UNDERSTANDING THIS BOOK

I have tried to write this book so that it could be understood. I have attempted to explain machinery for computing and reasoning without using technical words any more than necessary. To do this seemed to be easy in some places, much harder in others. As a test of this attempt, a count has been made of all the different words in the book that have two syllables or more, that are used for explaining, and that are not themselves defined. There are fewer than 1800 of these words. In [Supplement 1], entitled “Words and Ideas,” I have digressed to discuss further the problem of explanation and understanding.

Every now and then in the book, along comes a word or a phrase that has a special meaning, for example, the name of something new. When it first appears, it is put in italics and is explained or defined. In addition, all the words and phrases having special meaning appear again in the index, and next to each is the page number of its explanation or definition.

In many places, I have talked of mechanical brains as if they were living. For example, instead of “capacity to store information” I have spoken of “memory.” Of course, the machines are not living; but they do have individuality, responsiveness, and other traits of living beings, just as a political party pictured as a living elephant does. Besides, to treat things as persons is a help in making any subject vivid and understandable, as every song writer and cartoonist illustrates. We speak of “Old Man River” and “Father Time”; we may speak of a ship or a locomotive as “she”; and the crew on the first Harvard sequence-controlled calculator has often called her “Bessy, the Bessel engine.”

Let us pause a little longer on the subject of understanding. What is the understanding of something new? It is a state of knowing, a process of knowing more and more. The more we know about something new, the better we understand it. It is possible for almost anybody to understand almost anything, I believe. What is mainly needed in order to grasp an idea is a good collection of true statements about it and some practice in using those statements in situations. For example, no one has ever seen or touched the separate scraps of electricity called electrons. But electrons have been described and measured; hundreds of thousands of people work with electrons; they know and use true statements about electrons. In effect, these people understand electrons.

Probably the hardest task of an author is to make his statements understandable yet accurate. It is too much to hope for complete success. I shall be very grateful to any reader who points out to me the statements that he has not understood or that are in error.

As to the views I have expressed, I do not expect every reader to agree with me. In fact, I shall be glad if many a reader disagrees with me. For then someone else may say to both of us, “You’re both right and both wrong—the truth lies atwixt and atween you.” Thoughtful and tolerant disagreement is the finest climate for scientific progress.