CHAPTER XIII

THE RELATION OF LAMARCK AND DARWIN TO MORPHOLOGY.

It is a remarkable fact that morphology took but a very little part in the formation of evolution-theory. When one remembers what powerful arguments for evolution can be drawn from such facts as the unity of plan and composition and the law of parallelism, one is astonished to find that it was not the morphologists at all who founded the theory of evolution.

It is true that the noticeable resemblances of animals to one another, the possibility of arranging them in a system, the vague perception of an all-pervading plan of structure, did suggest to many minds the thought that systematic affinities might be due to blood-relationship. Thus Leibniz considered that the cat tribe might possibly be descended from a common ancestor,[333] and another great philosopher, Immanuel Kant, was led by his perception of the unity of type to suggest as possible the derivation of the whole organic realm from one parent form, or even ultimately from inorganic matter. In the course of his masterly discussion of mechanism and teleology,[334] he writes, "The agreement of so many genera of animals in a certain common schema, which appears to be fundamental not only in the structure of their bones, but also in the disposition of their remaining parts—so that with an admirable simplicity of original outline, a great variety of species has been produced by the shortening of one member and the lengthening of another, the involution of this part and the evolution of that—allows a ray of hope, however faint, to penetrate into our minds, that here something may be accomplished by the aid of the principle of the mechanism of Nature (without which there can be no natural science in general). This analogy of forms, which with all their differences seem to have been produced according to a common original type, strengthens our suspicions of an actual relationship between them in their production from a common parent, through the gradual approximation of one animal-genus to another—from those in which the principle of purposes seems to be best authenticated, i.e., from man down to the polype, and again from this down to mosses and lichens, and finally to the lowest stage of Nature noticeable by us, viz., to crude matter."[335]

So, too, Buffon's evolutionism was suggested by his study of the structural affinities of animals, and Erasmus Darwin in his Zoonomia (1794) brought forward as one of the strongest proofs of evolution, "the essential unity of plan in all warm-blooded animals."[336]

But, as a matter of historical fact, no morphologist, not even Geoffroy, deduced from the facts of his science any comprehensive theory of evolution. The pre-Darwinian morphologists were comparatively little influenced by the evolution-theories current in their day, and it was in the anatomist Cuvier and the embryologist von Baer that the early evolutionists found their most uncompromising opponents.

Speaking generally, and excepting for the moment the theory of Lamarck, we may say that the evolution-theories of the 18th and 19th centuries arose in connection with the transcendental notion of the Échelle des êtres, or scale of perfection. This notion, which plays so great a part in the philosophy of Leibniz, was very generally accepted about the middle of the 18th century, and received complete and even exaggerated expression from Bonnet and Robinet. Buffon also was influenced by it. Towards the beginning of the 19th century the idea was taken up eagerly by the transcendental school and by them given, in their theories of the "one animal," a more morphological turn. Their recapitulation theory was part and parcel of the same general idea.

One understands how easily the notion of evolution could arise in minds filled with the thought of the ideal progression of the whole organic kingdom towards its crown and microcosm, man. Their theory of recapitulation led them to conceive evolution as the developmental history of the one great organism.[337] Many of them wavered between the conception of evolution as an ideal process, as a Vorstellungsart, and the conception of it as an historical process. Bonnet, Oken, and the majority of the transcendentalists seem to have chosen the former alternative; Robinet, Treviranus, Tiedemann, Meckel, and a few others held evolution to be a real process.

We have already in previous chapters[338] briefly noticed the relation of one or two of the transcendental evolution-theories to morphology, and there is little more to be said about them here. They had as good as no influence upon morphological theory, nor indeed upon biology in general.[339] It is different with the theory of Lamarck, which, although it had little influence upon biological thought during and for long after the lifetime of its author, is still at the present day a living and developing doctrine.

Lamarck's affinity with the transcendentalists was in many ways a close one, but he differed essentially in being before all a systematist. Nor is the direct influence of the German transcendentalists traceable in his work—his spiritual ancestors are the men of his own race, the materialists Condillac and Cabanis, and Buffon, whose friend he was. The idea of a gradation of all animals from the lowest to the highest was always present in Lamarck's mind, and links him up, perhaps through Buffon, with the school of Bonnet. The idea of the Échelle des êtres had for him much less a morphological orientation than it had even for the transcendentalists, for he was lacking almost completely in the sense for morphology. Lamarck's scientific, as distinguished from his speculative work, was exclusively systematic, and it was systematics of a very high order. He introduced many reforms into the general classification of animals. He was the first clearly to separate Crustacea (1799), and a little later (1800) Arachnids, from insects. He reduced to a certain orderliness the neglected tribes of the Invertebrates, and wrote what was for long the standard work on their systematics—the Histoire naturelle des Animaux sans Vertèbres (1816-22). His speculative work on biology is contained in three publications, the small book entitled Considérations sur l'organisation des corps vivants (1802), the larger work of 1809, the Philosophie zoologique, and the introductory matter to his Animaux sans Vertèbres (vol. i., 1816).

It is no easy matter to give in short compass an account of Lamarck's biological philosophy. He is an obscure writer, and often self-contradictory.

In the first part of the Philosophie zoologique Lamarck is largely pre-occupied with the problem of whether species are really distinct, or do not rather grade insensibly into one another. As a systematist of vast experience Lamarck knew how difficult it is in practice to distinguish species from varieties. "The more," he writes, "we collect the productions of Nature, the richer our collections become, the more do we see almost all the gaps filled up and the lines of separation effaced. We find ourselves reduced to an arbitrary determination, which sometimes leads us to seize upon the slightest differences of varieties, and form from them the distinctive character of what we call a species, and at other times leads us to consider as a variety of a certain species individuals a little bit different, which others regard as forming a separate species."[340]

For Lamarck, as for Darwin later, the chief problem was not the evolution and differentiation of types of structure, but the mode of origin of species.

Lamarck is at great pains to show how arbitrary are our determinations of species, and how artificial the classificatory groups which we distinguish in Nature. Strictly speaking, there are in Nature only individuals, "... this is certain, that among her products Nature has in reality formed neither classes, nor orders, nor families, nor genera, nor constant species, but only individuals which succeed one another and resemble those that produced them. Now, these individuals belong to infinitely diversified races, which shade into one another under all the forms and in all the degrees of organisation, and each of which maintains itself without change, so long as no cause of change acts upon it" (p. 41).

But there is a natural order in the animal kingdom, a progression from the simpler to the more complex organisations, a natural Échelle des êtres.

This order is shown by the relation to one another of the large classificatory groups, for they can be arranged in series from the simplest to the most complex, somewhat as follows:—

1. Infusoria.6. Arachnids.11. Fishes.
2. Polyps.7. Crustacea.12. Reptiles.
3. Radiates.8. Annelids.13. Birds.
4. Worms.9. Cirripedes.14. Mammals.
5. Insects.10. Molluscs.

But the order of Nature is essentially continuous, and the limits of even the best defined of these classes are in reality artificial—"if the order of Nature were perfectly known in a kingdom, the classes which we should be forced to establish in it would always constitute entirely artificial sections" (p. 45).

In the same way the lesser classificatory groups represent smaller sections of the one unique order of Nature. Note that Lamarck's Échelle is in no way a morphological one, and was not intended to be such. It is a scale of increasing physiological differentiation, and the stages of it are marked by the acquirement of this or that new organ (cf. Oken). "Observation of their state convinces one that in order to produce them successively Nature has proceeded gradually from the simpler to the more complex. Now Nature, having had in mind the realisation of a plan of organisation which would permit of the greatest perfecting (that of the Vertebrates), a plan very different from those which she has been obliged to form as a preliminary to reaching it, one understands that, among the multitude of animals, one must necessarily come across not a single system of organisation which has become progressively perfected, but diverse very distinct systems, each of which has come into existence at the moment when each primary organ first put in its appearance" (p. 171).

For Lamarck this order of Nature was not merely ideal—Nature had actually formed the classes successively, proceeding from the simpler to the more complex; she had brought about this evolution by transforming the primitive species of animals, raising them to higher degrees of organisation, and modifying them in relation to the environment in which they found themselves.

Lamarck's theory of evolution is worked out in great detail in his Philosophie zoologique, but the exposition is diffuse and disconnected; it is better in giving an account of it to follow the more concise, mature and general exposition which he gives in the Introduction to his Histoire naturelle des Animaux sans Vertèbres.[341] Near the beginning of the Introduction Lamarck gives us in a few short "Fundamental Principles" the main lines of his general philosophy. He is a confirmed materialist. Every fact and phenomenon is essentially physical and owes its existence or production entirely to material bodies or to relations between them. All change and all movement is in the last resort due to mechanical causes. Every fact or phenomenon observed in a living body is at once a physical fact or phenomenon and a product of organisation (p. 19). Life, thought and sensation are not properties of matter, but result from particular material combinations.

His thorough-going materialism is most clearly shown in its relation to living things in the first three of the "Zoological Principles and Axioms," which are developed further on in the book.

These are as follows:—"1. No kind or particle of matter can have in itself the power of moving, living, feeling, thinking, nor of having ideas; and if, outside of man, we observe bodies endowed with all or one of these faculties, we ought to consider these faculties as physical phenomena which Nature has been able to produce, not by employing some particular kind of matter which itself possesses one or other of these faculties, but by the order and state of things which she has constituted in each organisation and in each particular system of organs.

"2. Every animal faculty, of whatever nature it may be, is an organic phenomenon, and results from a system of organs or an organ-apparatus which gives rise to it and upon which it is necessarily dependent.

"3. The more highly a faculty is developed the more complex is the system of organs which produces it, and the higher the general organisation; the more difficult also does it become to grasp its mechanism. But the faculty is none the less a phenomenon of organisation, and for that reason purely physical" (p. 104).

According to these "axioms" function is a direct and mechanical effect of structure.

The curious thing is that in spite of his avowed materialism, Lamarck's conception of life and evolution is profoundly psychological, and from the conflict of his materialism and his vitalism (of which he was himself hardly conscious), arise most of the obscurities and the irreductible self-contradiction of his theory.

Lamarck divided animals (psychologically!) into three great groups—apathetic or insensitive animals, animals endowed with sensation, and intelligent animals. The first group, which comprise all the lower Invertebrates, are distinguished from other animals by the fact that their actions are directly and mechanically due to the excitations of the environment; they have no principle of reaction to external influences, but passively prolong into action the excitations they receive from without. They are irritable merely. The second group are distinguished from the first by their possessing, in addition to irritability, a power which Lamarck calls the sentiment intérieur. He has some difficulty in defining exactly what he means by it:—"I have no term to express this internal power possessed not only by intelligent animals but also by those that are endowed merely with the faculty of sensation; it is a power which, when set in action by the feeling of a need, causes the individual to act at once, i.e., in the very moment of the sensation it experiences; and if the individual is of those that are endowed with intelligence it nevertheless acts in such a case entirely without premeditation and before any mental operation has brought its will into play" (p. 24).

It is the power we call instinct in animals (p. 25), and it implies neither consciousness nor will. It acts by transforming external into internal excitations.

To this second group of animals, possessing the sentiment intérieur, belong the higher Invertebrates, notably insects and molluscs. Only animals possessed of a more or less centralised nervous system can manifest this sentiment, or principle of (unconscious) reaction to external stimuli.

The higher animals, or the four Vertebrate classes, form the group of "intelligent animals." In virtue of their more complex organisation they possess in addition to the sentiment intérieur the faculties of intelligence and will.

Now, broadly put, Lamarck's theory of evolution is that new organs are formed in direct reaction to needs (besoins) experienced by the sentiment intérieur. The sentiment intérieur is therefore the cause not only of instinctive action but also of all morphogenetic processes. Will and intelligence (which are confined to a relatively small number of animals) have little or nothing to do directly with evolution.

To understand the working-out of Lamarck's evolution-theory we must revert to his conception of the Échelle des êtres. What he wrote in the Philosophie zoologique is here repeated in the work of 1816 with little modification.

There is a real progression from the simpler to the more complex organisations; Nature has gradually complicated her creatures by giving them new organs and therefore new faculties.

It is interesting to note that Lamarck expressly refers to Bonnet (p. 110), but refuses to accept his view of an Échelle extending down into the inorganic. Like Bonnet, however, and like the German transcendentalists, Lamarck makes man the goal of evolution (p. 116). He makes it quite clear that his Échelle is a functional one, for he links Vertebrates to molluscs even while expressly admitting that they are not connected by any structural intermediates (p. 123). He does not fall into the error of the transcendentalists and assume that Vertebrates and Invertebrates alike are formed upon one common plan of structure.

The progression of organisation shown by the animal kingdom has not been altogether regular and uninterrupted:—"The progression in complexity of organisation shows here and there, in the general animal series, anomalies induced by the influence of environment and by the influence of the habits contracted" (Phil. zool., i., p. 145).

There are thus really two causes at work to produce the variety of organisation as it appears to us, one which tends to produce a regular increase in complexity, and one which disturbs and diversifies this regular advance.

The first cause Lamarck calls the vital power (pouvoir de la vie); the other may be called the influence of circumstance (Anim. s. Vert., p. 134). To the latter cause are due the lacunæ, the blind alleys, and the complications which the otherwise simple scale of perfection shows.

To explain both these aspects of evolution Lamarck propounded in his volume of 1816 four laws, which read as follows:—

"First Law.—Life, by its own forces, tends continually to increase the volume of every body possessing it, and to extend the dimensions of its parts, up to a limit which it brings about itself.

"Second Law.—The production of a new organ in an animal body results from the arisal and continuance of a new need, and from the new movement which this need brings into being and sustains.

"Third Law.—The degree of development of organs and their force of action are always proportionate to the use made of these organs.

"Fourth Law.—All that has been acquired, imprinted or changed in the organisation of the individual during the course of its life is preserved by generation and transmitted to the new individuals that descend from the individual so modified" (pp. 151-2).

It is mainly but not entirely by reason of the first of these laws that organisation tends to progress, and mainly by reason of the second and third that difference of environment brings about diversity of organisation. In virtue of the fourth law the acquirements of the individual become the property of the race.

Lamarck's exposition of his first law, that life tends by its own powers to enlarge and extend its bodily instrument, is vague and difficult to understand. He has already explained some pages back how the first organisms arose by spontaneous generation in the form of minute gelatinous utricles (cf. Oken). He conceives that it is in the movements of the fluids proper to the organism that the power resides to enlarge and extend the body. Nutrition alone is not sufficient to bring about extension; a special force is required, acting from within outwards (p. 153). In the most primitive organisms the movements of the vital fluids are weak and slow, but in the course of evolution they gradually accelerate, and, becoming more rapid, trace out canals in the delicate tissue which contains them, and finally form organs.

Subtle fluids play a great part in Lamarck's biology: they take the place of the soul or entelechy which the vitalists would postulate to explain organic happenings. Lamarck seems in this to follow certain of the old materialists, who conceived the soul to be formed of a matter more subtle than the ordinary.[342]

In his second law Lamarck's essentially vitalistic attitude comes out very clearly, for it states that a psychological moment enters into all new production of form, that the ultimate cause of the development of new form is the need felt by the organism. This need is of course not a conscious one, it is a need perceived by the sentiment intérieur.

In the large group of apathetic or insensitive animals, which do not possess this faculty, needs cannot be experienced; accordingly new organs are here formed directly and mechanically, by the movements of the vital fluids set in action by excitations from without—the evolution, like the behaviour, of these animals is due to the direct and physical action of the environment. "But this is not the case with the more highly organised animals which possess feeling. They experience needs, and each need felt, acting upon their 'inner feeling,' immediately directs the fluids and the forces to the part of the body where action can satisfy the need. Now, if there exists at this point an organ capable of performing the required action, it is quickly stimulated to act; and if the organ does not exist and the need is pressing and sustained, bit by bit the organ is produced and developed in proportion to the continuity and the energy of its use" (p. 155).

In intelligent animals the sentiment intérieur may be moved by thought or will.

As an example of the way in which the law works Lamarck takes the hypothetical case of a gastropod mollusc, which as it creeps along experiences dimly the need to feel the objects in front of it. It makes an effort (unconscious, be it noted) to touch these objects with the anterior portions of its head, and sends forward continually to these parts a great volume of nervous and other fluids. From these efforts and the repeated afflux of fluids there must result a development of the nerves supplying these parts. And as, along with the nervous fluids, nutritive juices constantly flow to the parts, there must result the formation of two or four tentacles in the places to which these fluids are directed. A curious mixture of mechanistic "explanations" and vitalistic hypothesis!

In his third law, that use and disuse are powerful to modify organs, Lamarck is upon more solid ground, and can point to many instances of the visible effect of these factors of change. It is of course rather closely bound up with his second law and may even be regarded as an extension of it.

The law has reference to one of the most powerful means employed by Nature to diversify species, a means which comes into play whenever the environment changes. The cause of the great diversity shown by animal species is indeed ultimately to be sought in the environment. As the imperfect and earliest forms developed they spread over the earth and invaded the utmost corners of it:—"One can imagine what an enormous variety of habitats, stations, climates, available foods, environing media, etc., animals and plants have had to endure, as the existing species were forced to change their place of abode. And although these changes have taken place with extreme slowness ... their reality, necessitated by various causes, has none the less induced the species affected by them slowly to change their manner of life and their habitual actions. Through the effects of the second and third of the laws cited above, these induced activity-changes must have brought into being new organs, and must have been able to develop them further if more frequent use was made of them; they must in the same way have been capable of bringing about the degeneration and finally the complete disappearance of existing organs which had become useless" (p. 161).

On the other hand, if the environment does not change, species remain constant.

It is to be noted that change in environment is rather the occasion than the cause of modification; the environment induces the organism to change its habitual way of life; it sets up new needs, to satisfy which the organism must modify its structure. It is the organism that takes the active part in all this, the action of the environment is indirect.

Of Lamarck's fourth law, which asserts the transmission of acquired characters, little need here be said in the way of exposition. Upon the truth of it depends of course Lamarck's whole theory. He himself never dreamed that anyone would ever dispute it.

Lamarck sums up as follows:—"By the four laws which I have just enunciated all the facts of organisation seem to me to be easily explained; the progression in the complexity of organisation of animals, and in their faculties, seems to me easy to conceive; so, too, the means which Nature has employed to diversify animals, and bring them to the state in which we now see them, become easily determinable" (p. 168).

It is never made quite clear, we may note in passing, how far his second and third laws tend to bring about an increase in complexity, in addition to diversifying animals.[343]

"The function creates the organ," this would seem to be the kernel of Lamarck's doctrine. But how does he reconcile this essentially vitalistic conception with his strictly materialistic philosophy?

We have seen that irritability, the sentiment intérieur, and intelligence itself, are the effects of organisation. We are told farther on that both the sentiment and intelligence are caused by nervous fluids. A great part of both the Philosophie zoologique and the introduction to the Animaux sans Vertèbres is given up to the exposition of a materialistic psychology of animals and man, based entirely upon this hypothesis of nervous fluids. Thus habits are due to the fluids hollowing out definite paths for themselves.

The sentiment intérieur acts by directing the movements of the subtle fluids of the body (which are themselves modifications of the nervous fluids) upon the parts where a new organ is needed. But if it is itself only a result of the movement of nervous fluids? Again, how can a need be "felt" by a nervous fluid? This is an entirely psychological notion and cannot be applied to a purely material system. Whence arises the power of the sentiment intérieur to canalise the energies of the organism, so to direct and co-ordinate them that they build up purposive structures, or effect purposive actions (as in all instinctive behaviour)? Either the sentiment intérieur is a psychological faculty, or it is nothing.

There is no doubt that, as expressed by Lamarck, the conception conceals a radical confusion of thought. It is not possible to be a thorough-going materialist, and at the same time to believe that new organs are formed in direct response to needs felt by the organism. Lamarck could never resolve this antinomy, and his speculations were thrown into confusion by it. To this cause is due the frequent obscurity of his writings.

Should we be right in laying stress upon the psychological side of Lamarck's theory, and disregarding the materialistic dress in which, perhaps under the influence of the materialism current in his youth, he clothed his essentially vitalistic thought? Everything goes to prove it—his constant preoccupation with psychological questions, his tacit assimilation of organ-formation to instinctive behaviour, his constant insistence on the importance of besoin and habitude.

Let us not forget the profundity of his main idea, that, exception made for the lower forms, the animal is essentially active, that it always reacts to the external world, is never passively acted upon. Let us not forget that he pointed out the essentially psychological moment implied in all processes of individual adaptation. With keen insight he realised that conscious intelligence counts for little in evolution, and focussed attention upon the unconscious but obscurely psychical processes of instinct and morphogenesis.

Not without reason have the later schools of evolutionary thought, who developed the psychological and vitalistic side of his doctrine, called themselves Neo-Lamarckians.

We shall say then that Lamarck, in spite of his materialism, was the founder of the "psychological" theory of evolution.

Lamarck stood curiously aloof and apart from the scientific thought of his day.[344] He took no interest in the morphological problems that filled the minds of Cuvier and Geoffroy; he had indeed no feeling at all for morphology. He did not realise, like Cuvier, the convenance des parties, the marvellous co-ordination of parts to form a whole; he had little conception of what is really implied in the word "organism." He was not, like Geoffroy, imbued with a lively sense of the unity of plan and composition, and of the significance of vestigial organs as witnesses to that unity. He seems not to have known of the recapitulation theory, of which he might have made such good use as powerful evidence for evolution. Even with the German transcendentalists, with whom in the looseness of his generalisations he shows some affinity, he seems not to have been specially acquainted.

He was interested more in the problems suggested to him by his daily work in the museum. He wanted to know why species graded so annoyingly into one another; he wanted to examine critically his haunting suspicion that species were really not distinct, and that classification was purely conventional. The question, too, of the adaptation of species to their environment, the problem of ecological adaptation, in distinction to that of functional adaptation which interested Cuvier so greatly, came vividly before him as he worked through the vast collections of the museum. He was the first systematist to occupy himself in a philosophical manner with the problems of general biology. He introduced new problems and a new way of looking at old. With Lamarck the problem of species and the problem of ecological adaptation enter into general biology.

The one point in which he does definitely carry on the thought of his predecessors is his conception of the animal kingdom as forming a scale of (functional) perfection. He did not go to the same extreme as Bonnet; he did not even consider that the animal series was a continuation of the vegetable series; in his opinion they formed two diverging scales. He recognised, too, that among animals there was no simple and regular gradation from the lowest to the highest, but that the orderly progression was disturbed and diverted by the necessity of adaptation to different environments. It is interesting to note that in developing this idea he arrived at a roughly accurate distinction between homologous and analogous structures. More importance, he thought, was to be attributed in classifying animals to characters which appeared due to the "plan of Nature" than to such as were produced by an external modifying cause (p. 299). But he did not formulate the distinction in any strictly morphological way.

As his ideas developed he laid less stress upon the simplicity and continuity of the scale; in his supplementary remarks to the Introduction of 1816 he admits that the series is really very much branched, and even that there may be two distinct series among animals instead of one. His last schema of the course of evolution shows no little analogy with the genealogical trees of Darwinian speculation. It is headed "The presumed Order of the formation of Animals, showing two separate partly-branching series," and it reads as follows:—

It is interesting to note that Vertebrates are placed between the two series, and are now not linked on directly to any Invertebrate group.

Lamarck's theory had little success. There is evidence, however, that both Meckel and Geoffroy owed a good many of their evolutionary ideas to Lamarck, and Cuvier paid him at least the compliment of criticising his theory,[345] not distinguishing it, however, very clearly from the evolutionary theories of the transcendentalists. But, speaking generally, Lamarck's theory of evolution exercised very little influence upon his contemporaries. This was probably due partly to the obscurity and confusion of his thought, partly to his lack of sympathy with the biological thought of his day, which was preponderatingly morphological.

It was not that men's minds were not ripe for evolution, for in the early decades of the 19th century evolution was in the air. There were few of von Baer's contemporaries who had not read Lamarck;[346] Erasmus Darwin's Zoonomia ran through three editions, and was translated into German, French and Italian;[347] German philosophy was full of the idea of evolution.

There was no unreadiness to accept the derivation of present-day species from a primordial form—if only some solid evidence for such derivation were forthcoming. Cuvier and von Baer, as we have seen, combated the current evolution theories on the ground that the evidence was insufficient, but von Baer at least had no rooted objection to evolution. In an essay of 1834, entitled The Most General Law of Nature in all Development,[348] von Baer expressed belief in a limited amount of evolution. In this paper he did not admit that all animals have developed from one parent form, and he refused to believe that man has descended from an ape; but, basing his supposition upon the facts of variability and upon the evidence of palæontology, he went so far as to maintain that many species have evolved from parent stocks. In the absence of conclusive proofs he did not commit himself to a belief in any extended or comprehensive process of evolution.

Imbued as he was with the idea of development von Baer saw in evolution a process essentially of the same nature as the development of the individual. Evolution, like development, was due to a Bildungskraft or formative force. The ultimate law of all becoming was that "the history of Nature is nothing but the history of the ever-advancing victory of spirit over matter" (p. 71). In a later essay (1835) in the same volume he says that all natural science is nothing but a long commentary on the single phrase Es werde!. (p. 86).

As we shall see, von Baer adopted in later years the same attitude to Darwinism as he did to the evolution theories in vogue in his youth.

Although in the twenty or thirty years before the publication of the Origin of Species (1859) no evolution theory of any importance was published, and although the great majority of biologists believed in the constancy of species, there were not wanting some who, like von Baer, had an open mind on the subject, or even believed in the occurrence of evolutionary processes of small scope. Isidore Geoffroy St Hilaire, the son of the great Etienne Geoffroy St Hilaire, seems to have held that species might be formed from varieties. The law which L. Agassiz thought he could establish,[349] of the parallelism between palæontological succession, systematic rank, and embryological development, tended to help the progress of evolutionary ideas. J. V.. Carus, who afterwards became a supporter of Darwin, seems already, in 1853, to have inferred from Agassiz's law the probability of evolution.[350]

But no evolution theory was taken very seriously before 1859, when the Origin of Species was published.

Like Lamarck, Charles Darwin was, neither by inclination nor by training, a morphologist. In his youth he was a collector, a sportsman and a field geologist. His voyage round the world on the Beagle aroused in him keen interest in the problem of species—their variety, their variation according to place and time, their adaptedness to environment. The conviction gradually took possession of his mind that the puzzling facts of geographical range and geological succession which he observed wherever he went were explicable only on the hypothesis that species change. He was not satisfied with the theories of evolution that had been proposed by his grandfather, by Lamarck, and by E. Geoffroy St Hilaire—he did not indeed understand these theories any too well. He resolved to work out the problem in his own way, for his own satisfaction. He tells us all this very clearly in his autobiography. "During the voyage of the Beagle I had been deeply impressed by discovering in the Pampean formation great fossil animals covered with armour like that on the existing armadillos; secondly, by the manner in which closely allied animals replace one another in proceeding southwards over the continent; and thirdly, by the South American character of most of the productions of the Galapagos archipelago, and more especially by the manner in which they differ slightly on each island of the group; some of the islands appearing to be very ancient in a geological sense.

"It was evident that such facts as these, as well as many others, could only be explained on the supposition that species gradually become modified; and the subject haunted me. But it was equally evident that neither the action of the surrounding conditions, nor the will of the organisms (especially in the case of plants) could account for the innumerable cases in which organisms of every kind are beautifully adapted to their habits of life—for instance, a woodpecker or a tree-frog to climb trees, or a seed for dispersal by hooks or plumes. I had always been much struck by such adaptations, and until these could be explained it seemed to me almost useless to endeavour to prove by indirect evidence that species have been modified."[351]

All Darwin's varied subsequent work revolved round these, for him, essential problems—How do species change, and how do they become adapted to their environment? He never ceased to be essentially a field naturalist, and his theory of natural selection would have been an empty and abstract thing if his vast knowledge and understanding of the "web of life" had not given it colour and form. He never lost touch with the living thing in its living, breathing reality—even plants he rightly regarded as active things, full of tricks and contrivances for making their way in the world. No one ever realised more vividly than he the delicacy and complexity of the adaptations to environment which are the necessary condition of success in the struggle for existence. Almost his greatest service to biology was that he made biologists realise as they never did before the vast importance of environment. He took biology into the open air, away from the museum and the dissecting-room.

Naturally this attitude was not without its drawbacks. It led him to take only a lukewarm interest in the problems of morphology. It is true he used the facts of morphology with great effect as powerful arguments for evolution, but it was not from such facts that he deduced his theory to account for evolution. It is questionable indeed whether the theory of natural selection is properly applicable to the problems of form. It was invented to account for the evolution of specific differences and of ecological adaptations; it was not primarily intended as an explanation of the more wonderful and more mysterious facts of the convenance des parties and the interaction of structure and function. Perhaps Darwin did not realise this inner aspect of adaptation quite so vividly as he did the more superficial adaptation of organisms to their environment. It was, perhaps, his lack of morphological training and experience that led him to disregard the problems of form, or at least to realise very insufficiently their difficulty.

It is in any case very significant that only a small part of his Origin of Species is devoted to the discussion of morphological questions—only one chapter out of the fourteen contained in the first edition.

Though the theory of natural selection took little account of the problems of form, Darwin's masterly vindication of the theory of evolution was of immense service to morphology, and Darwin himself was the first to point out what a great light evolution threw upon all morphological problems. In a few pages of the Origin he laid the foundations of evolutionary morphology.

We have here to consider his interpretation of morphological facts and its relation to the current morphology of his time.

The sketch of his theory, written in 1842,[352] shows a very significant division into two parts—the first dealing with the positive facts of variability and the theory of natural selection, the second with the general evidence for evolution. It is in the second part that the paragraphs on morphological matters occur. In paragraph 7, on affinities and classification, Darwin points out that on the theory of evolution homological relationship would be real relationship, and the natural system would really be genealogical. In the next paragraph he notes that evolution would account for the unity of type in the great classes, for the metamorphosis of organs, and for the close resemblance which early embryos show to one another. It is of special interest to note that he definitely rejects the Meckel-Serres theory of recapitulation. "It is not true," he writes, "that one passes through the form of a lower group, though no doubt fish more nearly related to fœtal state" (p. 42). The greater divergence which adults show seems to him to be due to the fact that selection acts more on the later than on the embryonic stages. He realises very clearly how illuminative the theory of evolution is when applied to the puzzling facts of embryonic development. "The less differences of fœtus—this has obvious meaning on this view: otherwise how strange that a horse, a man, a bat should at one time of life have arteries, running in a manner which is only intelligibly useful in a fish! The natural system being on theory genealogical, we can at once see why fœtus, retaining traces of the ancestral form, is of the highest value in classification" (p. 45).

Abortive organs, too, gain significance on the evolutionary hypothesis. "The affinity of different groups, the unity of types of structure, the representative forms through which fœtus passes, the metamorphosis of organs, the abortion of others, cease to be metaphorical expressions and become intelligible facts" (p. 50).

In general, organisms can be understood only if we take into account the cardinal fact that they are historical beings. "We must look at every complicated mechanism and instinct as the summary of a long history of useful contrivances much like a work of art" (p. 51).[353]

Already in 1842 Darwin had seized upon the main principles of evolutionary morphology: the indications then given are elaborated in the thirteenth chapter of the Origin of Species (1st ed., 1859). A good part of this chapter is given up to a discussion of the principles of classification, only a few pages dealing with morphology proper. But, as Darwin rightly saw, the two things are inseparable.

We note first that there is no hint of the "scale of beings"—Darwin conceives the genealogical tree as many branched. Animals can be classed in "groups under groups," and cannot be arranged in one single series.

He discusses first what kind of characters have the greatest classificatory value. Certain empirical rules have been recognised, more or less consciously, by systematists—that analogical characters are less valuable than homological, that characters of great physiological importance are not always valuable for classificatory purposes, that rudimentary organs are often very useful, and so on. He finds that as a general rule "the less any part of the organisation is concerned with special habits, the more important it becomes for classification" (p. 414), and adduces in support Owen's remark that the generative organs afford very clear indications of affinities, since they are unlikely to be modified by special habits. These rules of classification can be explained "on the view that the natural system is founded on descent with modification; that the characters which naturalists consider as showing true affinity ... are those which have been inherited from a common parent, and, in so far, all true classification is genealogical; that community of descent is the hidden bond which naturalists have been unconsciously seeking, and not some unknown plan of creation, or the enunciation of general propositions, and the mere putting together and separating objects more or less alike" (p. 420).

In general, then, homological characters are more valuable for classificatory purposes because they have a longer pedigree than analogical characters, which represent recent acquirements of the race.

Coming to morphology proper, Darwin takes up the question of the unity of type, and the homology of parts, for which the unity of type is but a general expression.

He treats this on the same lines as E. Geoffroy St Hilaire, and Owen, referring indeed specifically to Geoffroy's law of connections. "What can be more curious," he asks, "than that the hand of a man, formed for grasping, that of a mole for digging, the leg of a horse, the paddle of the porpoise, and the wing of the bat, should all be constructed on the same pattern, and should include similar bones, in the same relative positions? Geoffroy St Hilaire has strongly insisted on the high importance of relative position or connection in homologous parts; they may differ to almost any extent in form and size, and yet remain connected together in the same invariable order" (p. 434).

The unity of plan cannot be explained on teleological grounds, as Owen has admitted in his Nature of Limbs, nor is it explicable on the hypothesis of special creation (p. 435). It can be understood only on the theory that animals are descended from one another and retain for innumerable generations the essential organisation of their ancestors. "The explanation is to a large extent simple on the theory of the selection of successive slight modifications—each modification being profitable in some way to the modified form, but often affecting by correlation other parts of the organisation. In changes of this nature, there will be little or no tendency to alter the original pattern or to transpose the parts.... If we suppose that the ancient progenitor, the archetype as it may be called, of all animals, had its limbs constructed on the existing general pattern, for whatever purpose they served, we can at once perceive the plain significance of the homologous construction of the limbs throughout the whole class" (p. 435).

We may note three important points in this passage—first, the identification of the archetype with the common progenitor; second, the view that progressive evolution is essentially adaptive, and dominated by natural selection; and third, the petitio principii involved in the assumption that adaptive modification brings inevitably in its train the necessary correlative changes.

In his section on morphology Darwin shows clearly the influence of Owen, and through him of the transcendental anatomists. He refers to the transcendental idea of "metamorphosis," as exemplified in the vertebral theory of the skull and the theory of the plant appendage, and shows how, on the hypothesis of descent with modification, "metamorphosis" may now be interpreted literally, and no longer figuratively merely (p. 439).

Very great interest attaches to Darwin's treatment of development, for post-Darwinian morphology was based to a very large extent on the presumed relation between the development of the individual and the evolution of the race. Just as he kept clear of the notion of the scale of beings, so he avoided the snare of the Meckel-Serres theory of recapitulation, according to which the embryo of the highest animal, man, during its development climbs the ladder upon the rungs of which the whole animal series is distributed, in its gradual progression from simplicity to complexity. The law of development which he adopts is that of von Baer, which states that development is essentially differentiation, and that as a result embryos belonging to the same group resemble one another the more the less advanced they are in development. There can be little doubt that he was indebted to von Baer for the idea, and in the later editions of the Origin he acknowledges this by quoting the well-known passage in which von Baer tells how he had two embryos in spirit which he was unable to refer definitely to their proper class among Vertebrates.[354]

Not only are embryos more alike than adults, because less differentiated, but it is in points not directly connected with the conditions of existence, not strictly adaptive, that their resemblance is strongest (p. 440)—think, for instance, of the arrangement of aortic arches common to all vertebrate embryos. Larval forms are to some extent exceptions to this rule, for they are often specially adapted to their particular mode of life, and convergence of structure may accordingly result. All these facts require an explanation. "How, then, can we explain these several facts in embryology—namely, the very general, but not universal, difference in structure between the embryo and the adult—of parts in the same individual embryo, which ultimately become very unlike and serve for different purposes, being at this early period of growth alike—of embryos of different species within the same class, generally but not universally, resembling each other—of the structure of the embryo not being closely related to its conditions of existence, except when the embryo becomes at any period of life active and has to provide for itself—of the embryo apparently having sometimes a higher organisation than the mature animal, into which it is developed" (pp. 442-3). Obviously all these facts are formally explained by the doctrine of descent. But Darwin goes further, he tries to show exactly how it is that the embryos resemble one another more than the adults. He thinks that the phenomenon results from two principles—first, that modifications usually supervene late in the life of the individual; and second, that such modifications tend to be inherited by the offspring at a corresponding, not early, age (p. 444).

Thus, applying these principles to a hypothetical case of the origin of new species of birds from a common stock, he writes:—"... from the many slight successive steps of variation having supervened at a rather late age and having been inherited at a corresponding age, the young of the new species of our supposed genus will manifestly tend to resemble each other much more closely than do the adults, just as we have seen in the case of pigeons"[355] (pp. 446-7).

Since the embryo shows the generalised type, the structure of the embryo is useful for classificatory purposes. "For the embryo is the animal in its less modified state; and in so far it reveals the structure of its progenitor" (p. 449)—the embryological archetype reveals the ancestral form. "Embryology rises greatly in interest, when we thus look at the embryo as a picture, more or less complete, of the parent form of each great class of animals" (p. 450)—a prophetic remark, in view of the enormous subsequent development of phylogenetic speculation.

We may sum up by saying that Darwin interpreted von Baer's law phylogenetically.

The rest of the chapter is devoted to a discussion of abortive and vestigial organs, whose existence Darwin naturally turns to great advantage in his argument for evolution. Throughout the whole chapter Darwin's preoccupation with the problems of classification is clearly manifest.

On the question as to whether descent was monophyletic or polyphyletic Darwin expressed no dogmatic opinion. "I believe that animals have descended from at most only four or five progenitors, and plants from an equal or lesser number.... I should infer from analogy that probably all the organic beings which have ever lived on this earth have descended from one primordial form, into which life was first breathed" (p. 484).

Darwin rightly laid much stress upon the morphological evidence for evolution,[356] which he considered to be weighty. It probably contributed greatly to the success of his theory. Though he himself did little or no work in pure morphology, he was alive to the importance of such work,[357] and followed with interest the progress of evolutionary morphology, incorporating some of its results in later editions of the Origin, and in his Descent of Man (1871).

In his morphology Darwin was hardly up to date. He does not seem to have known at first hand the splendid work of the German morphologists, such as Rathke and Reichert; he pays no attention to the cell-theory, nor to the germ-layer theory. His sources are, in the main, Geoffroy St Hilaire, Owen, von Baer, Agassiz, Milne-Edwards, and Huxley.

Perhaps his greatest omission was that he did not give any adequate treatment of the problem of functional adaptation and the correlation of parts. It is not too much to say that Darwin not only disregarded these problems almost entirely, but by his insistence upon ecological adaptation and upon certain superficial aspects of correlation, succeeded in giving to the words "adaptation" and "correlation" a new signification, whereby they lost to a large extent their true and original functional meaning.

It is true that Darwin himself, as well as his successors, believed that natural selection was all-powerful to account for the evolution of the most complicated organs, but it may be questioned whether he realised all the conditions of the problem of which he thus easily disposed. He says, rightly, in an important passage, that "It is generally acknowledged that all organic beings have been formed on two great laws—Unity of Type, and the Conditions of Existence. By unity of type is meant that fundamental agreement in structure which we see in organic beings of the same class, and which is quite independent of their habits of life. On my theory, unity of type is explained by unity of descent. The expression of conditions of existence, so often insisted upon by the illustrious Cuvier, is fully embraced by the principle of natural selection. For natural selection acts by either now adapting the varying parts of each being to its organic and inorganic conditions of life:[358] or by having adapted them during past periods of time: the adaptations being aided in many cases by the increased use or disuse of parts, being affected by the direct action of the external conditions of life, and subjected in all cases to the several laws of growth and variation. Hence, in fact, the law of the Conditions of Existence is the higher law; as it includes, through the inheritance of former variations and adaptations, that of Unity of Type" (Origin, 6th ed., Pop. Impression, pp. 260-1). It is clear that Darwin took the phrase "Conditions of Existence" to mean the environmental conditions, and the law of the Conditions of Existence to mean the law of adaptation to environment. But that is not what Cuvier meant by the phrase: he understood by it the principle of the co-ordination of the parts to form the whole, the essential condition for the existence of any organism whatsoever (see above, [Chap. III., p. 34]).

Of this thought there is in Darwin little trace, and that is why he did not sufficiently appreciate the weight of the argument brought against his theory that it did not account for the correlation of variations.

Darwin's conception of correlation was singularly incomplete. As examples of correlation he advanced such trivial cases as the relation between albinism, deafness and blue eyes in cats, or between the tortoise-shell colour and the female sex. He used the word only in connection with what he called "correlated variation," meaning by this expression "that the whole organisation is so tied together during its growth and development, that when slight variations in any one part occur, and are accumulated through natural selection, other parts become modified" (6th ed., p. 177). He took it for granted that the "correlated variations" would be adapted to the original variation which was acted upon by natural selection, and he saw no difficulty in the gradual evolution of a complicated organ like the eye if only the steps were small enough. "It has been objected," he writes, "that in order to modify the eye and still preserve it as a perfect instrument, many changes would have to be effected simultaneously, which, it is assumed, could not be done through natural selection; but as I have attempted to show in my work on the variation of domestic animals, it is not necessary to suppose that the modifications were all simultaneous, if they were extremely slight and gradual" (6th ed., p. 226).

In post-Darwinian speculation the difficulty of explaining correlated variation by natural selection alone became more acutely realised, and it was chiefly this difficulty that led Weismann to formulate his hypothesis of germinal selection as a necessary supplement to the general selection theory.

The change in the conception of correlation which Darwin's influence brought about has been very clearly stated by E. von Hartmann,[359] from whom the following is taken:—"While the correlation of parts in the organism was before Darwin regarded exclusively from the standpoint of morphological systematics, Darwin tried to look at it from the standpoint of physiological and genealogical development, and in so doing he put the standpoint of morphological systematics in the shade. But the more we are now beginning to realise that systematic relationship does not necessarily imply genetic affinity the more must the correlation of parts come back into favour as a systematic principle. While Darwin only, as it were, against his will, relied on the law of correlation as a last resort when all other help failed, this law must be regarded, from the standpoint of the orderly inner determination of all organic form-change, as having the rank of the highest principle of all, a principle which rules parallel, divergent and convergent evolution" (pp. 47-8).

Further on, following Rádl, he characterises Darwin's attitude to the law of correlation in these terms:—"Darwin's interest is entirely focussed on the variation, the function, the causes of form-production, in short, upon evolution. Accordingly he regards correlation essentially as correlative variation in the sense of a departure from the given type. With morphological correlation in different types Darwin troubles himself not at all, nor with correlation in the normal development of a type" (p. 49).

Cuvier's conception of the convenance des parties, essential to all biology, remained on the whole foreign to Darwin's thought, and to the thought of his successors.

It was indeed one of their boasts that they had finally eliminated all teleology from Nature. The great and immediate success which Darwinism had among the younger generation of biologists and among scientific men in general was due in large part to the fact that it fitted in well with the prevailing materialism of the day, and gave solid ground for the hope that in time a complete mechanistic explanation of life would be forthcoming. "Darwinismus" became the battle-cry of the militant spirits of that time.

It was precisely this element in Darwinism that was repugnant to most of Darwin's opponents, in whose ranks were found the majority of the morphologists of the old school. They found it impossible to believe that evolution could have come about by fortuitous variation and fortuitous selection; they objected to Darwin that he had enunciated no real Entwickelungsgesetz, or law governing evolution. They were not unwilling to believe that evolution was a real process, though many drew the line at the derivation of man from apes, but they felt that if evolution had really taken place, it must have been under the guidance of some principle of development, that there must have been manifested in evolution some definite and orderly tendency towards perfection.[360]

No one expressed this objection with greater force than did von Baer, in a series of masterly essays[361] which the Darwinians, through sheer inability to grasp his point of view, dismissed as the maunderings of old age. In these essays von Baer pointed out the necessity for the teleological point of view, at least as complementary to the mechanistic. His general position is that of the "statical" teleology—to use Driesch's term—of Kant and Cuvier. His attitude to Darwinism is determined by his teleology. He admits, just as in 1834, a limited amount of evolution; he criticises the evolution theory of Darwin on the same lines exactly as forty or fifty years previously he had criticised the recapitulation and evolution-theories of the transcendentalists—principally on the ground that their deductions far outrun the positive facts at their disposal. He rejects the theory of natural selection entirely, on the ground that evolution, like development, must have an end or purpose (Ziel)—"A becoming without a purpose is in general unthinkable" (p. 231); he points out, too, the difficulty of explaining the correlation of parts upon the Darwinian hypothesis. His own conception of the evolutionary process is that it is essentially zielstrebig or guided by final causes, that it is a true evolutio or differentiation, just as individual development is an orderly progress from the general to the special. He believed in saltatory evolution, in polyphyletic descent, and in the greater plasticity of the organism in earlier times.

The idea of saltatory evolution he took from Kölliker, who shortly after the publication of the Origin promulgated in a critical note on Darwinism a sketch of his theory of "heterogeneous generation."[362]

Kölliker's attitude is typical of that taken up by many of the morphologists of the day.[363] He accepts evolution completely, but rejects Darwinism because it recognises no Entwickelungsgesetz, or principle of evolution. For the Darwinian theory of evolution through the selection of small fortuitous variations he would substitute the theory of evolution through sudden, large variations, brought about by the influence of a general law of evolution. This is his theory of heterogeneous generation. "The fundamental idea of this hypothesis is that under the influence of a general law of evolution creatures produce from their germs others which differ from them" (p. 181). It is to be noticed that Kölliker laid more stress upon the Entwickelungsgesetz than upon the saltatory nature of variation, for he says a few pages further on—"the notion at the base of my theory is that a great evolutionary plan underlies the development of the whole organised world, and urges on the simpler forms towards ever higher stages of complexity" (p. 184). Saltatory evolution was not the essential point of the theory:—"Another difference between the Darwinian hypothesis and mine is that I postulate many saltatory changes, but I will not and indeed cannot lay the chief stress upon this point, for I have not intended to maintain that the general law of evolution which I hold to be the cause of the creation of organisms, and which alone manifests itself in the activity of generation, cannot also so act that from one form others quite gradually arise" (p. 185). He put forward the hypothesis of saltatory variation because it seemed to him to lighten many of the difficulties of Darwinism—the lack of transition forms, the enormous time required for evolution, and so on. It should be noted that Kölliker regarded his principle of evolution as mechanical.

It would take too long to show in detail how a belief in innate laws of evolution was held by the majority of Darwin's critics. A few further examples must suffice.

Richard Owen, who in 1868[364] admitted the possibility of evolution, held that "a purposive route of development and change, of correlation and interdependence, manifesting intelligent Will, is as determinable in the succession of races as in the development and organisation of the individual. Generations do not vary accidentally, in any and every direction; but in pre-ordained, definite, and correlated courses" (p. 808).

He conceived change to have taken place by abrupt variation, independent of environment and habit, by "departures from parental type, probably sudden and seemingly monstrous, but adapting the progeny inheriting such modifications to higher purposes" (p. 797). He believed spontaneous generation to be a phenomenon constantly taking place, and constantly giving the possibility of new lines of evolution.

E. von Hartmann in his Philosophie des Unbewussten (1868) and in his valuable essay on Wahrheit und Irrtum im Darwinismus (1874) criticised Darwinism in a most suggestive manner from the vitalistic standpoint. He drew attention to the importance of active adaptation, the necessity for assuming definite and correlated variability, and to the evidence for the existence of an immanent, purposive, but unconscious principle of evolution, active as well in phylogenetic as in individual development.

In France H. Milne-Edwards[365] stated the problem thus:—"In the present state of science, ought we to attribute to modifications dependent on the action of known external agents the differences in the organic types manifested by the animals distributed over the surface of the globe either at the present day, or in past geological ages? Or must the origin of types transmissible by heredity be attributed to causes of another order, to forces whose effects are not apparent in the present state of things, to a creative power independent of the general properties of organisable matter such as we know them to-day?" (p. 426)

He concluded that the action of environment, direct or indirect, was insufficient to account for the diversity of organic forms, and rejected Darwin's theory completely. He thought it likely that the successive faunas which palæontology discloses have originated from one another by descent. But he thought that the process by which they evolved should rightly be called "creation." The word was of course not to be taken in a crude sense. When the zoologist speaks of the "creation" of a new species, "he in no way means that the latter has arisen from the dust, rather than from a pre-existing animal whose mode of organisation was different; he merely means that the known properties of matter, whether inert or organic, are insufficient to bring about such a result, and that the intervention of a hidden cause, of a power of some higher order, seems to him necessary" (p. 429).

The criticism of Darwinism exercised by the older currents of thought remained on the whole without influence. It was under the direct inspiration of the Darwinian theory that morphology developed during the next quarter of a century.

[333] Rádl, loc. cit., i., p. 71.

[334] Kritik der Urtheilskraft, 1790.

[335] Eng. Trans. by J. H. Bernard, p. 337, London, 1892.

[336] H. F. Osborn, From the Greeks to Darwin, p. 145, New York and London, 1894.

[337] See Meckel, supra, p. 93; cf. Tiedemann, Zoologie, p. 65, 1808. "Even as each individual organism transforms itself, so the whole animal kingdom is to be thought of as an organism in course of metamorphosis." Also p. 73 of the same book.

[338] Chapters vii. and ix.

[339] On early evolution-theories see, in addition to Osborn and Rádl, J. Arthur Thomson, The Science of Life, 1899, and the opening essay in Darwin and Modern Science, Cambridge, 1909.

[340] Phil. zool., ed. Ch. Martins, vol. i., p. 75, 1873.

[341] Quotations in the text are from the 2nd Edit. (Deshayes and Milne-Edwards), i., Paris, 1835.

[342] For instance, Lucretius:—

"Is tibi nunc animus quali sit corpore et unde constiterit pergam rationem reddere dictis. Principio esse aio persubtilem atque minutis perquam corporibus factum constare."

De Rerum Natura, iii., vv. 177-80.

[343] Contrast Treviranus—"In every living being there exists a capability of an endless variety of form-assumption; each possesses the power to adapt its organisation to the changes of the outer world, and it is this power, put into action by the change of the universe, that has raised the simple zoophytes of the primitive world to continually higher stages of organisation, and has introduced a countless variety of species into animate Nature." Quoted by Haeckel in History of Creation, i., p. 93, 1876.

[344] There is no evidence that he was influenced by Erasmus Darwin, who forestalled his evolution theory, and was indeed more aware of its vitalistic implications. See S. Butler, Evolution, Old and New, London, 1879, for an excellent account of Erasmus Darwin.

[345] As did also Lyell in his Principles of Geology, 1830.

[346] K. E. von Baer, Reden, i., p. 37, Petrograd, 1864.

[347] Rádl, loc. cit., i., p. 296.

[348] Reprinted in his Reden, i., 1864.

[349] See Huxley's criticism of it in a Royal Institution lecture of 1851, republished in Sci. Mem., i., pp. 300-4. On its relation to Haeckel's biogenetic law, see below, p. [255].

[350] System der thierischen Morphologie, p. 5, 1853.

[351] Life and Letters of Charles Darwin, ed. F. Darwin, i., p. 82, 3rd ed., 1887.

[352] The Foundations of the Origin of Species, a Sketch written in 1842. Ed. F. Darwin, Cambridge, 1909.

[353] Cf. a parallel passage in the Origin, 1st ed., pp. 485-6.

[354] In the 1st ed. (p. 439), Darwin makes the curious mistake of attributing this story to Agassiz.

[355] In which nestlings of the different varieties are much more alike than adults. Darwin attached much importance to this idea, see Life and Letters, i., p. 88, and ii., p. 338.

[356] See his Letters, passim.

[357] Writing to Huxley on the subject of the latter's work on the morphology of the Mollusca (1853), he says:—"The discovery of the type or 'idea' (in your sense, for I detest the word as used by Owen, Agassiz & Co.) of each great class, I cannot doubt, is one of the very highest ends of Natural History."—More Letters, ed. F. Darwin and A. C. Seward, 1903, i., p. 73.

[358] Italics mine.

[359] Das Problem des Lebens. Biologische Studien. Bad Sacha, 1906. See also E. Rádl, Biol. Centralblatt, xxi., 1901.

[360] See the excellent treatment of the difference between the "realism" of Darwin and the "rationalism" of his critics, in Rádl, ii., particularly pp. 109, 135. The most elaborate criticism of Darwinism from the older standpoint was that given by A. Wigand in Der Darwinismus und die Naturforschung Newtons und Cuviers, 3 vols., Braunschweig, 1872.

[361] In vol. ii. of his Reden, St Petersburg (Petrograd), 1876—Ueber den Zweck in den Vorgängen der Natur; Ueber Zielstrebigkeit in den organischen Körpern insbesondere; and Ueber Darwin's Lehre.

[362] "Ueber die Darwinische Schöpfungstheorie," Zeits. f. wiss. Zool., xiv., pp. 74-86, 1864. Elaborated in Anat. u. syst. Beschreibung d. Alcyonarien, 1872.

[363] Cf. for instance Nägeli's theory of a perfecting principle, first developed in his Entstehung u. Begriff der naturhistorischer Art, München, 1865.

[364] Anatomy of Vertebrates, iii., 1868.

[365] Rapport sur les Progrès récents des Sciences zoologiques en France. Paris, 1867.