is enabled to increase or diminish, or to suspend altogether, the draught in the chimney, so as to adapt the intensity of the fire to the exigencies of the road. This is a great convenience in practice; because, on some roads, a draught is scarcely required, while on others a powerful blast is indispensable.

Connected with this blowing box, is another ingenious apparatus of considerable practical importance. The pipe through which the water which feeds the boiler is conducted to it from the tank is carried through this blowing box, within which it is coiled in a spiral form, so that an extensive thread of the feeding water is exposed to the heat of the waste steam which has escaped from the cylinders, and which is enclosed in this blowing box. In passing through this pipe the feeding water is raised from the ordinary temperature of about 60° to the temperature of 212°. The fuel necessary to accomplish this is, therefore, saved, and the amount of this is calculated at 1/6th of all that is necessary to evaporate the water. Thus, 1/6th of the expense of fuel is saved. But, what is much more important in a locomotive engine, a portion of the weight of the engine is saved without any sacrifice of its power. There is still another great advantage attending this process. The feeding water in the worm just mentioned, while it takes up the heat from the surrounding steam in the blowing box, condenses 1/6th of the waste steam, which is thence conducted to the tank, from which the feeding water is pumped, saving in this manner 1/6th in weight and room of the water necessary to be carried in the carriage for feeding the boiler.[33]

So far as the removal of all inconvenience arising from noise, this contrivance has been proved by experience to be perfectly effectual.[34]

In all boilers, the process of violent ebullition causes a state of agitation in the water, and a number of counter currents, by which, as the steam is disengaged from the surface of the water, it takes with it a considerable quantity of water in mechanical mixture. If this be carried through the cylinders, since it possesses none of the qualities of steam, and adds nothing to the power of the vapour with which it is combined, it causes an extensive waste of heat and water, and produces other injurious effects. In every boiler therefore, some means should be provided for the separation of the water thus suspended in the steam, before the steam is conducted to the cylinder. In ordinary plate boilers, the large space which remains above the surface of the water serves this purpose. The steam being there subject to no agitation or disturbance, the water mechanically suspended in it descends by its own gravity, and leaves pure steam in the upper part. In the small tubular boilers, this has been a matter, however, of greater difficulty. The contracted spaces in which the ebullition takes place, causes the water to be mixed with the steam in a greater quantity than could happen in common plate boilers: and the want of the same steam-room renders the separation of the water from the steam a matter of some difficulty. These inconveniences have been overcome by a succession of contrivances of great ingenuity. I have already described the rapid and regular circulation effected by the arrangement of the tubes. By this a regularity in the currents is established, which alone has a tendency to diminish the mixture of water with the steam. But in addition to this, a most effectual method of separation is provided in the vessel I, which is a strong iron cylinder of some magnitude, placed out of the immediate influence of the fire. A partial separation of the steam from the water takes place in the cylinder H; and the steam with the water mechanically suspended in it, technically called moist steam, rises into the separator I. Here, being free from all agitation and currents, and being, in fact, quiescent, the particles of water fall to the bottom, while the pure steam remains at the top. This separator, therefore, serves all the purposes of the steam-room above the surface of the water in the large plate boilers. The dry steam is thus collected and ready for the supply of the engine through the tube N, while the water, which is disengaged from it, is collected at the bottom of the separator, and is conducted through the tube T to the lowest vessel D, to be again circulated through the boiler.

The pistons of the engine work on the axles of the hind wheels of the carriage which bears the engine, by cranks, as in the locomotives on the Manchester railway, so that the axle is kept in a constant state of rotation while the engine is at work. The wheels placed on this axle are not permanently fixed or keyed upon it, as in the Manchester locomotives; but they are capable of turning upon it in the same manner as ordinary carriage wheels. Immediately within these wheels there are fixed upon the axles two projecting spokes or levers, which revolve with the axle, and which take the position of two opposite spokes of the wheel. These may be occasionally attached to the wheel or detached from it; so that they are capable of compelling the wheels to turn with the axle, or leaving the axle free to turn independent of the wheel, or the wheel independent of the axle, at the pleasure of the conductor. It is by these levers that the engine is made to propel either or both of the wheels. If both pairs of spokes are thrown into connexion with the wheels, the crank shaft or axle will cause both wheels to turn with it, and in that case the operation of the carriage is precisely the same as those of the locomotives already described upon the Liverpool and Manchester line; but this is rarely found to be necessary, since the adhesion of one wheel with the road is generally sufficient to propel the carriage, and consequently only one pair of these fixed levers are generally used, and the carriage propelled by only one of the two hind wheels. The fore wheels of the carriage turn upon a pivot similar to those of a four-wheeled coach. The position of these wheels is changed at pleasure by a simple pinion and circular rack, which is moved by the conductor, and in this manner the carriage is guided with precision and facility.

The force of traction necessary to propel a carriage upon common roads must vary with the variable quality of the road, and consequently the propelling power, or the pressure upon the pistons of the engine, must be susceptible of a corresponding variation; but a still greater variation becomes necessary from the undulations and hills which are upon all ordinary roads. This necessary change in the intensity of the impelling power is obtained by restraining the steam in the boiler by the throttle valve, as already described in the locomotive engines on the railroad. This principle, however, is carried much further in the present case. The steam in the boiler may be at a pressure of from 100 to 200 lbs. on the square inch; while the steam on the working piston may not exceed 30 or 40 lbs. on the inch. Thus an immense increase of power is always at the command of the conductor; so that when a hill is encountered, or a rough piece of road, he is enabled to lay on power sufficient to meet the exigency of the occasion.

The two difficulties which have been always apprehended in the practical working of steam carriages upon common roads are, first, the command of sufficient power for hills and rough pieces of road; and, secondly, the apprehended insufficiency of the adhesion of the wheels with the road to propel the carriage. The former of these difficulties has been met by allowing steam of a very great pressure to be constantly maintained in the boiler with perfect safety. As to the second, all experiments tend to show that there is no ground for the supposition that the adhesion of the wheels is in any case insufficient for the purposes of propulsion. Mr. Gurney states, that he has succeeded in driving carriages thus propelled up considerable hills on the turnpike roads about London. He made a journey to Barnet with only one wheel attached to the axle, which was found sufficient to propel the carriage up all the hills upon that road. The same carriage, with only one propelling wheel, also went to Bath, and surmounted all the hills between Cranford Bridge and Bath, going and returning.

A double stroke of the piston produces one revolution of the propelling wheels, and causes the carriage to move through a space equal to the circumference of those wheels. It will therefore be obvious, that the greater the diameter of the wheels, the better adapted the carriage is for speed; and, on the other hand, wheels of smaller diameter are better adapted for power. In fact, the propelling power of an engine on the wheels will be in the inverse proportion to their diameter. In carriages designed to carry great weights at a moderate speed, smaller wheels will be used; while in those intended for the transport of passengers at considerable velocities, wheels of at least 5 feet in diameter are most advantageous.

Among the numerous popular prejudices to which this new invention has given rise, one of the most mischievous in its effects, and most glaring in its falsehood, is the notion that carriages thus propelled are more injurious to roads than carriages drawn by horses. This error has been most clearly and successfully exposed in the evidence taken before the committee of the House of Commons upon steam carriages. It is there fully demonstrated, not only that carriages thus propelled did not wear a turnpike road more rapidly than those drawn by horses, but that, on the other hand, the wear by the feet of horses is far more rapid and destructive than any which could be produced by the wheels of carriages. Steam carriages admit of having the tires of the wheels broad, so as to act upon the road more in the manner of rollers, and thereby to give consistency and firmness to the material of which the road is composed. The driving wheels, being fully proved not to slip upon the road, do not produce any effects more injurious than the ordinary rolling wheels; consequently the wear occasioned by a steam carriage upon a road is not more than that produced by a carriage drawn by horses of an equivalent weight and the same or equal tires; but the wear produced by the pounding and digging of horses' feet in draught is many times greater than that produced by the wear of any carriage. Those who still have doubts upon this subject, if there be any such persons, will be fully satisfied by referring to the evidence which accompanies the report of the committee of the House of Commons, printed in October, 1831. In that report they will not only find demonstrative evidence that the introduction of steam carriages will materially contribute to the saving in the wear of turnpike roads, but also that the practicability of working such carriages with a great saving to the public—with great increase of speed and other conveniences to the traveller—is fully established.

The weight of machinery necessary for steam carriages is sometimes urged as an objection to their practical utility. Mr. Gurney states, that, by successive improvements in the details of the machinery, the weight of his carriages, without losing any of the propelling power, may be reduced to 35 cwt., exclusive of the load and fuel and water: but thinks that it is possible to reduce the weight still further.

A steam carriage constructed by Mr. Gurney, weighing 35 cwt., working for 8 hours, is found, according to his statement, to do the work of about 30 horses. He calculates that the weight of his propelling carriage, which would be capable of drawing 18 persons, would be equal to the weight of 4 horses; and the carriage in which these persons would be drawn would have the same weight as a common stage coach capable of carrying the same number of persons. Thus the weight of the whole—the propelling carriage and the carriage for passengers taken together—would be the same with the weight of a common stage coach, with 4 horses inclusive.

(108.) There are two methods of applying locomotives upon common roads to the transport of passengers or goods; the one is by causing the locomotive to carry, and the other to draw the load; and different projectors have adopted the one and the other method. Each is attended with its advantages and disadvantages. If the same carriage transport the engine and the load, the weight of the whole will be less in proportion to the load carried; also a greater pressure may be produced on the wheels by which the load is propelled. It is also thought that a greater facility in turning and guiding the vehicle, greater safety in descending the hills, and a saving in the original cost, will be obtained. On the other hand, when the passengers are placed in the same carriage with the engine, they are necessarily more exposed to the noise of the machinery and to the heat of the boiler and furnace. The danger of explosion is so slight, that, perhaps, it scarcely deserves to be mentioned; but still the apprehension of danger on the part of the passengers, even though groundless, should not be disregarded. This apprehension will be obviously removed or diminished by transferring the passengers into a carriage separate from the engine; but the greatest advantage of keeping the engine separate from the passengers is the facility which it affords of changing one engine for another in case of accident or derangement on the road, in the same manner as horses are changed at the different stages: or, if such an accident occur in a place where a new engine cannot be procured, the load of passengers may be carried forward by horses, until it is brought to some station where a locomotive may be obtained. There is also an advantage arising from the circumstance that when the engines are under repair, or in process of cleaning, the carriages for passengers are not necessarily idle. Thus the same number of carriages for passengers will not be required when the engine is used to draw as when it is used to carry.

In case of a very powerful engine being used to carry great loads, it would be quite impracticable to place the engine and loads on four wheels, the pressure being such as no turnpike road could bear. In this case it would be indispensably necessary to place a part of the load at least upon separate carriages to be drawn by the engine.

In the comparison of carriages propelled by steam with carriages drawn by horses, there is no respect in which the advantage of the former is so apparent as the safety afforded to the passenger. Steam power is under the most perfect control, and a carriage thus propelled is capable of being guided with the most admirable precision. It is also capable of being stopped almost suddenly, whatever be its speed; it is capable of being turned within a space considerably less than that which would be necessary for four-horse coaches. In turning sharp corners, there is no danger, with the most ordinary care on the part of the conductor. On the other hand, horse-power, as is well known, is under very imperfect control, especially when horses are used, adapted to that speed which at present is generally considered necessary for the purpose of travelling. "The danger of being run away with and overturned," says Mr. Farey, in his evidence before the House of Commons, "is greatly diminished in a steam coach. It is very difficult to control four such horses as can draw a heavy stage coach ten miles an hour, in case they are frightened or choose to run away; and, for such quick travelling, they must be kept in that state of courage that they are always inclined to run away, particularly down hill, and at sharp turns in the road. Steam power has very little corresponding danger, being perfectly controllable, and capable of having its power reversed to retard in going down hill. It must be carelessness that would occasion the overturning of a steam carriage. The chance of breaking down has been hitherto considerable, but it will not be more than in stage coaches when the work is truly proportioned and properly executed. The risk from explosion of the boiler is the only new cause of danger, and that I consider not equivalent to the danger from horses."

That the risk of accident from explosion is very slight indeed, if any such risk exists, may be proved from the fact that the boilers used on the Liverpool and Manchester railroad being much larger, and, in proportion, inferior in strength to those of Mr. Gurney, and other steam carriage projectors, have never yet been productive of any injurious consequences by explosion, although they have frequently burst. I have stood close to a locomotive on the railroad when the boiler burst. The effect was that the water passed through the tubes into the fire and extinguished it, but no other consequence ensued.

In [fig. 65]. is represented the appearance of a locomotive of Mr. Gurney's drawing after it a carriage for passengers.

Fig. 65.

(109.) One of the greatest difficulties which locomotives upon a turnpike road have to encounter is the ascent of very steep hills, for it is agreed upon all hands that hills of very moderate inclinations present no difficulty which may not be easily overcome, even in the present state of our knowledge. The fact of Mr. Gurney having propelled his carriage up Old Highgate Hill, when the apparatus was in a a much more imperfect state than that to which it has now attained, establishes the mere question of the possibility of overcoming the difficulty; but it remains still to be decided whether the inconvenience caused by providing means of meeting the exigency of very steep hills may not be greater than the advantage of being able to surmount them can compensate for: and Mr. Farey, whose authority upon subjects of this kind is entitled to the highest respect, thinks that it is upon the whole more advantageous to provide, at very steep hills, post horses to assist the steam carriage up them, than to incur the inconvenience of providing the necessary power and strength of machinery for occasions which at best but rarely occur. If the question merely referred to the command of motive power, it appears to me that Mr. Gurney's boiler would be amply sufficient to supply all that could be required for any hills which occur upon turnpike roads; but it is not to be forgotten, that not merely an ample supply of motive power, but also a strength and weight in the machinery proportionate to the power to be exerted, is indispensably necessary. The strength and weight necessary to ascend a very steep hill will be considerably greater than that which is necessary for a level road, or for hills of moderate inclinations; and it follows that if we ascend those steep hills by the unaided power of the locomotive, we must load the engine with all the weight of machinery requisite for such emergencies, such additional weight being altogether unnecessary, and therefore a serious impediment upon all other parts of the road, inasmuch as it must exclude an equivalent weight of goods or passengers, which might otherwise be transported, and thereby in fact diminish proportionally the efficiency of the machine. It is right, however, to observe, that this is a point upon which a difference of opinion is entertained by persons equally competent to form a judgment, and that some consider that it is practicable to construct an engine without inconvenient weight which will ascend all the hills which occur upon turnpike roads.

However this may be, the difficulty is one which the improved system of roads in England renders of a comparatively trifling nature. If horses were resorted to as the means of assistance up such hills as the engine would be incapable of surmounting, such aid would not be requisite more than twice or thrice upon the mail-coach road between London and Holyhead; and the same may be said of the roads connecting the greatest points of intercourse in the kingdom. Such hills as the ascent at Pentonville upon the New Road, the ascent in St. James's Street, the ascent from Waterloo Place to the County Fire Office, the ascent at Highgate Archway, present no difficulty whatever. It is only Old Highgate Hill, and hills of a similar kind, which would ever require a supply of horses in aid of the engine. I therefore incline to agree with Mr. Farey, that, at least for the present, it will be more expedient to construct carriages adapted to surmount moderate hills only, and to provide post horses in aid of the extreme emergencies to which I have just alluded.

(110.) In the boiler to be used in the steam carriage projected by Mr. Walter Hancock, the subdivision of the water is accomplished by dividing a case or box by a number of thin plates of metal like a galvanic battery, the water being allowed to flow between every alternate pair of plates, at E, [fig. 66]., and the intermediate spaces H forming the flue through which the flame and hot air are propelled.

Fig. 66.

In fact, a number of thin plates of water are exposed on both sides to the most intense action of flame and heated air; so that steam of a high-pressure is produced in great abundance and with considerable rapidity. The plates forming the boiler are bolted together by strong iron ties, extending across the boiler, at right angles to the plates, as represented in the figure. The distance between the plates is two inches.

There are ten flat chambers of this kind for water, and intermediately between them ten flues. Under the flues is the fire-place, or grate; containing six square feet of fuel in vivid combustion. The chambers are all filled to about two thirds of their depth with water, and the other third is left for steam. The water-chambers, throughout the whole series, communicate with each other both at top and bottom, and are held together by two large bolts. By releasing these bolts, at any time, the chambers fall asunder; and by screwing them up they may be all made tight again. The water is supplied to the boiler by a forcing-pump, and the steam issues from the centre of one of the flues at the top.

These boilers are constructed to bear a pressure of 400 or 500 lbs. on the square inch; but the average pressure of the steam on the safety valve is from 60 to 100. There are 100 square feet of surface in contact with the water exposed to the fire. The stages which such an engine performs are eight miles, at the end of which a fresh supply of fuel and water are taken in. It requires about two bushels of coke for each stage.

The steam carriage of Mr. Hancock differs from that of Mr. Gurney in this,—that in the former the passengers and engine are all placed on the same carriage. The boiler is placed behind the carriage; and there is an engine-house between the boiler and the passengers, who are placed on the fore part of the vehicle; so that all the machinery is behind them. The carriages are adapted to carry 14 passengers, and weigh, exclusive of their load, about 3-1/2 tons, the tires of the wheels being about 3-1/2 inches in breadth. Mr. Hancock states, that the construction of his boiler is of such a nature, that, even in the case of bursting, no danger is to be apprehended, nor any other inconvenience than the stoppage of the carriage. He states that, while travelling about 9 miles an hour, and working with a pressure of about 100 lbs. on the square inch, loaded with 13 passengers, the carriage was suddenly stopped. At first the cause of the accident was not apparent; but, on opening one of the cocks of the boiler, it was found that it contained neither steam nor water. Further examination proved that the boiler had burst. On unscrewing the bolts, it was found there were several large holes in the plates of the water-chamber, through which the water had flowed on the fire; but neither noise nor explosion, nor any dangerous consequences ensued.

This boiler has some obvious defects. It is evident that thin flat plates are the form which, mechanically considered, is least favourable to strength; nor does it appear that any material advantage is gained to compensate for this by the magnitude of the surface exposed to the action of the fire. It is a great defect that a part of the surface of each of the plates is exposed to the action of the fire while it is out of contact with the water; in fact, in the upper part of the spaces marked E, [fig. 66]., steam only is contained. It has been observed by engineers, and usually shown by experiment, that if steam be heated on the surface of water it will be decomposed, and its elasticity destroyed; this is not the only evil connected with the arrangement, for on this part of the metal, nevertheless, the fire acts,—with less intensity, it is true, than on that part which contains the water,—but still with sufficient intensity to destroy the metal. Mr. Hancock appears to have attempted to remedy this defect by occasionally inverting the position of the flat chambers, placing that which at one time was at the bottom at the top, and vice versâ. This may equalise the wear produced by the action of the fire upon the metal out of contact with water, but still the wear on the whole will not be less rapid. There appears to be no provision or space for separating the steam from the water with which it is charged; in fact, there are no means in this engine of discharging the function of Mr. Gurney's separator. This will be found to produce considerable waste and loss of power in practice.

The bars upon which the fire rests are of solid metal; and such is the intense heat to which they are subject, that, in an engine constantly at work, it is unlikely that they will last, without being renewed, more than about a week, if so much. The draft is maintained in this engine by means of a revolving fan worked by the engine. This, perhaps, is one of the greatest defects as compared with other locomotives. The quantity of power requisite to work this bellows, and of which the engine is robbed, is very great. This defect is so fatal, that I consider it is quite impossible that the ingenious inventor can persevere in the use of it. Mr. Hancock has abandoned the use of the cranks upon his working axle, and has substituted an endless chain and rag-wheels. This also appears to me defective, and a source by which considerable power is lost. On the other hand, however, the weakness of the axle which is always produced by cranks is avoided.

(111.) Mr. Nathaniel Ogle of Southampton obtained a patent for a locomotive carriage, and worked it for some time experimentally; but as his operations do not appear to have been continued, I suppose he was unsuccessful in fulfilling those conditions, without which the machine could not be worked with economy and profit. In his evidence before a committee of the House of Commons, he has thus described his contrivance:—

"The base of the boiler and the summit are composed of cross pieces, cylindrical within and square without; there are holes bored through these cross pieces, and inserted through the whole is an air tube. The inner hole of the lower surface, and the under hole of the upper surface, are rather larger than the other ones. Round the air tube is placed a small cylinder, the collar of which fits round the larger aperture on the inner surface of the lower frame, and the under surface of the upper frame-work. These are both drawn together by screws from the top; these cross pieces are united by connecting pieces, the whole strongly bolted together; so that we obtain, in one tenth of the space, and with one tenth of the weight, the same heating surface and power as is now obtained in other and low-pressure boilers, with incalculably greater safety. Our present experimental boiler contains 250 superficial feet of heating surface in the space of 3 feet 8 inches high, 3 feet long, and 2 feet 4 inches broad, and weighs about 8 cwt. We supply the two cylinders with steam, communicating by their pistons with a crank axle, to the ends of which either one or both wheels are affixed, as may be required. One wheel is found to be sufficient, except under very difficult circumstances, and when the elevation is about one foot in six, to impel the vehicle forward.

"The cylinders of which the boiler is composed are so small as to bear a greater pressure than could be produced by the quantity of fire beneath the boiler; and if any one of these cylinders should be injured by violence, or any other way, it would become merely a safety valve to the rest. We never, with the greatest pressure, burst, rent, or injured our boiler; and it has not once required cleaning, after having been in use twelve months."

(112.) Dr. Church of Birmingham has obtained a succession of patents for contrivances connected with a locomotive engine for stone roads; and a company, consisting of a considerable number of individuals, possessing sufficient capital, has been formed in Birmingham for carrying into effect his designs, and working carriages on his principle. The present boiler of Dr. Church is formed of copper. The water is contained between two sheets of copper, united together by copper nails, in a manner resembling the way in which the cloth forming the top of a mattress or cushion is united with the cloth which forms the bottom of it, except that the nails or pins, which bind the sheets of copper, are much closer together. The water, in fact, seems to be "quilted" or "padded," in between two sheets of thin copper. This double sheet of copper is formed into an oblong rectangular box, the interior of which is the fire-place and ash-pit, and over the end of which is the steam-chest. The great extent of surface exposed to the immediate action of the fire causes steam to be produced with great rapidity.

An obvious defect which such a boiler presents is the difficulty of removing from it any deposite or incrustation, which may collect between the sheets of copper so closely and intricately connected. Dr. Church proposes to effect this, when it is required, by the use of an acid, which will combine readily with the incrustation, and by which the boiler may therefore be washed. This method of cleansing boilers was recommended by Dr. Wollaston to Mr. Gurney, who informed me, however, that he found that it was not practicable in the way in which boilers must commonly be used.

I apprehend, also, that the spaces between the sheets of copper, in Dr. Church's boiler just described, will hardly permit the steam bubbles which will be formed to escape with sufficient facility into the steam-chest; and being retained in that part of the boiler which is exposed to the action of the fire, the metal will be liable to receive an undue temperature.

I have, however, seen this engine working, and its performance was very satisfactory.

(113.) Various other projects for steam carriages on common roads are in various degrees of advancement, among which may be mentioned those of Messrs. Maudslay and Field, Col. Macerone, and Mr. Russell of Edinburgh; but our limits compel us to omit any detailed account of them.

CHAPTER XII.
STEAM NAVIGATION.

Propulsion by paddle-wheels. — Manner of driving them. — Marine Engine. — Its form and arrangement. — Proportion of its cylinder. — Injury to boilers by deposites and incrustation. — Not effectually removed by blowing out. — Mr. Samuel Hall's condenser. — Its advantages. — Originally suggested by Watt. — Hall's steam saver. — Howard's vapour engine. — Morgan's paddle-wheels. — Limits of steam navigation. — Proportion of tonnage to power. — Average speed. — Consumption of fuel. — Iron steamers. — American steam raft. — Steam navigation to India. — By Egypt and the Red Sea to Bombay. — By same route to Calcutta. — By Syria and the Euphrates to Bombay. — Steam communication with the United States from the west coast of Ireland to St. John's, Halifax, and New York.

(114.) Among the various ways in which the steam engine has ministered to the social progress of our race, none is more important and interesting than the aid it has afforded to navigation. Before it lent its giant powers to that art, locomotion over the waters of the deep was attended with a degree of danger and uncertainty, which seemed so necessary and so inevitable, that, as a common proverb, it became the type and representative of everything else which was precarious and perilous. The application, however, of steam to navigation has rescued the mariner from much of the perils of the winds and waves; and even in its actual state, apart from the improvements which it is still likely to receive, it has rendered all voyages of moderate length as safe and as regular as journeys over land. We are even now upon the brink of such improvements as will probably so extend the powers of the steam engine, as to render it available as the means of connecting the most distant points of the earth.

The manner in which the steam engine is commonly applied to propel vessels must be so familiar as to require but short explanation. A pair of wheels, like common under-shot water-wheels, bearing on their rims a number of flat boards called paddle boards, are placed one at each side of the vessel, in such a position that when the vessel is immersed to her ordinary depth the lowest paddle boards shall be submerged. These wheels are fixed upon a shaft, which is made to revolve by cranks placed upon it, in the same manner as the fly-wheel of a common steam engine is turned. It is now the invariable custom to place in steam vessels two engines, each of which works a crank: these two cranks are placed at right angles to each other, in the same manner as the cranks already described upon the working axles of locomotive engines. When either crank is at its dead point, the other is in full activity, so that the necessity for a fly wheel is superseded. The engines may be either condensing or high-pressure engines; but in Europe the low-pressure condensing engine has been invariably used for nautical purposes. In the United States, where steam navigation had its origin, and where it was, until a recent period, much more extensively practised than in Europe, less objection was felt to the use of high-pressure engines; and their limited bulk, their small original cost, and simplicity of structure, strongly recommended them, more especially for the purposes of river navigation.

(g.) The original type of nearly all the engines used in steam navigation was that constructed at Soho by Watt and Bolton for Mr. Fulton, and first used by him upon the Hudson river. This had the beam below the piston-rod as in the English boat-engines, but the cylinder above deck, as in the American. From this primitive form, the two nations have diverged in opposite directions. The Americans, navigating rivers, and having speed for their principal object, have not hesitated to keep the cylinder above deck, and have lengthened the stroke of the piston in order to make the power cut on a more advantageous point of the wheel. Compactness has been gained by the suppression of the working beam.

On the other hand, the English, having the safe navigation of stormy seas as their more important object, have shortened the cylinder in order that the piston-rod may work wholly under the deck, and the arrangement of Fulton's working beam has been retained by them. In this way there can be no doubt, that they have lost the power of obtaining equal speed from a given expenditure of power, and those conversant in the practice and theory of stowing ships may well doubt whether security is not also sacrificed.—A. E.

The arrangement of the parts of the maritime engine differs in some respects, from that of the land engine. Want of room renders greater compactness necessary; and in order to diminish the height of the machine, the working beam is transferred from above the cylinder to below it. In fact, there are two beams, one at each side of the engine, which are connected by a parallel motion with the piston, the rods of the parallel motion extending from the lower part of the engine to the top of the piston-rod. The working end of the beam is connected with the crank by a connecting rod, presented upwards instead of downwards, as in the land engine. The proportion of the length and diameters of the cylinders differ from those of land engines for a like reason: to save height, short cylinders with large diameters are used. Thus, in an engine of 200 horse-power, the length of the cylinder is sometimes 60 inches, and its diameter 53 inches: the valves and the gearing which work them, the air-pump, condenser, and other parts of the machine, do not differ materially from those already described in the land engines.

(h.) The action of machinery may be rendered more equable by using two engines, each of half the power, instead of a single one. If one of these be working with its maximum force when the other is changing the direction of its motion, the result of their joint action will be a force nearly constant. Such a combination was invented by Mr. Francis Ogden, and has been used in several steam boats constructed under his directions. It would however be far more valuable in other cases, particularly where great uniformity in the velocity is indispensable.

This method has now become almost universal in the engines used in the English steam boats, each of which has usually two, both applied to the same shaft, and therefore capable of being used singly or together to turn the paddle wheels. In the American steam boats, although two engines have been often applied, each usually acts upon no more than one of the wheels. We can see no other good reason for this, than that our engineers do not wish to be thought to copy Mr. Ogden.—A. E.

The nature of the work which the marine engine has to perform, is such, that great regularity of action is neither necessary nor possible. The agitation of the surface of the sea will cause the immersion of the paddle-wheels to vary very much, and the resistance to the engine will undergo a corresponding change: the governor, and other parts of the apparatus already described, contrived for imparting to the engine that extreme regularity which is indispensable in its application to manufactures, are therefore here omitted; and nothing is introduced except what is necessary to maintain the engine in its full working power.

It is evident that it must be a matter of considerable importance to reduce the space occupied by the machinery on board a vessel to the least possible dimensions. The marine boilers, therefore, are constructed so as to yield the necessary quantity of steam with the smallest practical dimensions. With this view a much more extensive surface in proportion to the size of the boiler is exposed to the action of the fire. In fact, the flues which carry off the heated air to the chimney are conducted through the boiler, so as to act upon the water on every side in thin oblong shells, which traverse the boiler backward and forward repeatedly, until finally they terminate in the chimney. By this arrangement the original expense of the boilers is very considerably increased; but, on the other hand, their steam-producing power is also greatly augmented; and from experiments lately made by Mr. Watt at Birmingham, it appears that they work with an economy of fuel compared with common land boilers in the proportion of about two to three. Thus they have the additional advantage of saving the tonnage as well as the expense of one third of the fuel.

One of the most formidable difficulties which has been encountered in applying the steam engine to the purposes of navigation has arisen from the necessity of supplying the boiler with sea water, instead of pure fresh water. This water (also used for the purpose of condensation) being injected into the condenser and mixed with the condensed steam, is conducted as feeding water into the boiler.

The salt contained in the sea water, not being evaporated, remains in the boiler. In fact, it is separated from the water in the same manner as by the process of distillation. As the evaporation in the boiler is continued, the proportion of salt contained in the water is, therefore, constantly increased, until a greater proportion is accumulated than the water is capable of holding in solution; a deposition of salt then commences, and is lodged in the cavities at the bottom of the boiler. The continuance of this process, it is evident, would at length fill the boiler with salt.

But besides this, under some circumstances, a deposition of lime[35] is made, and a hard incrustation is formed on the inner surface of the boiler. In some situations, also, sand and mud are received into the boiler, being suspended in the water pumped in for feeding it. All these substances, whether deposited in a loose form in the lower parts of the boiler or collected in a crust on its inner surface, form obstructions to the passage of heat from the fire to the water. The crust thus formed is not unfrequently an inch or more in thickness, and so hard that good chisels are broken in removing it. The heat more or less intercepted by these substances collects in the metal of the boiler, and raises it to a temperature far exceeding that of the water within. It may even, if the incrustation be great, be sufficient to render the boiler red-hot. These circumstances occasion the rapid wear of the boiler, and endanger its safety by softening it.

The remedy which has generally been adopted to remove or diminish these injurious effects consists in allowing a stream of hot water continually to flow from the boiler, and supplying from the feed-pipe a corresponding portion of cold water. While the hot water which flows from the boiler in this case contains, besides its just proportion of salt, that portion which has been liberated from the water converted into vapour, the cold water which is supplied through the feed-pipe contains less than its just proportion of salt, since it is composed of the natural sea water, mixed with the condensed steam, which latter contains no salt. In this manner, the proportion of the salt in the boiler may be prevented from accumulating; but this is attended with considerable inconvenience and loss. It is evident that the discharge of the hot water, and the introduction of so considerable a quantity of cold water, entails upon the machine a great waste of fuel, and, consequently, renders it necessary that the vessel should be supplied with a much larger quantity of coals than are merely necessary for propelling it. In long voyages, where this inconvenience is most felt, this is a circumstance of obvious importance. But besides the waste of fuel, the speed of the vessel is diminished by the rate of evaporation in the boiler being checked by the constant stream of cold water flowing into it. This process of discharging the water, which is called blowing out, is only practised occasionally. In the Admiralty steamers, the engineers are ordered to blow out every two hours. But it is more usual to do so only once a day.

This method, however, of blowing out furnishes but a partial remedy for the evils we have alluded to: a loose deposite will perhaps be removed by such means, but an incrustation, more or less according to the circumstances and quality of the water, will be formed; besides which, the temptation to work the vessel with efficiency for the moment influences the engine men to neglect blowing out; and it is found that this class of persons can rarely be relied upon to resort to this remedy with that constancy and regularity which are essential for the due preservation of the boilers. The class of steam vessels which, at present, are exposed to the greatest injury from these causes are the sea-going steamers employed by the Admiralty; and we find, by a report made by Messrs. Lloyd and Kingston to the Admiralty, in August, 1834, that it is admitted that the method of blowing out is, even when daily attended to, ineffectual. "The water in the boiler," these gentlemen observe, "is kept from exceeding a certain degree of saltness, by periodically blowing a portion of it into the sea; but whatever care is taken, in long voyages especially, salt will accumulate, and sometimes in great quantities and of great hardness, so that it is with difficulty it can be removed. Boilers are thus often injured as much in a few months as they would otherwise be in as many years. The other evil necessarily resulting from this state of things is, besides the rapid destruction of the boilers, a great waste of fuel, occasioned by the difficulty with which the heat passes through the incrustation on the inside, by the leaks which are thereby caused, and by the practice of blowing out periodically, as before mentioned, a considerable portion of the boiling water."

It would be impracticable to carry on board the vessel a sufficient quantity of pure fresh water to work the engine exclusively by its means. To accomplish this, it would be necessary to have a sufficient supply of cold water to keep the condensing cistern cold, to supply the jet in the condenser, and to have a reservoir in which the warm water coming from the waste pipe of the cold cistern might be allowed to cool. Engineers have therefore directed their attention to some method by which the steam may be condensed without a jet, and after condensation be preserved for the purpose of feeding the boiler. If this could be accomplished, it would not be necessary to provide a greater quantity of pure water than would be sufficient to make up the small portion of waste which might proceed from leakage and from other causes; and it is evident that this portion might always be readily obtained by the distillation of sea water, which might be effected by a small vessel exposed to the same fire which acts upon the boiler.

(115.) Mr. Samuel Hall of Basford, near Nottingham, has taken out patents for a new form of condenser, contrived for the attainment of these ends, besides some other improvements in the engine.

The condenser of Mr. Hall consists of a great number of narrow tubes immersed in a cistern of cold water: the steam as it passes from the cylinder, after having worked the piston, enters these tubes, and is immediately condensed by their cold surfaces. It flows in the form of water from their remote extremities, and is drawn off by the air-pump, and conducted in the usual way to a cistern from which the boiler is fed. In the marine engines constructed under Mr. Hall's patents, the tubes of the condenser being in an upright or vertical position, the steam flows from the cylinder into the upper part of the condenser, which is a low flat chamber, in the bottom of which is inserted the upper extremities of the tubes, through which the steam passes downwards, and as it passes is condensed. It flows thence into a similar chamber below, from whence it is drawn off by the air-pump.

It is evident that at sea an unlimited supply of cold water may be obtained to keep the condensing cistern cold, so that a perfect condensation may always be effected by these tubes, if they be made sufficiently small. The water formed by the condensed steam will be pure distilled water; and if the boiler be originally filled with water which does not hold in solution any earthy or other matter which might be deposited or encrusted, it may be worked for any length of time without injury. The small quantity of waste from leakage is supplied in Mr. Hall's engine by a simple apparatus in which a sufficient quantity of sea water may be distilled.

The following are the advantages, as stated by Mr. Hall, to be gained by his condenser:—

1. A saving of fuel, amounting in some cases to so much as a third of the ordinary consumption.

2. The preservation of the boilers from the destruction produced in common engines by the corrosive action of sea or other impure water, and by encrustations of earthy matter.

3. The saving of the time spent in cleaning the boilers.

4. A considerable increase of power, owing to the cleanness of the boilers; the absence of injected water to be pumped out of a vacuum; the greater perfection of the vacuum; the better preservation of the piston and valves of the air-pump; and (by another contrivance of his) the more perfect lubrication of the parts of the engine.

5. The water in the boiler being constantly maintained at the same height by self-acting arrangement.

6. The size of a boiler exerting a given power, being much smaller than the common kind, owing to its more perfect action.

Messrs. Lloyd and Kingston were employed by government to examine and report the effects of Mr. Hall's boilers, and they stated in their report, already referred to, that the result is so successful as to leave nothing to be wished for. Among the advantages which they enumerate are the increased durability of the engines; the prevention of accidents through carelessness, or otherwise, arising from the condenser and air-pump becoming choked with injection water; and the additional security against the boilers being burnt in consequence of the water being suffered to get too low. But the greatest advantages, compared with which they consider all others to be of secondary importance, are the increased durability of the boilers and the saving of fuel.

About 16 engines, built either wholly upon Mr. Hall's principle or having his condenser attached to them, have now (October, 1835) been working in different parts of England, and on board different vessels for various periods, from three years to three months; and it appears from the concurrent testimony of the proprietors and managers of them, that they are attended with all the advantages which the patentee engaged for. The part of the contrivance the performance of which would have appeared most doubtful would have been the maintenance of a sufficiently good vacuum in the condenser, in the absence of the usual method of condensation by the injection of cold water; nevertheless it appears that a better vacuum is sustained in these engines than in the ordinary engines which condense by jet. The barometer-gauge varies from 29 to 29-1/2 inches, and in some cases comes up to 30 inches, according to the state of the barometer: this is a vacuum very nearly perfect, and indeed may be said to be so for all practical purposes. The Prince Llewellyn and the Air steam packets, belonging to the St. George Steam Packet Company, have worked such a pair of these engines for about a year. The City of London steam packet, the property of the General Steam Navigation Company, has been furnished with two fifty-horse engines, and has worked them during the same period. In all cases the boilers have been found perfectly free from scale or incrustation; and the deposite is either absolutely nothing or very trifling, requiring the boiler to be swept about once in half a year, and sometimes not so often. The trial which has been made of these engines in the navy has proved satisfactory, so far as it has been carried. The Lords of the Admiralty have lately ordered a pair of seventy-horse engines to be constructed on this principle for a vessel now (October, 1835) in process of construction;[36] and another vessel in all respects similar, except having copper boilers, is likewise ordered; so that a just comparison may be made. It would, however, have been more fair if both vessels had been provided with iron boilers, since copper does not receive incrustation as readily as iron.

It would seem that the advantages of these boilers in the vessels of the St. George Steam Packet Company were regarded by the directors as sufficiently evident, since, after more than a year's experience, they are about to place a pair of ninety-horse engines of this kind in a new and powerful steamer called the Hercules.

Engines furnished with Mr. Hall's apparatus have not yet, so far as I am informed, been tried with reference to the power exerted by the consumption of a given quantity of fuel. The mere fact of a good vacuum being sustained in the condenser cannot by itself be regarded as a conclusive proof of the efficiency of the engine, without the water or air introduced by a condensing jet. Mr. Hall, nevertheless, uses as large an air-pump as that of an ordinary condensing engine, and recommends even a larger one. For what purpose, it may be asked, is such an appendage introduced? If there be nothing to be removed but the condensed steam, a very small pump ought to be sufficient. It is not wonderful that a good vacuum is sustained in the condenser, if the power expended on the air-pump is employed in pumping away uncondensed steam. Such a contrivance would be merely a deception, giving an apparent but no real advantage to the engine.

Having mentioned these advantages, which are said to arise from Mr. Hall's condenser, it is right to state that it is in fact a reproduction of an early invention of Mr. Watt. There is in possession of James Watt, esquire, a drawing of a condenser laid before parliament in 1776, in which the same method of condensing without a jet is proposed. Mr. Watt, however, finding that he could not procure by that means so sudden or so perfect a vacuum as by injection, abandoned it. I believe he also found that the tubes of the condenser became furred with a deposite which impeded the process of condensation. It would seem, however, that Mr. Hall has found means to obviate these effects. It is right to add, that Mr. Hall, in his specification, distinctly disclaims all claim to the method of condensing by tubes without jet.

There is another part of Mr. Hall's contrivance which merits notice. In all engines, a considerable quantity of steam is allowed to escape from the safety valve. Whenever the vessel stops, the steam, which would otherwise be taken from the boiler by the cylinders, passes out through this valve into the atmosphere. Also, whenever the cylinders work at under-power, and do not consume the steam as fast as it is produced by the boiler, the surplus steam escapes through the valve. Now, according to the principle of Mr. Hall's method, it is necessary to save the water which thus escapes in vapour, since otherwise the pure water of the boiler would be more rapidly wasted. Mr. Hall accordingly places a safety valve of peculiar construction in communication with a tube which leads to the condenser, so that whenever, either by stopping the engine or diminishing its working power, steam accumulates in the boiler, its increased pressure opens the safety valve, and it passes through this pipe to the condenser, where it is reconverted into water, and pumped off by the air-pump into the cistern from which the boiler is fed.

The attainment of an object so advantageous as to extend the powers of steam navigation, and to render the performance of voyages of any length practicable, so far as the efficiency of the machinery is concerned, has naturally stimulated the inventive genius of the country. The preservation of the boiler by the prevention of deposite and incrustation is an object of paramount importance; and its attainment necessarily involves, to a certain degree, another condition on which the extension of steam voyages must depend, viz. the economy of fuel. In proportion as the economy of fuel is increased, in the same proportion will the limit to which steam navigation may be carried be extended.

(116.) A patent has been obtained by Mr. Thomas Howard of London for a form of engine possessing much novelty and ingenuity, and having pretensions to the attainment of a very extraordinary economy of fuel, in addition to those advantages which have been already explained as attending Mr. Hall's engines. In these engines, as in Mr. Hall's, the steam is constantly reproduced from the same water, so that pure or distilled water may be used; but Mr. Howard dispenses with the use of a boiler altogether. The steam also with which he works is in a state essentially different from the steam used in ordinary engines. In these, the vapour is raised directly from the water in a boiling state, and it contains as much water as it is capable of holding at its temperature. Thus, at the temperature of 212°, a cubic foot of steam used in common engines will contain about a cubic inch of water; but in the contrivance of Mr. Howard, a considerable quantity of heat is imparted to the steam before it passes into the cylinder in addition to what is necessary to maintain it in the vaporous form.

A quantity of mercury is placed in a shallow wrought-iron vessel over a coke fire, by which it is maintained at the temperature of from 400° to 500°. The surface exposed to the fire is three fourths of a square foot for each horse-power. The upper surface of the mercury is covered by a very thin plate of iron, which rests in contact with it, and which is so contrived as to present about four times as much surface as that exposed beneath to the fire. Adjacent to this a vessel of water is placed, kept heated nearly to the boiling-point, which communicates by a nozzle and valve with the chamber or vessel immediately above the mercury. At intervals corresponding to the motion of the piston, a small quantity of water is injected from this vessel, and thrown upon the plate of iron which rests upon the hot mercury: from this it receives the heat necessary not only to convert it into steam, but to expand that steam, and raise it to a temperature above the temperature it would receive if raised in immediate contact with water. In fact, the steam thus produced will have a temperature not corresponding to its pressure, but considerably above that point, and it will therefore be in circumstances under which it will part with more or less of its heat, and allow its temperature to be lowered without being even partially condensed, whereas steam used in the ordinary steam engines must be more or less condensed by the slightest diminution of its temperature. The quantity of liquid injected into the steam chamber must be regulated by the power at which the engine is intended to work. The fire is supplied with air by a blowing machine, which is subject to exact regulation. The steam, produced in the manner already explained, passes into a chamber which surrounds the working cylinder; and this chamber itself is enclosed by another space, through which the air from the furnace must pass before it reaches the flue. In this way it imparts its redundant heat to the steam which is about to work the cylinder, and raises it to a temperature of about 400°; the pressure, however, not exceeding 25 lbs. per square inch. The arrangement of valves for the admission of the steam to the cylinder is such as to cause the steam to act expansively.

The vacuum on the opposite side of the piston is maintained by condensation in the following manner:—The condenser is a copper vessel placed in a cistern constantly supplied with cold water, and the steam flows to it from the cylinder by an eduction pipe in the usual way: a jet is admitted to it from an adjacent vessel, which, before the engine commences work, is filled with distilled water; the condensing water and condensed steam are pumped from the condenser by air-pumps of the usual construction, but smaller, inasmuch as there is no air to be withdrawn, as in common engines. The warm water thus pumped out of the condenser is driven into a copper pipe or worm, which is carried with many coils through a cistern of cold water, so that when it arrives at the end of this pipe it is reduced to the common temperature of the atmosphere. The pipe is then conducted into the vessel of distilled water already mentioned, and the water flowing from it continually replaces the water which flows into the condenser through the condensing jet. The condensing water being purged of air, a very small air-pump is sufficient; since it has only to exhaust the condenser and tubes at starting, and to remove whatever air may enter by casual leakage. The patentee states that the condensation takes place as rapidly and as perfectly as in the best steam engine, and it is evident that this method of condensation is applicable even where the mercurial generator already described may not be employed. The vessel from which the water is injected into the mercurial generator is likewise fed by the air-pump connected with the condenser. There is another pipe besides the copper worm already described, which is carried from the hot well to this vessel, and the water is of course returned through it without being cooled. This vessel is likewise sufficiently exposed to the action of the fire to maintain it at a temperature somewhat below the boiling point.

An apparatus of this construction was in the spring of the present year (1835) placed in the Admiralty steamer called the Comet, in connexion with a pair of 40-horse engines. The patentee states that these engines were ill adapted to the contrivance; nevertheless, the vessel was successfully worked in the Thames for 800 miles: she also performed a voyage from Falmouth to Lisbon, but was prevented from returning by an accident which occurred to the machinery near the latter port. In this experimental voyage, the consumption of fuel is stated never to have exceeded a third of her former consumption, when worked by Bolton and Watt's engines; the former consumption of coals being about 800 lbs. per hour, and the consumption with Mr. Howard's engine being under 250 lbs. of coke per hour.

After this failure (which, however, was admitted to be one of accident and not of principle) the government did not consider itself justified in bestowing further time or incurring greater expense in trying this engine. Mr. Howard, however, has himself built a new vessel, in which he is about to place a pair of forty-horse engines. This vessel is now (December, 1835) nearly ready, and will bring the question to issue by a fair experiment. The advantages of the contrivance as enumerated by the patentee are:—

First, The small space and weight occupied by the machinery, arising from the absence of a boiler.

Secondly, The diminished consumption of fuel.

Thirdly, The reduced size of the flues.

Fourthly, The removal of the injurious effects arising from deposite and incrustation.

Fifthly, The absence of smoke.

Some of these improvements, if realized, will be attended with important advantages in steam navigation. Steamers of a given tonnage and power will have more disposable space for lading and fuel, and in short voyages may carry greater freight, or an increased number of passengers; or by taking a larger quantity of fuel,[37] may make greater runs than are now attainable; or, finally, with the same tonnage and the same lading, they may be supplied with more powerful machinery.

(117.) To obtain from the moving power its full amount of mechanical effect in propelling the vessel, it would be necessary that its force should propel, by constantly acting against the water in a horizontal direction, and with a motion contrary to the course of the vessel. No system of mechanical propellers has, however, yet been contrived capable of perfectly attaining this end. Patents have been granted for many ingenious mechanical combinations to impart to the propelling surfaces such angles as appeared to the respective contrivers most advantageous. In most of these, however, the mechanical complexity has formed a fatal objection. No part of the machinery of a steam vessel is so liable to become deranged at sea as the paddle-wheels; and, therefore, such simplicity of construction as is compatible with those repairs which are possible on such emergencies is quite essential for safe practical use.

Fig. 67.

The ordinary paddle-wheel, as I have already stated, is a wheel revolving upon a shaft driven by the engine, and carrying upon its circumference a number of flat boards, called paddle boards, which are secured by nuts or braces in a fixed position; and that position is such that the planes of the paddle boards diverge nearly from the centre of the shaft on which the wheel turns. The consequence of this arrangement is that each paddle board can only act in that direction which is most advantageous for the propulsion of the vessel when it arrives near the lowest point of the wheel. In figure 67. let o be the shaft on which the common paddle wheel revolves; the position of the paddle boards are represented at A, B, C, &c.; X, Y represents the water line, the course of the vessel being supposed to be from X to Y; the arrows represent the direction in which the paddle-wheel revolves. The wheel is immersed to the depth of the lowest paddle board, since a less degree of immersion would render a portion of the surface of each paddle board mechanically useless. In the position A the whole force of the paddle board is efficient for propelling the vessel; but, as the paddle enters the water in the position H, its action upon the water, not being horizontal, is only partially effective for propulsion: a part of the force which drives the paddle is expended in depressing the water, and the remainder in driving it contrary to the course of the vessel, and, therefore, by its reaction producing a certain propelling effect. The tendency, however, of the paddle entering the water at H, is to form a hollow or trough, which the water, by its ordinary property, has a continual tendency to fill up. After passing the lowest point A, as the paddle approaches the position B, where it emerges from the water, its action again becomes oblique, a part only having a propelling effect, and the remainder having a tendency to raise the water, and throw up a wave and spray behind the paddle-wheel. It is evident that the more deeply the paddle-wheel becomes immersed the greater will be the proportion of the propelling power thus wasted in elevating and depressing the water; and, if the wheel were immersed to its axis, the whole force of the paddle boards, on entering and leaving the water, would be lost, no part of it having a tendency to propel. If a still deeper immersion takes place, the paddle boards above the axis would have a tendency to retard the course of the vessel. When the vessel is, therefore, in proper trim, the immersion should not exceed nor fall short of the depth of the lowest paddle; but for various reasons it is impossible in practice to maintain this fixed immersion: the agitation of the surface of the sea, causing the vessel to roll, will necessarily produce a great variation in the immersion of the paddle-wheels, one becoming frequently immersed to its axle, while the other is raised altogether out of the water. Also the draught of water of the vessel is liable to change, by the variation in her cargo: this will necessarily happen in steamers which take long voyages. At starting they are heavily laden with fuel, which as they proceed is gradually consumed, whereby the vessel is lightened; and it does not appear that it is practicable to use sea water as ballast to restore the proper degree of immersion.

(118.) Among the contrivances which have been proposed for remedying these defects of the common paddle wheel by introducing paddle boards capable of shifting their position as they revolve with the circumference of the wheel, the only one which has been adopted to any considerable extent in practice is that which is commonly known as Morgan's Paddle Wheel. The original patent for this contrivance was granted to Elijah Galloway, and sold by him to Mr. William Morgan. Subsequently to the purchase some improvements in its structure and arrangements were introduced, and it is now extensively adopted by Government in the Admiralty steamers. It was first tried on board His Majesty's steamer the Confiance; and after several successful experiments was ordered by the Lords of the Admiralty to be introduced on board the Flamer, the Firebrand, the Columbia, the Spitfire, the Lightning, a large war steamer called the Medea,[38] the Tartarus, the Blazer, &c. It has been tried by Government in several well-conducted experiments, where two vessels of precisely the same model, supplied with similar engines of equal power, and propelled, one by Morgan's paddle-wheels, and the other by the common paddle-wheels; when it was found that the advantage of the former, whether in smooth or in rough water, was quite apparent. One of the commanders in these experiments (Lieutenant Belson) states that the improvement in the speed of the Confiance, after being supplied with these wheels, was proportionately greater in a sea way than in smooth water; that their action was not impeded by the waves, since the variation of the velocity of the engine did not exceed one or two revolutions per minute: the vessel's way was never stopped, and there was no sensible increase of vibration on the paddle boxes during the gale. Another commander reported that on a comparison of the Confiance and a similar and equally powerful vessel, the Carron, the Confiance performed in fifty-four hours the voyage which occupied the Carron eighty-four hours in running. Independently of the great saving of fuel effected (namely, ten bushels per hour[39]), or the time saved in running the same distance, other advantages have been secured by the modification in question. On a comparison of the respective logs of the two vessels, it appeared that the Confiance had gained by the alteration in her wheels an increase of speed amounting to 2 knots on 7 in smooth water, and 2-1/2 knots on 4 to 4-1/2 knots in rough weather; that the action of the paddles did not bring up the engine or retard their velocity in a head sea; that in rolling their action assisted in righting the vessel; and that the wear and strain, as well on the vessel as on the engines, were materially reduced. With respect to the durability of these wheels, the commander of the Flamer reported in January, 1834, that in six weeks of the most tempestuous weather they found them to act remarkably well, without even a single float being shifted.[40]

This paddle-wheel is represented in figure 68. The contrivance may be shortly stated to consist in causing the wheel which bears the paddles to revolve on one centre, and the radial arms which move the paddles to revolve on another centre. Let A B C D E F G H I be the polygonal circumference of the paddle-wheel, formed of straight bars, securely connected together at the extremities of the spokes or radii of the wheel which turns on the shaft which is worked by the engine; the centre of this wheel being at O. So far this wheel is similar to the common paddle-wheel; but the paddle boards are not, as in the common wheel, fixed at A B C, &c., so as to be always directed to the centre O, but are so placed that they are capable of turning on axles which are always horizontal, so that they can take any angle with respect to the water which may be given to them. From the centres, or the line joining the pivots on which these paddle boards turn, there proceed short arms K, firmly fixed to the paddle boards at an angle of about 120°. On a motion given to this arm K, it will therefore give a corresponding angular motion to the paddle board, so as to make it turn on its pivots. At the extremities of the several arms marked K is a pin or pivot, to which the extremities of the radial arms L are severally attached, so that the angle between each radial arm L and the short paddle arm K is capable of being changed by any motion imparted to L; the radial arms L are connected at the other end with a centre P, round which they are capable of revolving. Now since the points A B C, &c., which are the pivots on which the paddle boards turn, are moved in the circumference of a circle, of which the centre is O, they are always at the same distance from that point; consequently they will continually vary their distance from the other centre P. Thus, when a paddle board arrives at that point of its revolution at which the centre P lies precisely between it and the centre O, its distance from P is less than in any other position. As it departs from that point, its distance from the centre P gradually increases until it arrives at the opposite point of its revolution, where the centre O is exactly between it and the centre P; then the distance of the paddle board from the centre P is greatest. This constant change of distance between each paddle board and the centre P is accommodated by the variation of the angle between the radial arm L and the short paddle board arm K; as the paddle board approaches the centre P this gradually diminishes; and as the distance of the paddle board from P increases, the angle is likewise augmented. This change in the magnitude of the angle, which thus accommodates the varying position of the paddle board with respect to the centre P, will be observed in the figure. The paddle board D is nearest to P; and it will be observed that the angle contained between L and K is there very acute; at E the angle between L and K increases, but is still acute; at F it increases to a right angle; at G it becomes obtuse; and at K, where it is most distant from the centre P, it becomes most obtuse. It again diminishes at I, and becomes a right angle between A and B. Now this continual shifting of the direction of the short arm K is necessarily accompanied by an equivalent change of position in the paddle board to which it is attached; and the position of the second centre P is, or may be, so adjusted that this paddle board, as it enters the water and emerges from it, shall be such as shall be most advantageous for propelling the vessel, and therefore attended with less of that vibration which arises chiefly from the alternate depression and elevation of the water, owing to the oblique action of the paddle boards.[41]

(i) The relative value of the two wheels, namely, the common paddle-wheel, and that of Morgan has been investigated by Professor Barlow of the Military School, at Woolwich, and the results published in a paper of much ability in the Philosophical Transactions for 1834. By this paper it appears, that, when the paddles are not wholly immersed, the wheel of Morgan has no important advantage over the other, and only acquires one when the wheel wallows. But the most important of his inferences is that the common paddle is least efficient when in a vertical position, contrary to the usual opinion. From this we have a right to infer that the search for a form of wheel which shall always keep the paddle vertical is one whose success need not be attended with any important consequence. The superior qualities of Morgan's wheel when the paddles are deeply immersed is ascribed by Barlow to the lessening of the shock sustained by the common paddle-wheel when it strikes the water. This being the case, the triple wheel of Stevens is probably superior to that of Morgan in its efficiency, while it has the advantage of being far simpler and less liable to be put out of order.—A. E.

(119.) To form an approximate estimate of the limit of the present powers of steam navigation, it will be necessary to consider the mutual relation of the capacity or tonnage of the vessel; the magnitude, weight, and power of the machinery; the available stowage for fuel; and the average speed attainable in all weathers, as well as the general purposes to which the vessel is to be appropriated, whether for the transport of goods and merchandise, or merely of despatches and passengers. That portion of the capacity of the vessel which is appropriated to the moving power consists of the space occupied by the machinery and the space occupied by the fuel; the magnitude of the latter will necessarily depend upon the length of the voyage which the vessel must make without receiving a fresh supply of coals. If the voyage be short, this space may be proportionally limited, and a greater portion of room will be left for the machinery. If, on the contrary, the voyage be longer, a greater stock of coals will be necessary, and a less space will remain for the machinery. More powerful vessels, therefore, in proportion to their tonnage, may be used for short than for long voyages.

Pl. XII.

Taking an average of fifty-one voyages made by the Admiralty steamers, from Falmouth to Corfu and back during four years ending June, 1834, it was found that the average rate of steaming, exclusive of stoppages, was 7-1/4 miles per hour, taken in a direct line between the places, and without allowing for the necessary deviations in the course of the vessel. The vessels which performed this voyage varied from 350 to 700 tons burthen by measurement, and were provided with engines varying from 100 horse to 200 horse-power, with stowage for coals varying from 80 to 240 tons. The proportion of the power to the tonnage varied from 1 horse to 3 tons to 1 horse to 4 tons; thus, the Messenger had a power of 200 horses, and measured 730 tons; the Flamer had a power of 120 horses, and measured 500 tons; the Columbia had 120 horses, and measured 360 tons.

In general, it may be assumed that for the shortest class of trips, such as those of the Margate steamers, and the packets between Liverpool or Holyhead and Dublin, the proportion of the power to the tonnage should be that of 1 horse-power to every 2 tons by measure; while for the longest voyages the proportion would be reduced to 1 horse to 4 tons, voyages of intermediate lengths having every variety of intermediate proportion.

Steamers thus proportioned in their power and tonnage may then, on an average of weathers, be expected to make 7-1/4 miles an hour while steaming, which is equivalent to 174 miles per day of twenty-four hours. But, in very long voyages, it rarely happens that a steamer can work constantly without interruption. Besides stress of weather, in which she must sometimes lie-to, she is liable to occasional derangements of her machinery, and more especially of her paddles. In almost every long voyage hitherto attempted, some time has been lost in occasional repairs of this nature while at sea. We shall perhaps, therefore, for long voyages, arrive at a more correct estimate of the daily run of a steamer by taking it at 160 miles.[42]

By a series of carefully conducted experiments on the consumption of coals, under marine boilers and common land boilers, which have been lately made at the works of Mr. Watt, near Birmingham, it has been proved that the consumption of fuel under marine boilers is less than under land boilers, in the proportion of 2 to 3 very nearly. On the other hand, I have ascertained from general observation throughout the manufacturing districts in the North of England, that the average consumption of coals under land boilers of all powers above the very smallest class is at the rate of 15 pounds of coals per horse-power per hour. From this result, the accuracy of which may be fully relied upon, combined with the result of the experiments just mentioned at Soho, we may conclude that the average consumption of marine boilers will be at the rate of 10 lbs. of coal per horse power per hour. Mr. Field, of the firm of Maudslay and Field, in his evidence before a Select Committee of the House of Commons on Steam Navigation to India, has stated from his observation, and from experiments made at different periods, that the consumption is only 8 lbs. per horse-power per hour. In the evidence of Mr. William Morgan, however, before the same committee, the actual consumption of fuel on board the Mediterranean packets is estimated at 16 cwt. per hour for engines of 200 horse power, and 8-1/4 cwt. for engines of 100 horse-power. From my own observation, which has been rather extensive both with respect to land and marine boilers, I feel assured that 10 lbs. per hour more nearly represents the practical consumption than the lower estimate of Mr. Field. We may then assume the daily consumption of coal by marine boilers, allowing them to work upon an average for 22 hours, the remainder of the time being left for casual stoppages, at 220 lbs. of coal per horse-power, or very nearly 1 ton for every ten horses' power. In short voyages, where there will be no stoppage, the daily consumption will a little exceed this; but the distance traversed will be proportionally greater.

When the proportion of the power to the tonnage remains unaltered, the speed of the vessel does not materially change. We may therefore assume that 10 pounds of coal per horse power will carry a sea-going steamer adapted for long voyages 7-1/4 miles direct distance; and therefore to carry her 100 miles will require 138 pounds, or the 1/16th part of a ton nearly. Now, the Mediterranean steamers are capable of taking a quantity of fuel at the rate of 1-1/4 tons per horse power; but the proportion of their power to their tonnage is greater than that which would probably be adapted for longer runs. We shall, therefore, perhaps be warranted in assuming that it is practicable to construct a steamer capable of taking 1-1/2 tons of fuel per horse-power. At the rate of consumption just mentioned, this would be sufficient to carry her 2400 miles in average weather; but as an allowance of fuel must always be made for emergencies, we cannot suppose it possible for her to encounter this extreme run. Allowing, then, spare fuel to the extent of a quarter of a ton per horse-power, we should have as an extreme limit of a steamer's practicable voyage, without receiving a relay of coals, a run of about 2000 miles.

(120.) This computation is founded upon results obtained from the use chiefly of the North of England coal. It has, however, been stated in evidence before the select committee above mentioned, that the Llangennech coal of Wales is considerably more powerful. Captain Wilson, who commanded the Hugh Lindsay steamer in India, has stated that this coal is more powerful than Newcastle, in the proportion of 9 to 6-1/2.[43] Some of the commanders of the Mediterranean packets have likewise stated that the strength of this coal is greater than that of Newcastle in the proportion of 16 to 11.[44] So far then as relates to this coal, the above estimate must be modified, by reducing the consumption nearly in the proportion of 3 to 2.

The class of vessels best fitted for undertaking long voyages, without relays of coal, would be one from about 800 to 1000 tons measurement furnished with engines from 200 to 250 horse-power.[45] Such vessels could take a supply of from 300 to 400 tons of coals, which being consumed at the rate of from 20 to 25 tons per day, would last about fifteen days.

Applying these results, however, to particular cases, it will be necessary to remember that they are average calculations, and must be subject to such modifications as the circumstances may suggest in the particular instances: thus, if a voyage is contemplated under circumstances in which an adverse wind generally prevails, less than the average speed must be allowed, or, what is the same, a greater consumption of fuel for a given distance. Against a strong head wind, in which a sailing vessel would double-reef her top-sails, even a powerful steamer cannot make more than from 2 to 3 miles an hour, especially if she has a head sea to encounter.

(121.) In considering the general economy of fuel, it may be right to state, that the results of experience obtained in the steam navigation of our channels, and particularly in the case of the Post Office packets on the Liverpool station, have clearly established the fact, that by increasing the ratio of the power to the tonnage, an actual saving of fuel in a given distance is effected, while at the same time the speed of the vessel is increased. In the case of the Post Office steamers called the Dolphin and the Thetis (Liverpool station,) the power has been successively increased, and the speed proportionably augmented; but the consumption of fuel per voyage between Liverpool and Dublin has been diminished. This, at first view, appears inconsistent with the known theory of the resistance of solids moving through fluids; since this resistance increases in the same proportion as the square of the speed. But this physical principle is founded on the supposition that the immersed part of the floating body remains the same. Now I have myself proved by experiments on canals, that when the speed of the boat is increased beyond a certain limit, its draught of water is rapidly diminished; and in the case of a large steam raft constructed upon the river Hudson, it was found that when the speed was raised to 20 miles an hour, the draught of water was diminished by 7 inches. I have therefore no doubt that the increased speed of steamers is attended with a like effect; that, in fact, they rise out of the water; so that, although the resistance is increased by reason of their increased speed, it is diminished in a still greater proportion by reason of their diminished immersion.

Meanwhile, whatever be the cause, it is quite certain that the resistance in moving through the water must be diminished, because the moving power is always in proportion to the quantity of coals consumed, and at the same time in the proportion to the resistance overcome. Since, then, the quantity of coals consumed in a given distance is diminished while the speed is increased, the resistance encountered throughout the same distance must be proportionally diminished.

(122.) Increased facility in the extension and application of steam navigation is expected to arise from the substitution of iron for wood, in the construction of vessels. Hitherto iron steamers have been chiefly confined to river navigation; but there appears no sufficient reason why their use should be thus limited. For sea voyages they offer many advantages; they are not half the weight of vessels of equal tonnage constructed of wood; and, consequently, with the same tonnage they will have less draught of water, and therefore less resistance to the propelling power; or, with the same draught of water and the same resistance, they will carry a proportionally heavier cargo. The nature of their material renders them more stiff and unyielding than timber; and they do not suffer that effect which is called hogging, which arises from a slight alteration which takes place in the figure of a timber vessel in rolling, accompanied by an alternate opening and closing of the seams. Iron vessels have the further advantage of being more proof against fracture upon rocks. If a timber vessel strike, a plank is broken, and a chasm opened in her many times greater than the point of rock which produces the concussion. If an iron vessel strike she will either merely receive a dinge, or be pierced by a hole equal in size to the point of rock which she encounters. Some examples of the strength of iron vessels was given by Mr. Macgregor Laird, in his evidence before the Committee of the Commons on Steam Navigation, among which the following may be mentioned:—An iron vessel, called the Alburkah, in one of their experimental trials got aground, and lay upon her anchor: in a wooden vessel the anchor would probably have pierced her bottom; in this case, however, the bottom was only dinged. An iron vessel, built for the Irish Inland Navigation Company, was being towed across Lough Derg in a gale of wind, when the towing rope broke, and she was driven upon rocks, on which she bumped for a considerable time without any injury. A wooden vessel would in this case have gone to pieces. A further advantage of iron vessels (which in warm climates is deserving of consideration) is their greater coolness and perfect freedom from vermin.

(123.) The greatest speed which has yet been attained upon water by the application of steam has been accomplished in the case of a river steamer of peculiar form, which has been constructed upon the river Hudson. This boat, or rather raft, consisted of two hollow vessels formed of thin sheet iron, somewhat in the shape of spindles or cigars (from whence it was called the cigar boat.) In the thickest part these floats were eight feet in diameter, tapering towards the ends, and about 300 feet long: these floats or buoys, being placed parallel to each other, having a distance of more than 16 feet between them, supported a deck or raft 300 feet long, and 32 feet wide. A paddle-wheel 30 feet in diameter and 16 feet broad revolved between the spindles, impelled by a steam engine placed upon the deck. This vessel drew about 30 inches of water, and attained a speed of from 20 to 25 miles an hour: she ran upon a bank in the river Hudson, and was lost. The projector is now employed in constructing another vessel of still larger dimensions. It is evident that such a structure is altogether unfitted for sea navigation. In the case of a wide navigable river, however, such as the Hudson, it will no doubt be attended with the advantage of greater expedition.

(124.) Several projects for the extension of steam navigation to voyages of considerable length have lately been entertained both by the public and by the legislature, and have imparted to every attempt to improve steam navigation increased interest. A committee of the House of Commons collected evidence and made a report in the last session in favour of an experiment to establish a line of steam communication between Great Britain and India. Two routes have been suggested by the committee, each being a continuation of the line of Admiralty steam packets already established to Malta and the Ionian Isles. One of the routes proposed is through Egypt, the Red Sea, and across the Indian Ocean to Bombay, or some of the other Presidencies; the other across the north part of Syria to the banks of the Euphrates, by that river to the Persian Gulf, and from thence to Bombay. Each of these routes will be attended with peculiar difficulties, and in both a long sea voyage will be encountered.

In the route by the Red Sea, it is proposed to establish steamers between Malta and Alexandria (860 miles). A steamer of 400 tons burthen and 100 horse-power would perform this voyage, upon an average of all weathers incident to the situation, in from 5 to 6 days, consuming 10 tons of coal per day. But it is probable that it might be found more advantageous to establish a higher ratio between the power and the tonnage. From Alexandria, the transit might be effected by land across the Isthmus to Suez—a journey of from 4 to 5 days—by caravan and camels; or the transit might be made either by land or water from Alexandria to Cairo, a distance of 173 miles; and from Cairo to Suez, 93 miles, across the desert, in about 5 days. At Suez would be a station for steamers, and the Red Sea would be traversed in 3 runs or more. If necessary, stations for coals might be established at Cosseir, Judda, Mocha, and finally at Socatra—an island immediately beyond the mouth of the Red Sea, in the Indian Ocean: the run from Suez to Cosseir would be 300 miles—somewhat more than twice the distance from Liverpool to Dublin. From Cosseir to Judda, 450 miles; from Judda to Mocha, 517 miles; and from Mocha to Socatra, 632 miles. It is evident that all this would, without difficulty, in the most unfavourable weather, fall within the present powers of steam navigation. If the terminus of the passage be Bombay, the run from Socatra to Bombay will be 1200 miles, which would be, upon an average of weather, about 8 days' steaming. The whole passage from Alexandria to Bombay, allowing 3 days for delay between Suez and Bombay, would be 26 days: the time from Bombay to Malta would therefore be about 33 days; and adding 14 days to this for the transit from Malta to England, we should have a total of 47 days from London to Bombay, or about 7 weeks.

If the terminus proposed were Calcutta, the course from Socatra would be 1250 miles south-east to the Maldives, where a station for coals would be established. This distance would be equal to that from Socatra to Bombay. From the Maldives, a run of 400 miles would reach the southern point of Ceylon, called the Point de Galle, which is the best harbour (Bombay excepted) in British India: from the Point de Galle, a run of 600 miles will reach Madras; and from Madras to Calcutta would be a run of about 600 miles. The voyage from London to Calcutta would be performed in about 60 days.

At a certain season of the year there exists a powerful physical opponent to the transit from India to Suez: from the middle of June until the end of September, the south-west monsoon blows with unabated force across the Indian Ocean, and more particularly between Socatra and Bombay. This wind is so violent as to leave it barely possible for the most powerful steam packet to make head against it, and the voyage could not be accomplished without serious wear and tear upon the vessels during these months—if indeed it would be practicable at all for any continuance in that season. The attention of parliament has therefore been directed to another line of communication, not liable to this difficulty: it is proposed to establish a line of steamers from Bombay through the Persian Gulf to the Euphrates. The run from Bombay to a place called Muscat, on the southern shore of the Gulf, would be 840 miles in a north-west direction, and therefore not opposed to the south-west monsoon. From Muscat to Bassidore, a point upon the northern coast of the strait at the mouth of the Persian Gulf, would be a run of 255 miles; from Bassidore to Bushire, another point on the eastern coast of the Persian Gulf, would be a run of 300 miles; and from Bushire to the mouth of the Euphrates, would be 120 miles. It is evident that the longest of these runs would offer no more difficulty than the passage from Malta to Alexandria. From Bussora near the mouth of the Euphrates, to Bir, a town upon its left bank near Aleppo, would be 1143 miles, throughout which there are no physical obstacles to the river navigation which may not be overcome. Some difficulties arise from the wild and savage character of the tribes who occupy its banks. It is, however, thought that by proper measures, and securing the co-operation of the Pacha of Egypt, any serious obstruction from this cause may be removed. From Bir, by Aleppo, to Scanderoon, a port upon the Mediterranean, opposite Cyprus, is a land journey, said to be attended with some difficulty but not of great length; and from Scandaroon to Malta is about the same distance as between the latter place and Alexandria. It is calculated that the time from London to Bombay by the Euphrates—supposing the passage to be successfully established—would be a few days shorter than by Egypt and the Red Sea.

Whichever of these courses may be adopted, it is clear that the difficulties, so far as the powers of the steam engine are concerned, lie in the one case between Socatra and Bombay, or between Socatra and the Maldives, and in the other case between Bombay and Muscat. Even the run from Malta to Alexandria or Scandaroon is liable to objection, from the liability of the boiler to deposite and incrustation, unless some effectual method be taken to remove this source of injury. If, however, the contrivance of Mr. Hall, or of Mr. Howard, or any other expedient for a like object, be successful, the difficulty will then be limited to the necessary supply of coals for so long a voyage. This, however, has already been encountered and overcome on four several voyages by the Hugh Lindsay steamer from Bombay to Suez: that vessel encountered a still longer run on these several trips, by going, not to Socatra but to Aden, a point on the coast of Arabia near the Straits of Babel Mandeb, being a run of 1641 miles, which she performed in 10 days and 19 hours. The entire distance from Bombay to Suez was in one case performed in 16 days and 16 hours; and under the most unfavourable circumstances, in 23 days. The average was 21 days for each trip.

(125.) Another projected line of steam communication, which offers circumstances of equal interest to the people of these countries and the United States, is that which is proposed to be established between London and New York. On the completion of the London and Liverpool railroad, Dublin will be connected with London, by a continuous line of steam transport. It is proposed to continue this line by a railroad from Dublin to some point on the western coast of Ireland; among others, the harbour of Valentia has been mentioned. The nearest point of the western continent is St. John's, Newfoundland, the distance of which from Valentia is 1900 miles; the distance from St. John's to New York is about 1200 miles, Halifax (Nova Scotia) being a convenient intermediate station. The distance from Valentia to St. John's comes very near the point which we have already assigned as the probable present limit of steam navigation. The Atlantic Ocean also offers a formidable opponent in the westerly winds which almost constantly prevail in it. These winds are, in fact, the reaction of the trades, which blow near the equator in a contrary direction, and are produced by those portions of the equatorial atmosphere which, rushing down the northern latitudes, carry with them the velocity from west to east proper to the equator. Besides this difficulty, St. John's and Halifax are both inaccessible, by reason of the climate, during certain months of the year. Should these causes prevent this project from being realized, another course may be adopted. We may proceed from the southern point of Ireland or England to the Azores, a distance of about 1800 miles: from the Azores to New York would be a distance of about 2000 miles, or from the Azores to St. John's would be 1600 miles.[46]

(k) While the inhabitants of Great Britain are discussing the project of the communication with New York, by means of the stations described by Dr. Lardner, those of the United States appear to be seriously occupied in carrying into effect a direct communication from New York to Liverpool. At the speed which has been given to the American steam boats, this presents no greater difficulties than the voyage from the Azores to New York, would, to one having the speed of no more than 7-1/4 miles per hour. As this attempt is beyond the limit of individual enterprise, there is, at the present moment, an application before the Legislature of the State of New York for a charter to carry this project into effect. It will be difficult to estimate the results of this enterprise, which will bring the old and new world within 12 or 15 days voyage of each other.—A. E.[47]

CHAPTER XII.
GENERAL ECONOMY OF STEAM POWER.

Mechanical efficacy of steam — proportional to the quantity of water evaporated, and to the fuel consumed — Independent of the pressure. — Its mechanical efficacy by condensation alone. — By condensation and expansion combined — by direct pressure and expansion — by direct pressure and condensation — by direct pressure, condensation, and expansion. — The power of engines. — The duty of engines. — Meaning of horse power. — To compute the power of an engine. — Of the power of boilers. — The structure of the grate-bars. — Quantity of water and steam room. — Fire surface and flue surface. — Dimensions of steam pipes. — Velocity of piston. — Economy of fuel. — Cornish duty reports.

(130.) Having explained in the preceding chapters the most important circumstances connected with the principal varieties of steam engines, it remains now to explain some matters of detail connected with the power, efficiency, and economy of these machines, which, though perhaps less striking and attractive than the subjects which have hitherto engaged us, are still not undeserving of attention.

It has been shown in the first chapter, that water exposed to the ordinary atmospheric pressure (the amount of which may be expressed by a column of 30 inches of mercury) will pass from the liquid into the vaporous state when it arrives at the temperature of 212°; and the vapour thus produced from it will have an elastic force equal to that of the atmosphere. If the water, however, to which heat is applied, be submitted to a greater or less pressure than that of the atmosphere, it will boil at a greater or less temperature, and will always produce steam of an elastic force equal to the pressure under which it boils. Now it is a fact as remarkable as it is important, that to convert a given weight of water into vapour will require the same quantity of heat, under whatever pressure, and at whatever temperature the water may boil. Let us suppose a tube, the base of which is equal to a square foot, in which a piston fits air-tight and steam-tight. Immediately under the piston, let a cubic inch of water be placed, which will be spread in a thin layer over the bottom of the tube. Let the piston be counterbalanced by a weight (acting over a pulley) which will be equivalent to the weight of the piston, so that it shall be free to ascend by the application of any pressure below it. Now let the flame of a lamp be applied at the bottom of the tube: the water under the piston being affected by no pressure from above, except that of the atmosphere acting upon the piston, will boil at the temperature of 212°, and by the continued application of the lamp it will at length be converted into steam. The steam into which the cubic inch of water is converted will expand into the magnitude of a cubic foot, exerting an elastic force equal to the atmospheric pressure; consequently the piston will be raised one foot above its first position in the tube, and the cubic foot beneath it will be completely filled with steam. Let us suppose, that to produce this effect required the lamp to be applied to the tube for the space of fifteen minutes.

The water being again supposed at its original temperature, and the piston in its first position, let a weight be placed upon the piston equal to the pressure of the atmosphere, so that the water beneath the piston will be pressed down by double the atmospheric pressure. If the lamp be once more applied, the water will, as before, be converted into vapour; but the piston will now be raised to the height of only six inches[48] from the bottom, the steam expanding into only half its former bulk. The temperature at which the water would commence to be converted into vapour, instead of being 212°, would be 250°; but the time elapsed between the moment of the first application of the lamp, and the complete conversion of the water into steam, will still be fifteen minutes.

Again, if the piston be loaded with a weight equal to double the atmospheric pressure, the water will be pressed down by the force of three atmospheres. If the lamp be applied as before, the water would be converted into steam in the same time; but the piston will now be raised only four inches above its first position, and the steam will consequently be three times as dense as when the piston was pressed down only by the atmosphere.

From these and similar experiments we infer:—

First, That the elastic pressure of steam is equal to the mechanical pressure under which the water producing the steam has been boiled.

Secondly, That the bulk which steam fills is diminished in the same proportion as the pressure of the steam is increased; or, in other words, that the density of steam is always in the same proportion as its pressure.

Thirdly, That the same quantity of heat is sufficient to convert the same weight of water into steam, whatever be the pressure under which the water is boiled, or whatever be the density and pressure of the steam produced.

Fourthly, That the same quantity of water being converted into steam, produces the same mechanical effect, whatever be the pressure or the density of the steam. Thus, in the first case, the weight of one atmosphere was raised a foot high; in the second case, the weight of two atmospheres was raised through half a foot; and, in the third case, the weight of three atmospheres was raised through the third of a foot; the weight raised being in every case increased in the same proportion as the height through which it is elevated is diminished. Every increase of the weight is, therefore, compensated by a proportionate diminution of the height through which it is raised, and the mechanical effect is consequently the same.

Fifthly, That the same quantity of heat or fuel is necessary and sufficient to produce the same mechanical effect, whatever be the pressure of the steam which it produces.

If steam be used to raise a piston against the atmospheric pressure only, although a definite physical force will be exerted by it, and a mechanical effect produced, yet under such circumstances it will exert no directly useful efficiency; but after the piston has been raised, and the tube beneath it filled with steam balancing the atmosphere above it, a useful effect to the same amount may be obtained by cooling the tube, and thereby reconverting the steam into water. The piston will thus be urged downwards by the unresisted force of the atmosphere, and any chain or rod attached to it will be drawn downwards with a corresponding force. If the area of the piston be, as already supposed, equal to the magnitude of one square foot, the atmospheric pressure upon it, being 15 pounds for each square inch, will amount to 144 times 15 pounds, or 2160 pounds. By drawing down a chain or rope acting over a pulley, the piston would in its descent (omitting the consideration of friction, &c.) raise a weight of 2160 pounds a foot high. Since 2160 pounds are nearly equal to one ton, it may, for the sake of round numbers be stated thus:—

"A cubic inch of water, being converted into steam, will, by the condensation of that steam, raise a ton weight a foot high." Such is the way in which the force of steam is rendered practically available in the atmospheric engine.

(131.) The method by which steam is used in the single-acting steam engine of Watt is, in all respects, similar, except that the piston, instead of being urged downwards by the force of the atmosphere, is pressed by steam of a force equal to the atmospheric pressure. It is evident, however, that this does not alter the mechanical result.

We have stated that a considerable increase of power, from a given quantity of steam, was produced by cutting off the steam after the piston had made a part of its descent, and allowing the remainder of the descent to be produced by the expansive force of the steam already admitted. We shall now more fully explain the principle on which this increase of power depends.

Let A B ([fig. 69].,) as before, represent a tube, the bottom of which is equal to a square foot, and let P be a piston in it, resting upon a cubic inch of water spread over the bottom; and let w be an empty vessel, the weight of which exactly counterpoises the piston. By the application of the lamp, the water will be converted into steam of the atmospheric pressure, and the piston will be raised from P to P´, through the height of one foot, the space in the tube beneath it being filled with steam, and the vessel w will have descended through one foot. Let half a ton of water be now poured into the vessel W; its weight will draw the piston P´ upwards, so that the steam below it will expand into a larger space. When the piston P´ was only balanced by the empty vessel W, it was pressed downwards by the whole weight of the atmosphere above, which amounts to about one ton: now, however, half of this pressure is balanced by the half ton of water poured into the vessel W; consequently the effective downward pressure on the piston P´ will be only half a ton, or half its former amount. The piston will therefore rise, until the pressure of the steam below it is diminished to the same extent. By what has been already explained, this will take place when the steam is allowed to expand into double its former bulk; consequently, when the piston has risen to P´´, one foot higher, or two feet from the bottom of the tube, the steam will then exactly balance the downward pressure on the piston, and the latter will remain stationary; the vessel W, with the half ton of water it contains, will have descended one foot lower, or two feet below its first position. Let the steam now be cooled and reconverted into water, and at the same time let another half ton of water be supplied to the vessel W; the pressure below the piston being entirely removed, the atmospheric pressure will act above it with undiminished force; and this force, amounting to one ton, will draw up the vessel W, with its contents. When the piston descends, as it will do, to the bottom of the tube, the ton of water contained in the vessel W will be raised through two perpendicular feet.[49]

Now, in this process it will be observed that the quantity of steam consumed is not more than in the former case, viz. the vapour produced by boiling one cubic inch of water. Let us consider, however, the mechanical effect which has resulted from it; half a ton of water has been allowed to descend through one foot, while a ton has been raised through two feet: deducting the force lost by the descent of half a ton through one foot from the force obtained by the ascent of one ton through the two feet, we obtain for the whole mechanical effect one ton and a half raised through one foot; for it is evident that half a ton has been raised from the lowest point to which the vessel W descended one foot above that point, and one ton has been raised through the other foot, which is equivalent to one ton and a half through one foot.

Comparing this with the effect produced in the first case, where the steam was condensed without causing its expansion, it will be evident that there is an increase of 50 per cent. upon the whole mechanical effect produced.

But this is not the limit of the increase of power by expansion. Instead of condensing the steam when the piston had arrived at P´´, let a further quantity of water amounting to one sixth of a ton be poured into the vessel W, in addition to the half ton which it previously contained; the effective pressure on the piston P´´, being only half a ton, will be overbalanced by the preponderating weight in the vessel w, and the piston will consequently ascend. It will become stationary when the steam by expansion loses a quantity of force equal to the additional weight which the vessel W has received: now, that vessel, having successively received a half and a sixth of a ton will contain two thirds of a ton; consequently the effective downward pressure on the piston will be only a third of a ton, and the steam to balance this must expand into three times the space it occupied when equal, to the atmospheric pressure. It must therefore ascend to P´´´, three feet above the bottom of the tube. If the steam in the tube be now condensed, and at the same time one third of a ton of water be supplied to the vessel W, so as to make its total contents amount to one ton, the piston will descend, being urged downwards by the unresisted atmospheric pressure, and the ton of water contained in the vessel W will be raised through three perpendicular feet.

In this case, as in the former, the total quantity of steam consumed is that of one cubic inch of water; but the mechanical effect it produces is still further increased. To calculate its amount, we must consider that half a ton of water has fallen through two feet, which is equivalent to a ton falling through one foot, besides which the sixth part of a ton has fallen through one foot. The total loss, therefore, by the fall of water has been one ton and one sixth through one foot, while the force gained by the ascent of water has been one ton raised through three feet, which is equivalent to three tons through one foot. If, then, from three tons we deduct one and one sixth, the remainder will be one ton and five sixths raised through one foot; this effect being above 80 per cent. more than that which is produced in the first case, where the steam was not allowed to expand.

To carry the inquiry one step further: Let us suppose that, upon the arrival of the piston at P´´´, a further addition of water to the amount of one twelfth of a ton be added to it: this, with the water it already contained, would make the total contents three fourths of a ton; consequently, the effective pressure upon the piston would now be reduced to one fourth of the atmospheric pressure. The atmospheric steam would balance this when expanded into four times its original volume: consequently, the piston would come to a state of rest at P´´´´, four feet above the bottom of the tube, and the vessel W would consequently have descended through four perpendicular feet. If the steam in the tube be now condensed as in the former cases, and at the same time a quarter of a ton of water be added to the vessel W, the piston will descend to the bottom of the tube, and the ton of water in the vessel W will be raised through four perpendicular feet. To estimate the mechanical effect thus produced, we have, as before, to deduct the total force lost by the fall of water from the force gained by its elevation: the water has fallen in three distinct portions: first, half a ton has fallen through three perpendicular feet, which is equivalent to one ton and a half through one foot; secondly, one sixth of a ton has fallen through two perpendicular feet, which is equivalent to one third of a ton through one foot; and thirdly, one twelfth of a ton has fallen through one foot: these added together will be equivalent to one ton and eleven twelfths through one foot. One ton has been raised through four feet, which is equivalent to four tons through one foot: deducting from this the force lost by the descent, the surplus gained will be two tons and one twelfth through one foot, being about 108 per cent. more than the force resulting from the condensation of steam without expansion.

To the increase of mechanical effect to be produced in this way, there is no theoretical limit. According to the manner in which we have here explained it, to produce the greatest possible effect by a given extent of expansion, it would be necessary to supply the water or other counterpoise to the vessel W, not in separate masses, as we have here supposed, but continuously, so as to produce a regular motion of the piston upwards.

Such is the principle on which the advantages of the expansive engine of Watt and Hornblower depend, explained so far as it can be without the aid of the language and reasoning of analysis.[50]

(132.) We have here, however, only considered the mechanical effect produced by the condensation of steam. Let us now examine its direct action.

Let the piston P be supposed to be connected by a rod with a load or resistance which it is intended to raise, and let the load placed upon it be supposed to amount to one ton, the total pressure on the piston will then be two tons; one due to the atmospheric pressure, and the other to the amount of the load. Upon applying heat to the water, steam will be produced; and when the water has been completely evaporated, the piston will rise to the height of six inches from the bottom of the tube. The total mechanical effect thus produced will be one ton weight raised through six perpendicular inches, which is equivalent to half a ton raised through one foot.

Again, let the load upon the piston be two tons; this will produce a total pressure upon the water below it amounting to three tons, including the atmospheric pressure. The water, when converted into vapour under this pressure, will raise the piston and its load through four perpendicular inches: the useful mechanical effect will then be two tons raised through the third of a foot, which is equivalent to two thirds of a ton raised one foot. In the same manner, if the piston were loaded with three tons, the mechanical effect would be equivalent to three fourths of a ton raised through one foot, and so on.

It appears therefore from this reasoning, that when the direct force of steam of greater pressure than the atmosphere is used without condensation, the total mechanical effect is always less than that produced by the condensation of atmospheric steam without expansion; but that the greater the pressure under which the steam is produced, the less will be the difference between these effects. In general, the proportion of the mechanical effect of high-pressure steam to the effect produced by the condensation of atmospheric steam, will be as the number of atmospheres expressing the pressure of the steam to the same number increased by one. Thus, if steam be produced under the pressure of six atmospheres, the proportion of its effect to that of the condensation of atmospheric steam will be as six to seven.

(133.) Another method of applying the power of steam mechanically is, to combine its direct action with condensation but without expansion.

The piston being, as before, loaded with one ton, the evaporation of the water will raise it through six perpendicular inches, and the result so far will be equivalent to a ton raised half a foot; but if the piston-rod be supposed also to act by a chain or cord over a wheel, so as to pull a weight up, the steam which has just raised the ton weight through six inches, may be condensed, and the piston will descend with a force of one ton into the vacuum thus produced, and another ton may be thus raised through half a foot. The total mechanical power thus yielded by the steam, adding to its direct action its effect by condensation, will then be one ton raised through one foot, being an effect exactly equal to that obtained by the condensation of atmospheric steam.

If the piston be loaded with two tons, its direct action will, as we have shown, raise these two tons through four inches, which is equivalent to two thirds of a ton raised a foot. By condensing this steam a ton weight may be raised in the same manner, by the descent of the piston through a third of a foot, which is equivalent to the third of a ton raised through one foot.

By pursuing like reasoning, it will appear that, if the direct force of high-pressure steam be combined with the indirect force produced by its condensation, the total mechanical effect will be precisely equal to the mechanical effect by the mere condensation of atmospheric steam.

(134.) In applying the principle of expansion to the direct action of high-pressure steam, advantages are gained analogous to those already explained with reference to the method of condensation.

Let the piston be supposed to be loaded with three tons: the evaporation of the water beneath it will raise this weight, including the atmospheric pressure, through three perpendicular inches. Let one ton be now removed, and the remaining two tons will be raised, by the expansion of the steam, through another perpendicular inch. Let the second ton be now removed, and the piston loaded with the remaining ton will rise, by the expansion of the steam, to the height of six inches from the bottom. These consequences follow immediately from the principle that steam will expand in proportion as the pressure upon it is diminished, observing that in this case the atmospheric pressure, amounting to one ton, must always be added to the load. In this process three separate effects are produced: one ton is raised through three inches, which is equivalent to a quarter of a ton raised through one foot; another ton is raised through four inches, which is equivalent to a third of a ton through a foot, and the third ton is raised through six inches, which is equivalent to half a ton raised through a foot. The total of these effects amounts to one and one-twelfth of a ton raised through one foot, while the same load, raised by the high-pressure steam without expansion, would be equivalent to only half a ton raised through one foot.

Again, let the load placed upon the piston be five tons: the evaporation of the water will raise this through the sixth part of a foot; if one ton be now removed, the other four tons will be raised to a height above the bottom of the tube equal to a fifth part of a foot; another ton being removed, the remaining three will be raised to a height from the bottom equal to a fourth of a foot; and so on, the last ton being raised through half a foot. To estimate the total mechanical effect thus produced, we are to consider that the several tons raised from their first position are raised through the sixth, fifth, fourth, third, and half of a perpendicular foot, giving a total effect equal to the sixth, fifth, fourth, third, and half of a ton severally raised through one foot; these, therefore, added together, will give a total of nineteen twentieths of a ton raised through one foot.

In general, the expansive force applied to the direct action of high-pressure steam, therefore, will increase its effect according to the same law, and subject to the same principles as were shown with respect to the method of condensation accompanied with expansion.

The expansive action of high-pressure steam may be accompanied with condensation, so as considerably to increase the mechanical effect produced; for, after the weights with which the piston is loaded have been successively raised to the extent permitted by the elastic force of the steam, and are removed from the piston, the steam will expand until it balances the atmospheric pressure. It may afterwards be made further to expand, by adding weights to the counterpoise W in the manner already explained; and, the steam being subsequently condensed, all the effects will be produced upon the descent of the piston which we have before noticed. It is evident that by this means the mechanical effect admits of very considerable increase.

(135.) We have hitherto considered the piston to be resisted by the atmospheric pressure above it; but, as is shown in the preceding chapters, in the modern steam engines, the atmosphere is expelled from the interior of the machine by allowing the steam to pass freely through all its cavities in the first instance, and to escape at some convenient aperture, which, opening outwards, will effectually prevent the subsequent re-admission of air. The piston-rod and other parts which pass from the external atmosphere to the interior of the machine, are likewise so constructed and so supplied with oil or other lubricating matter that neither the escape of steam nor the entrance of air is permitted. We are therefore now to consider the effect of the action of steam against the piston P, when subjected to a resistance which may be less in amount, to any extent, than the atmospheric pressure.

In such machines the steam always acts both directly by its power, and indirectly by its condensation. In calculating its effects, excluding friction, &c., we have therefore only to estimate its total force upon the piston, and to deduct the force of the uncondensed vapour which will resist the motion of the piston.

Supposing, then, the total force exerted upon the piston, after deducting the resistance from the uncondensed vapour, to be one ton, and the length of the cylinder to be one foot, each motion of the piston from end to end of the cylinder will produce a mechanical force equivalent to a ton weight raised one foot high. If in this case the magnitude of the piston be equivalent to one square foot, the pressure of the steam will be equal to that of the atmosphere, and the quantity of water in the form of steam which the cylinder will contain will be a cubic inch, while the quantity of steam in it will be a cubic foot. In proportion as the area of the piston is enlarged the pressure of the steam will be diminished, if the moving force is required to remain the same; but with every diminution of pressure the density of the steam will be diminished in the same proportion, and the cylinder will still contain the same quantity of water in the form of vapour. In this way steam may be used, as a mechanical agent, with a pressure to almost any extent less than that of the atmosphere, and at temperatures considerably lower than 212°. To obtain the same mechanical force, it is only necessary to enlarge the piston in the same proportion as the pressure of the steam is diminished.

By a due attention to this circumstance, the expansive power of steam, both in its direct action and by condensation, may be used with very much increased advantage; and such is the principle on which the benefits derived from Woolf's contrivances depend. If steam of a high-pressure, say of three or four atmospheres, be admitted to the piston, and allowed to impel it through a very small portion of the descent, it may then be cut off and its expansion may be allowed to act upon the piston until the pressure of the steam is diminished considerably below the atmospheric pressure; the steam may then be condensed and a vacuum produced, and the process repeated.

In the double-acting engines, commonly used in manufactures and in navigation, and still more in the high-pressure engines used for locomotion, the advantageous application of the principle of expansion appears to have been hitherto attended with difficulties; for, notwithstanding the benefits which unquestionably attend it in the economy of fuel, it has not been generally resorted to. To derive from this principle full advantage, it would be necessary that the varying power of the expanding steam should encounter a corresponding, or a nearly corresponding, variation in the resistance: this requisite may be attained, in engines applied to the purpose of raising water, by many obvious expedients; but when they have, as in manufactures, to encounter a nearly uniform resistance, or, in navigation and locomotion, a very irregular resistance, the due application of expansion is difficult, if indeed it be practicable.

We have seen that the mechanical effect produced by steam when the principle of expansion is not used, is always proportional to the quantity of water contained in the steam, and is likewise in the same proportion so long as a given degree of expansion is used. It is apparent, therefore, that the mechanical power which is or ought to be exerted by an engine is in the direct proportion of the quantity of water evaporated. It has also been shown that the quantity of water evaporated, whatever be the pressure of the steam, will be in the direct proportion of the quantity of heat received from the fuel, and therefore in the direct proportion of the quantity of fuel itself, so long as the same proportion of its heat is imparted to the water.

(136.) The POWER of an engine is a term which has been used to express the rate at which it is able to raise a given load, or overcome a given resistance. The DUTY of an engine is another term, which has been adopted to express the load which may be raised a given perpendicular height, by the combustion of a given quantity of fuel.

When steam engines were first introduced, they were commonly applied to work pumps or mills which had been previously wrought by horses. It was, therefore, convenient, and indeed necessary, in the first instance, to be able to express the performance of these machines by reference to the effects of animal power, to which manufacturers, miners, and others, had been long accustomed. When an engine, therefore, was capable of performing the same work in a given time, as any given number of horses of average strength usually performed, it was said to be an engine of so many horses' power. This term was long used with much vagueness and uncertainty: at length, as the use of steam engines became more extended, it was apparent that confusion and inconvenience would ensue, if some fixed and definite meaning were not assigned to it, so that the engineers and others should clearly understand each other in expressing the powers of these machines. The term horse-power had so long been in use, that it was obviously convenient to retain it. It was only necessary to agree upon some standard by which it might be defined. The performance of a horse of average strength, working for eight hours a day, was, therefore, selected as a standard or unit of steam-engine power. Smeaton estimated the amount of mechanical effect which the animal could produce at 22,916 pounds, raised one foot per minute; Desaguiliers makes it 27,500 pounds, raised through the same height. Messrs. Bolton and Watt caused experiments to be made with the strong horses used in the breweries in London; and from the result of these they assigned 33,000 pounds raised one foot per minute, as the value of a horse's power: this is, accordingly, the estimate now generally adopted; and, when an engine is said to be of so many horses' power, it is meant that, when in good working order and properly managed, it is capable of overcoming a resistance equivalent to so many times 33,000 pounds raised one foot per minute. Thus, an engine of ten-horse-power would be capable of raising 330,000 pounds one foot per minute.

As the same quantity of water converted into steam will always produce the same mechanical effect, whatever be the density of the steam produced from it, and at whatever rate the evaporation may proceed, it is evident that the power of a steam engine will depend on two circumstances: first, the rate at which the boiler with its appendages is capable of evaporating water; and, secondly, the rate at which the engine is capable of consuming the steam by its work. We shall consider these two circumstances separately.

The rate at which the boiler produces steam will depend upon the rate at which heat can be transmitted from the fire to the water which it contains. Now this heat is transmitted in two ways: either by the direct action of the fire radiating heat against the surface of the boiler; or by the flame, and heated air which escapes from the fire, passing through the flues, as already explained. The surface of the boiler exposed to the direct radiation of the fire is technically called fire surface; and that which takes heat from the flame and air, on its way to the chimney, is called flue surface. Of these the most efficient in the generation of steam is the former. In stationary boilers, used for condensing engines, where magnitude and weight are matters of little importance, it has been found that the greatest effect has been produced in general by allowing four and a half square feet of fire surface, and four and a half square feet of flue surface, for every horse-power. By means of this quantity of fire and flue surface, a cubic foot of water per hour may be evaporated.

It has been already shown that the total power exerted by a cubic inch of water, converted into steam, will be equivalent to 2160 pounds raised one foot. A cubic foot of water consists of 1728 cubic inches, and the power produced by its evaporation will therefore be found by multiplying 2160 by 1728; the product, 3,732,480, expresses the number of pounds' weight which the evaporation of a cubic foot of water would raise one foot high, supposing that its entire mechanical force were rendered available: but to suppose this in practice, would be to suppose the machine, through the medium of which it is worked, moved without any power being expended upon its own parts. It would be, in fact, supposing all its moving parts to be free from friction and other causes of resistance. To form a practical estimate, then, of the real quantity of available mechanical power obtained from the evaporation of a given quantity of water, it will be necessary to inquire what quantity of this power is intercepted by the engine through which it is transmitted. In different forms of steam engine—indeed, we may say in every individual steam engine—the amount thus lost is different; nevertheless, an approximate estimate may be obtained, sufficiently exact to form the basis of a general conclusion.

Let us consider, then, severally, the means by which mechanical power is intercepted by the engine.

First, The steam must flow from the boiler into the cylinder to work the piston; it passes necessarily through pipes more or less contracted, and is, therefore, subject to friction as well as cooling in its passage.

Second, Force is lost by the radiation of heat from the cylinder and its appendages.

Third, The friction of the piston in the cylinder must be overcome.

Fourth, Loss of steam takes place by leakage.

Fifth, Force is expended in expelling the steam after having worked the piston.

Sixth, Force is required to open and close the several valves, to pump up the water for condensation, and to overcome the friction of the various axes.

Seventh, Force is expended upon working the air-pump.

In engines which do not condense the steam, and which, therefore, work with steam of high-pressure, some of these sources of waste are absent, but others are of increased amount. If we suppose the total effective force of the water evaporated per hour in the boiler to be expressed by 1000, it is calculated that the waste in a high-pressure engine will be expressed by the number 392; or, in other words, taking the whole undiminished force obtained by evaporation as expressed by 10, very nearly 4 of these parts will be consumed in moving the engine, and the other 6 only will be available.

In a single-acting engine which condenses the steam, taking, as before, 1000 to express the total mechanical power of the water evaporated in the boiler, 402 will express the part of this consumed in moving the engine, and 598, therefore, will express the portion of the power practically available; or, taking round numbers, we shall have the same result as in the non-condensing engine, viz. the whole force of the water evaporated being expressed by 10, 4 will express the waste, and 6 the available part.

In a double-acting engine the available part of the power bears a somewhat greater proportion to the whole. Taking, as before, 1000 to express the whole force of the water evaporated, 368 will express the proportion of that force expended on the engine, and 632 the proportion which is available for work.

In general, then, taking round numbers, we may consider that the mechanical force of four tenths of the water evaporated in the boiler is intercepted by the engine, and the other six tenths are available as a moving force. In this calculation, however, the resistance produced in the condensing engine by the uncondensed steam is not taken into account: the amount of this force will depend upon the temperature at which the water is maintained in the condenser. If this water be kept at the temperature of 120°, the vapour arising from it will have a pressure expressed by three inches seven tenths of mercury; if we suppose the pressure of steam in the boiler to be measured by 37 inches of mercury, then the resistance from the uncondensed steam will amount to one tenth of the whole power of the boiler; this, added to the four tenths already accounted for, would show a waste amounting to half the whole power of the boiler, and consequently only half the water evaporated would be available as a moving power.

If the temperature of the condenser be kept down to 100°, then the pressure of uncondensed steam will be expressed by two inches of mercury, and the loss of power consequent upon it would amount to a proportionally less fraction of the whole power.

The following example will illustrate the method of estimating the effective power of an engine.

In a double-acting engine, in good working condition, the total power of steam in the boiler being expressed by 1000, the proportion intercepted by the engine, exclusive of the resistance of the uncondensed steam, will be 368, and the effective part 632. Now, suppose the pressure of steam in the boiler to be measured by a column of 35 inches of mercury; the thousandth part of this will be seven two hundredths of an inch of mercury, and 632 of these parts will express the effective portion of the power. By multiplying seven two hundredths by 632, we obtain 22 nearly. Now, suppose the temperature in the condenser is 1200, the pressure of steam corresponding to that temperature will be measured by 3-7/10 inches of mercury. Subtracting this from 22, there will remain 18-3/10 inches of mercury, as the effective moving force upon the piston; this will be equivalent to about 7 lbs. on each circular inch.

If the diameter of the piston then be 24 inches, its surface will consist of a number of circular inches expressed by the square of 24, or 24 × 24 = 576; and, as upon each of these circular inches there is an effective pressure of 7 lbs., we shall find the total pressure in pounds by multiplying 576 by 7, which gives 4032 lbs.

We shall find the space through which this force works per minute, by knowing the length of the cylinder and the number of strokes per minute. Suppose the length of the cylinder to be 5 feet, and the number of strokes per minute 21-1/2. In each stroke[51] the piston will, therefore, move through 10 feet, and in one minute it will move through 215 feet. The moving force, therefore, is 4032 lbs. moved through 215 feet per minute, which is equivalent to 215 times 4032 lbs., or 866,880 lbs., raised one foot per minute.

For every 33,000 lbs. contained in this, the engine has a horse-power. To find the horse-power, then, of the engine, we have only to divide 866,880 by 33,000; the quotient is 26 nearly, and, therefore, the engine is one of 26 horse power.

Let it be required to determine the quantity of water which a boiler must evaporate per hour, for each horse-power of the engine which it works.

It has been already explained that one horse-power expresses 33,000 lbs. raised one foot high per minute, or, 1,980,000 lbs. raised one foot high per hour. The quantity of water necessary to produce this mechanical effect by evaporation, will be found by considering that a cubic inch of water, being evaporated, will produce a mechanical force equivalent to 2160 lbs. raised a foot high. If we divide 1,980,000, therefore, by 2160, we shall find the number of cubic inches of water which must be evaporated per hour, in order to produce the mechanical effect expressed by one horse-power; the result of this division will be 916,6, which is therefore the number of cubic inches of water per hour, whose evaporation is equivalent to one horse-power. But it has been shown that, for every 6 cubic inches of water evaporated in the boiler which are available as a moving power, there will be 4 cubic inches intercepted by the engine. To find, then, the quantity of waste corresponding to 916 cubic inches of water, it will be necessary to divide that number by 6, and to multiply the result by 4: this process will give 610 as the number of cubic inches of water wasted. The total quantity of water, therefore, which must be evaporated per hour, to produce the effect of one horse-power, will be found by adding 610 to 916, which gives 1526.

This result, however, being calculated upon a supposition of a degree of efficiency in the engines which is, perhaps, somewhat above their average state, it has been customary with engineers to allow a cubic foot of water per hour for each horse-power, a cubic foot being 1728 cubic inches, or above 11 per cent. more than the above estimate.

(137.) It has been stated, that to evaporate a cubic foot of water per hour requires 9 square feet of surface exposed to the action of the fire and heated air. This, therefore, is the quantity of surface necessary for each horse-power, and we shall find the total quantity of fire and flue surface necessary for a boiler of a given power, by multiplying the number of horses in the power by 9; the product will express, in square feet, the quantity of boiler surface which must be exposed to the fire, one half of this being fire surface and the other half flue surface.

Since the supply of heat to the boiler must be proportionate to the quantity of fuel maintained in combustion, and the quantity of that fuel must depend on the extent of grate surface, it is clear that a determinate proportion must exist between the power of the boiler, and the extent of grating in the fire place. The quantity of oxygen which combines with the fuel varies with the quality of that fuel; for different kinds of coal it varies from two to three pounds for each pound of coal.

We shall take it an average of 2-1/2 pounds. Now 2-1/2 pounds of oxygen will measure 30 cubic feet; also 5 cubic feet of atmospheric air contain 1 cubic foot of oxygen; and consequently 150 cubic feet of atmospheric air will be necessary for the combustion of 1 pound of average coals. At least one third of the air, which passes through a fire, escapes uncombined into the chimney. We must, therefore, allow 220 cubic feet of atmospheric air to pass through the grate-bars for every pound of fuel which is consumed. Now since land boilers will consume 15 pounds, and marine boilers 10 pounds, per hour per horse-power, it follows that the spaces between the grate-bars, and the extent of grate surface, must be sufficient to allow 3000 cubic feet of air per hour in land boilers, and 2000 cubic feet in marine boilers, to pass through them for each horse-power, or, what is the same, for each foot of water converted into steam per hour. The quantity of grate surface necessary for this does not seem to be ascertained with precision; but, perhaps, we may take as an approximate estimate for land boilers one square foot of grate surface per horse-power, and for marine boilers two thirds of a square foot, the spaces between the grate-bars being equal to their breadth.

It is evident that the capacity of a boiler for water and steam must have a determinate relation to the power of the engine it is intended to supply. For each horse-power of the engine, it has been shown that a cubic foot of water must pass from the boiler in the form of steam per hour. Now, it is evident that the steam could not be supplied of a uniform force, if the quantity of steam contained at any moment in the boiler were not considerably greater than the contents of the cylinder. For example, if the volume of steam in the boiler were precisely equal to the capacity of the cylinder, then one measure of the cylinder would for the moment cause the steam to expand into double its bulk and to lose half its force, supposing it to pass freely from the boiler to the cylinder. In the same manner, if the volume of steam contained in the boiler were twice the contents of the cylinder, the steam would for a moment lose a third of its force, and so on. It is clear, therefore, that the space allotted to steam in the boiler must be so many times greater than the magnitude of the cylinder, that the abstraction of a cylinder full of steam from it shall cause a very trifling diminution of its force.

In the same manner, we may perceive the necessity of maintaining a large proportion between the total quantity of water in the boiler, and the quantity supplied in the form of steam to the cylinder. If, for example (taking as before an extreme case,) the quantity of water in the boiler were only equal to the quantity supplied in the form of steam to the cylinder in a minute, it would be necessary that the contents of the boiler should be replaced by cold water once in each minute: and, under such circumstances, it is evident that the action of the heat upon the water would be quite unmanageable. But, independent of this, the quantity of water must be sufficient to fill the boiler above the point at which the flue surface terminates, otherwise the heat of the fuel would act upon the part of the boiler containing steam and not water; and, steam receiving heat sluggishly, the metal of the boiler would be gradually destroyed by undue temperature.

The total quantity of space for water and steam in boilers is subject to considerable variation in proportion to their power. Small boilers require a greater proportion of steam and water-room, or a greater capacity of boiler, in proportion, than large ones; and the same applies to their fire surface and flue surface.

The general experience of engineers has led to the conclusion, that a low-pressure boiler of the common kind requires ten cubic feet of water-room, and ten cubic feet of steam-room in the boiler, for every cubic foot which the engine consumes per hour, or, what is the same, for each horse-power of the engine. Thus, an engine of ten-horse-power, according to this rule, would require a boiler having the capacity of 200 cubic feet which should be constantly kept half filled with water. There are, however, different estimates of this. Some engineers hold that a boiler should have twenty-five cubic feet of capacity for each horse-power of the engine, while others reduce the steam so low as eight cubic feet.

In a table of the capacities of boilers of different powers, and the feed of water necessary to be maintained in them, Mr. Tredgold assigns to a boiler of five-horse-power fourteen cubic feet of water per horse-power; for one of ten-horse power, twelve and a half cubic feet; and, for one of forty-horse, eleven cubic feet.

For engines of greater power it is generally found advantageous to have two or more boilers of small power, instead of one of large power. This method is almost invariably adopted on board steam boats, and has the advantage of securing the continuance of the working of the engine, in case of one of the boilers being deranged. It is also found convenient to keep an excess of power in the boilers, above the wants of the engine. Thus, an engine of sixty-horse-power may be advantageously supplied with two forty-horse boilers, and an engine of eighty-horse-power with two fifty-horse boilers, and so on.

(138.) The pressure of steam in the cylinder of an engine is always less than the pressure of steam in the boiler, owing to the obstructions which it encounters in its passage through the steam pipes and valves. The difference between these pressures will depend upon the form and magnitude of the passages: the straighter and wider they are, the less the difference will be; if they are contracted and subject to bends, especially to angular inflexions, the steam will be considerably diminished in its pressure before it reaches the cylinder. The throttle valve placed in the steam pipe may also be so managed as to diminish the pressure of steam in the cylinder to any extent: this effect, which is well understood by practical engineers, is called wire-drawing the steam. By such means it is evidently possible for the steam in the boiler to have any degree of high-pressure while the engine is worked at any degree of low pressure. Since, however, the pressure of the steam in the cylinder is a material element in the performance of the engine, the magnitude, position, and shape of the steam pipe and of the valves are a matter of considerable practical importance. But theory furnishes us with little more than very general principles to guide us. One practical rule which has been adopted is, to make the diameter of the steam pipe about one fifth of that of the cylinder: by this means the area of the transverse action of the pipe will be one twenty-fifth part of the superficial magnitude of the piston; and, since the same quantity of steam per minute must flow through this pipe as through the cylinder, it follows that the velocity of the steam, in passing through the steam pipe, will be twenty-five times the velocity of the piston.

(139.) Another rule which has been adopted is, to allow a square inch of magnitude, in the section of the steam pipe, for each horse-power of the engine.

The result of this and all similar rules is, that the steam should always pass through the steam pipe with the same velocity, whatever be the power of the engine.

In engines of the same power, the piston will have very different velocities in the cylinder, according to the effective pressure of the steam, and the proportions and capacity of the cylinder. It is clear from what has been already explained, that, when the power is the same, the same actual quantity of water, in the form of steam, must pass through the cylinder per minute: but, if the steam be used with a considerable pressure, being in a condensed state, the same weight of it will occupy a less space; and consequently the cylinders of high-pressure engines are smaller than those of the same power in low-pressure engines: the magnitude of the cylinder and the piston therefore, as well as the velocity of the latter, will depend first upon the pressure of the steam.

But with steam of a given pressure, the velocity of the piston will be different: with a given capacity of cylinder, and a given pressure of steam, the power of the engine will determine the number of strokes per minute. But the actual velocity of the piston will depend, in that case, on the proportion which the diameter of the cylinder bears to its length; the greater the diameter of the piston is with respect to its length, the less will be its velocity. In case of stationary engines used on land, that proportion of the diameter of the cylinder to its length is selected, which is thought to contribute to the most efficient performance of the machine. According to some engineers, the length of the cylinder should be twice its diameter;[52] others make the length equal to two diameters and a half; but there are circumstances in which considerations of practical convenience render it necessary to depart from these proportions. In marine engines, where great length of cylinder would be inadmissible, and where, on the other hand, considerable power is required, cylinders of short stroke and great diameter are used. In these engines the length of the stroke is often not greater than the diameter of the piston, and sometimes even less.

The actual velocity which has been found to have the best practical effect, for the piston in low-pressure engines, is about 200 feet per minute. This, however, is subject to some variation.

(140.) A given weight or measure of fuel burnt under the boiler of an engine is capable of producing a mechanical effect through the means of that engine, which, when expressed in an equivalent number of pounds' weight lifted a foot high, is called the duty of the engine. If all the heat developed in the combustion of the fuel could be imparted to the water in the boiler, and could be rendered instrumental in producing its evaporation; and if, besides, the steam thus produced could be all rendered mechanically available at the working point; then the duty of the engine would be the entire undiminished effect of the heat of combustion; but it is evident that this can never practically be the case. In the first place, the heat developed by the combustion can never be wholly imparted to the water in the boiler: some part of it will necessarily escape without reaching the boiler at all; another portion will be consumed in heating the metal of the boiler, and in supplying the loss by radiation from its surface; another portion will be abstracted by the various sources of the waste and leakage of steam; another portion will be abstracted by the reaction of the condensed steam; and another portion of the power will be consumed in overcoming the friction and resistance of the engine itself. It is apparent that all these sources of waste will vary according to the circumstances and conditions of the machine, and according to the form and construction of the furnace, flues, boilers, &c. The duty, therefore, of different engines will be different; and when such machines are compared, with a view to ascertain their economy of fuel, it has been found necessary carefully to register and to compare the fuel consumed with the weight or resistance overcome. In engines applied to manufactures generally or navigation, it is not easy to measure the amount of resistance which the engine encounters, but when the engine is applied to the pumping of water, its performance is more easily determined.

In the year 1811, several of the proprietors of the mines in Cornwall, suspecting that some of their engines might not be doing a duty adequate to their consumption of fuel, came to a determination to establish a uniform method of testing the performance of their engines. For this purpose a counter was attached to each engine, to register the number of strokes of the piston. All the engines were put under the superintendence of Messrs. Thomas and John Lean, engineers; and the different proprietors of the mines, as well as their directing engineers, respectively pledged themselves to give every facility and assistance in their power for the attainment of so desirable an end. Messrs. Lean were directed to publish a monthly report of the performance of each engine, specifying the name of the mine, the size of the cylinder, the load upon the engine, the length of the stroke, the number of pump lifts, the depth of the lift, the diameter of the pumps, the time worked, the consumption of coals, the load on the pump, and, finally, the duty of the engine, or the number of pounds lifted one foot high by a bushel of coals. The publication of these monthly reports commenced in August, 1811, and have been regularly continued to the present time.

The favourable effect which these reports have produced upon the vigilance of the several engineers, and the emulation they have excited, both among engine-makers and those to whom the working of the machines are intrusted, are rendered conspicuous in the improvement which has gradually taken place in the performance of the engines, up to the present time. In a report published in December, 1826, the highest duty was that of an engine at Wheal Hope mine in Cornwall. By the consumption of one bushel of coals, this engine raised 46,838,246 pounds a foot high, or, in round numbers, forty-seven millions of pounds.

In a report published in the course of the present year (1835) it was announced that a steam engine, erected at a copper mine near St. Anstell, in Cornwall, had raised by its average work 95 millions of pounds 1 foot high, with a bushel of coals. This enormous mechanical effect having given rise to some doubts as to the correctness of the experiments on which the report was founded, it was agreed that another trial should be made in the presence of a number of competent and disinterested witnesses. This trial accordingly took place a short time since, and was witnessed by a number of the most experienced mining engineers and agents: the result was, that for every bushel of coal consumed under the boiler the engine raised 125-1/2 millions of pounds weight one foot high.

(141.) It may not be uninteresting to illustrate the amount of mechanical virtue, which is thus proved to reside in coals, in a more familiar manner.

Since a bushel of coal weighs 84 lbs. and can lift 56,027 tons a foot high, it follows that a pound of coal would raise 667 tons the same height; and that an ounce of coal would raise 42 tons one foot high, or it would raise 18 lbs. a mile high.

Since a force of 18 lbs. is capable of drawing 2 tons upon a railway, it follows that an ounce of coal possesses mechanical virtue sufficient to draw 2 tons a mile, or 1 ton 2 miles, upon a level railway.[53]

The circumference of the earth measures 25,000 miles. If it were begirt by an iron railway, a load of one ton would be drawn round it in six weeks by the amount of mechanical power which resides in the third part of a ton of coals.

The great pyramid of Egypt stands upon a base measuring 700 feet each way, and is 500 feet high; its weight being 12,760,000,000 lbs. To construct it, cost the labour of 100,000 men for 20 years. Its materials would be raised from the ground to their present position by the combustion of 479 tons of coals.

The weight of metal in the Menai bridge is 4,000,000 lbs., and its height above the level of the water is 120 feet: its mass might be lifted from the level of the water to its present position by the combustion of 4 bushels of coals.[54]

The enormous consumption of coals in the arts and manufactures, and in steam navigation, has of late years excited the fears of some persons as to the possibility of the exhaustion of our mines. These apprehensions, however, may be allayed by the assurance received from the highest mining and geological authorities, that, estimating the present demand from our coal mines at 16 millions of tons annually, the coal fields of Northumberland and Durham alone are sufficient to supply it for 1700 years, and after the expiration of that time the great coal basin of South Wales will be sufficient to supply the same demand for 2000 years longer.

But, in speculations like these, the probable, if not certain, progress of improvement and discovery ought not to be overlooked; and we may safely pronounce that, long before a minute fraction of such a period of time shall have rolled over, other and more powerful mechanical agents will altogether supersede the use of coal. Philosophy already directs her finger at sources of inexhaustible power in the phenomena of electricity and magnetism. The alternate decomposition and recomposition of water, by magnetism and electricity, has too close an analogy to the alternate processes of vaporisation and condensation, not to occur at once to every mind: the development of the gases from solid matter by the operation of the chemical affinities, and their subsequent condensation into the liquid form, has already been essayed as a source of power. In a word, the general state of physical science, at the present moment, the vigour, activity, and sagacity with which researches in it are prosecuted in every civilized country, the increasing consideration in which scientific men are held, and the personal honours and rewards which begin to be conferred upon them, all justify the expectation that we are on the eve of mechanical discoveries still greater than any which have yet appeared; and that the steam engine itself, with the gigantic powers conferred upon it by the immortal Watt, will dwindle into insignificance in comparison with the hidden powers of nature still to be revealed; and that the day will come when that machine, which is now extending the blessings of civilisation to the most remote skirts of the globe, will cease to have existence except in the page of history.

CHAPTER XIX.
PLAIN RULES FOR RAILWAY SPECULATORS.

(142.) For some time after the completion of the Liverpool and Manchester railway, doubts were entertained of its ultimate success as a commercial speculation; and, even still, after several years' continuance, some persons are found, sceptical by temperament, who have not acquired full confidence in the permanency of its advantages. The possibility of sustaining a system of regular transport upon it, with the unheard of speed effected at the commencement of the undertaking, was, for a long period, questioned by a considerable portion even of the scientific world; and, after that possibility was established, by the regular performance of some years, the practicability of permanently profitable work, at that rate of speed, was still doubted by many, and altogether denied by some. The numerous difficulties to be encountered, and the enormous expense of locomotive power, have been fully admitted by the directors in their semi-annual reports. Persons interested in canals and other rival establishments, and others constitutionally doubtful of everything, attributed the dividends to the indirect proceedings of the managers, and asserted that when they appeared to be sharing their profit's, they, in reality, were sharing their capital. This delusion, however, could not long continue, and the payment of a steady semi-annual dividend of 4-1/2 per cent. since the opening of the railway, together with the commencement of a reserved fund of a considerable amount, with a premium of above 100 per cent. on the original shares, has brought conviction to understandings impenetrable to general reasoning; and the tide of opinion, which, for a time, had turned against railways, has now, by the usual reaction, set in so violently in their favour, that it becomes the duty of those who professionally devote themselves to such inquiries, to restrain and keep within moderate bounds the public ardour, rather than to stimulate it.

The projects for the construction of great lines of internal communication which have been announced would require, if realized, a very large amount of capital. Considering that the estimated capital is invariably less than the amount actually required, we shall not, perhaps, overrate the extent of the projected investments if we estimate them at fifty millions. The magnitude of this amount has created alarm in the minds of some persons, lest a change of investment so extensive should produce a serious commercial shock. It should, however, be considered that, even if all the projected undertakings should be ultimately carried into execution, a long period must elapse, perhaps not less than fifteen or twenty years, before they can be all completed: the capital will be required, not suddenly, but by small instalments, at distant intervals of time. Even if it were true, therefore, that, to sustain their enterprises, an equivalent amount of capital must be withdrawn from other investments, the transfer would lake place by such slow degrees as to create no serious inconvenience. But, in fact, it is not probable that any transfer of capital whatever will be necessary. Trade and manufacturers are at the present moment in a highly flourishing condition; and the annual accumulation of capital in the country is so great, that the difficulty will probably be, not to find capital to meet investments, but to find suitable investments for the increasing capital. In Manchester alone, it is said that the annual increment on capital is no less than three millions. In fifteen years, therefore, this mart alone would be sufficient to supply all the funds necessary for the completion of all the proposed railroads, without withdrawing capital from any other investment.

The facilities which these Joint Stock Companies offer for the investment of capital, even of the smallest amount, the temptations which the prospect of large profits hold out, and the low interest obtained on national stock of every description, have attracted a vast body of capitalists, small and great, who have subscribed to these undertakings with the real intention of investment. But, on the other hand, there is a very extensive body of speculators who engage in them upon a large scale, without the most distant intention, and, indeed, without the ability, of paying up the amount of their shares. The loss which the latter class of persons may sustain would, probably, excite little commiseration, were it not for the consequences which must result to the former, should a revolution take place, and the market be inundated with the shares of these gambling speculators, who buy only to sell again. Effects would be produced which must be ruinous to a large proportion of the bonâ fide subscribers. It may, therefore, be attended with some advantage to persons who really intend to make permanent investments of this nature, to state, in succinct and intelligible terms, the principal circumstances on which the efficiency and economy of railroads depend, so as to enable them, in some measure, to form a probable conjecture of the prospective advantages which the various projects hold out. In doing this, we shall endeavour, as much as possible, to confine our statements to simple facts and results, which can neither be denied nor disputed, leaving, for the most part, the inferences to which they lead to be deduced from them by others.

It may be premised, that persons proposing to engage in any railroad speculation should obtain first a table of gradients; that is, an account of all the acclivities upon the line from terminus to terminus, stating how many feet in a mile each incline rises or falls, and its length. Secondly, it would also be advantageous to have a statement of the lengths of the radii of the different curves as well as the lengths of the curves themselves. Thirdly, an account of the actual intercourse which has taken place, for a given time, upon the turnpike road connecting the proposed termini, stating the number of coaches licensed, and the average number of passengers they carry; also as near an account of the transport of merchandise as may be obtained. The latter, however, is of less moment. An approximate estimate may be made of the intercourse in passengers, by allowing for each coach, upon each trip, half its licensed complement of load. Fourthly, the water communication by canal or otherwise between the places; and the amount of tonnage transported by it. With the information thus obtained, the following succinct maxims will be found useful:—