Summary.

Summing up for Charybdea, we have seen that it is very sensitive to light, strong light as also darkness inhibiting pulsations, while moderate light stimulates it to activity. Also, a sudden change from weaker to stronger light, or vice versa, may inhibit or stimulate to activity respectively. This behavior of Charybdea seems to be correlated with its habit of life on the bottom. We have no reason to doubt but that the eyes of the sensory clubs are the seat of light sensation.

The experiments on equilibration are negative, giving us no certain light on the function of the concretions, though it appears that they may serve, in part at least, for keeping the sensory clubs properly suspended. Their function in giving the animal sensations of space relations is not, however, excluded.

Excision of the sensory clubs demonstrates that they are the seat of important ganglionic centers, the removal of which results in temporary paralysis and weakness. That they also are the seat of organs (eyes, network-cells, concretions) that are of importance in giving information in the life of Charybdea, is evident from the reaching motion of the proboscis after the removal of the sensory clubs. Other centers of spontaneity in their order of importance probably are: the radial ganglia (one experiment); the interradial ganglia (?); the suspensoria, as shown by their supplying stimuli to isolated pieces of the sides connected with them; the frenula and the velarium, the latter of which gave contractions when removed with the frenula or in pieces only. No evidence is given that the frenula or the velarium can impart their contractions to other tissue, though this seems probable for the former. The proboscis can also contract of itself.

Reflexes between the velarium, frenula, subumbrella, sensory clubs, nerve, and any one pedalium, on the one hand, and the pedalia on the other hand, are very common, and point to the pedalia with the tentacles as organs of defense and offense. The pedalia serve also as rudders in swimming.

Finally, as judged by the results in this paper, Charybdea seems to occupy, physiologically, a position intermediate between the Hydromedusæ and the Scyphomedusæ. In its great activity as a swimmer, in its response to light, and in its reflexes it is Hydromedusan, while in the paralysis and recovery following the removal of its marginal bodies, as also in its response with several pulsations instead of one, when a deganglionated bell is stimulated, it is Scyphomedusan.

The observations on the Discomedusæ, Aurelia, Polyclonia, Cassiopœa, demonstrate the existence of motor nerve centers in the marginal bodies; but that other centers are present is shown by the recovery of pulsation following the removal of the marginal bodies or the margin. These results are mainly confirmatory of those of Romanes and Eimer. They differ from these in the fact that margins of Polyclonia and Cassiopœa, with only one ganglion attached, originated contractions distant from the ganglion. Removing of a single lithocyst resulted in a slowing of pulsation, as did also the removal of the oral lobes, though the immediate effect in the latter case was an acceleration. Isolated pieces of the subumbrella could contract.