BENCHES
Folding settees for outdoor use are on the market at very cheap prices, but they are neither comfortable nor substantial. Fixed benches can be made of heavy but simple construction, as well as movable ones.
[Fig. 215] shows the simplest possible form. Posts of locust, chestnut, or cedar are set in the ground to a depth of two feet or more. The diameter should be at least four inches.
A space one inch by three should be sawed out of each, as a rest for the cross pieces. These should be two by four stock, ten inches long, and must be securely nailed to the posts by eight or ten penny nails. The seat should be 16 inches or 18 inches above the ground, made of heavy plank at least two inches thick and 14 inches wide. Bore quarter-inch holes, countersink and fasten the top to cross pieces by three-inch flat-head screws. The span between cross pieces should not be over five feet, four would be better, so that a bench twelve feet long would call for six posts and three cross pieces, besides the top. Space the posts five feet apart between centres. This will allow an overhang of one foot at each end. The seat should be planed smooth, edges slightly rounded, and then two coats of boiled linseed oil applied. Painting seats is not advised, and varnish for outside work is seldom satisfactory. The wood for the top should be of some kind that is free from pitch, as the sun will draw it out, and a sticky seat result. Oak or maple will be very satisfactory.
Fig. 215. A simple bench
Fig. 216. Settee for tennis court
A movable settee of heavy construction is suggested in [Fig. 216]. The main dimensions for the standards supporting the seat and back strips are given, but the form may be modified to suit the young designer. There is considerable waste in making standards of this sort, and it is important to have the grain run in the direction indicated in the drawing. The two strips for the back, as well as the seat, should be put on with screws. The horizontal pieces on this settee will not give the necessary rigidity lengthwise, and it will be important to add braces under the seat. These may be in the form of heavy angle irons or square blocks, as shown at a. These blocks should be two inches square, and fastened with three-inch screws to both seat and standard. Everything about this settee is heavy and substantial, as all outdoor work should be. The camp-stool furnishes all the light furniture necessary.
The standards should never be more than four feet apart, so that a settee in this style, eight feet long, would require three standards.
This design can be changed to a simple bench by omitting the back and sawing the standard on its back edge to the same outline as the front, as suggested by the dotted line. The trefoil opening is made by boring three holes with a large bit at the points of a triangle.
The covered seat shown at [Fig. 217] is one that may be constructed as shown, or modified in size, proportions, etc.
Small as it is, it will tax the skill of the young worker, and give him many of the problems of outdoor construction to figure out. It includes the setting and levelling of posts, framing, roofing, flooring, etc.
Fig. 217. A covered seat
The material necessary should be first carefully estimated, with allowance made for waste. This is an item often forgotten by the amateur, and one especially to be provided for in framing. If the dimensions are to vary from those shown in our sketch, it would be wise to make a careful drawing first. In all outdoor structures, wind, rain, snow, and the effect of strong sunlight must be considered.
As this shelter is primarily for a tennis court, the timbers for the frame should be planed by hand or dressed at the mill, when purchased.
The 4 × 4 uprights should be bought 12 feet long, as this is a standard size, and set into the ground deep enough to bring the top nine feet above ground. The temptation to place posts only a little way in the ground must be overcome. The roof should be counted on to withstand a wind pressure of sixty miles an hour, and three feet in the ground is necessary in this case, as there are no braces to help support it.
Having cut the mortises for the horizontal tie piece a, place the first post in the hole dug for it, tamp the earth around it, and plumb with "level and plumb."
Another method would be to lay both uprights on the ground, place the tie piece in position, fasten with wooden pins driven through holes bored through the mortise and tenon joints, and nail the 2 × 4 plate on top of both posts. Then raise the structure, and place both posts in their respective holes at the same time.
Fig. 217a. A covered seat (continued)
In any work of this character, two boys should work together, and two trestles or saw horses will be a necessary part of their equipment. In mortise and tenon joints of this character a method called draw boring is frequently used. (See b, [Fig. 217b].)
The hole for the pin or dowel is first bored across the centre of the mortise. The tenon is inserted snugly, and the bit again inserted until it makes a mark on the tenon. The tenon is withdrawn, and the centre of bit placed 1⁄16 inch nearer the shoulder than the mark made, and the hole bored. This brings the distance y slightly less than x.
The three holes through which the pin is to pass are not in line when the tenon is again placed in mortise. The result is to draw the tenon tight, when the pin is driven home, and to make the joint a very snug one, as it should be.
Fig. 217b. Draw boring a joint and method of levelling posts
If this method of constructing the frame on the ground is not used, the tie piece must be placed in position before the second post is set. Fasten the joints with the pins, and level the tie piece. If the two posts have been laid out together on the trestles, their tops must now come level and true.
This first step in making the structure is extremely important, as the success of the following work depends on it.
Fig. 218. Details of roof construction and forms of rafters
After tamping the uprights solidly, the corner posts for supporting the floor may be set in the ground. They should be of locust, cedar, or chestnut, and at least four inches in diameter. Set them in the ground not less than thirty inches, and flush with the ground line. It will be better to dig out three or four inches of top soil from the whole area, and afterward fill in with gravel, as this does not hold the moisture. This precaution will help to prevent decay, and, wherever possible, all the parts in contact with the earth should be painted with creosote. The outside of posts should be five feet one way and four feet eight inches the other. Their tops should be sawed off level. This may be done after setting. Saw one post at the desired height. To level the others with it, rest a straight board on first post, and while one boy holds the level on its upper edge, let the other make a pencil mark on the next post along under side of the board. Saw to this line, and level the remaining posts in the same manner. ([Fig. 217b].)
The sill or frame for flooring must now be prepared. Use either 2 × 6 or 2 × 4 inch spruce. Cut two pieces five feet long, and two pieces four feet eight inches. Lay out half lap joints at the ends, and saw to the lines.
Spike this frame to the locust posts, and as it touches the outside of the uprights, nail to the latter, with ten-penny wire nails.
As additional support will be needed for the flooring, cut two 2 × 4, and fasten them across the frame either by half lap joint or spikes.
If this frame is planed on the outside, no finishing strip will be needed, but if it is rough sawed stock, a facing strip of 1 × 4 inch material should be placed on the outside, flush with the top of the frame.
The flooring may now be laid, using tongue and groove stock, and allowing it to project an inch beyond the frame on all four sides. The edges of this projection should be rounded with the plane. The flooring should be neatly fitted around the uprights, so that the latter may appear to come up through a solid floor 5 feet 4 inches by 5 feet 0 inches.
The roof should be made next, leaving the construction of the seat to the last. The roof timbers consist of six rafters four feet long, and six braces two feet one and a half inches long. Two methods are shown, and several combinations may be used. The rafters may have square ends, or some simple curved design may be sawed out, as suggested in the detailed drawing. ([Fig. 218].)
The braces may meet the rafters in a plain butt joint, and be nailed, or they may be gained into the rafters, as shown in side view. This latter method makes a neat job, but it is not necessary, as far as strength is concerned. Nails are used in either case.
The straight rafter is of course the simpler and easier way, but the Japanese effect produced by a slight curve at the ends on the upper side is worth the little additional labour that it requires.
To secure this curve, saw out a template in white pine about fifteen inches long and 11⁄2 inches wide, at one end, as shown in detail. The curve may be first drawn in pencil, and then sawed on the line.
From this template lay out six pieces of scrap, 2 × 4, and saw them all out the same size and shape. Nail them to the lower ends of the rafters on their top side.
The upper ends of the rafters are to be mitred, and the V-shaped notch cut as shown in detail drawing. ([Fig. 219].)
The braces are square at one end, and mitred at the other.
Nail two rafters together at their mitred ends, using ten or twelve penny wire nails. Place in position over plate, and nail to it. Nail mitred end of braces to the upright, and then to rafter. The method of fastening two joints at right angles is called toe-nailing—nailing obliquely—as shown in detail.
The braces for middle rafters are fastened to the tie piece, and will need to be somewhat longer than the four fastened to the uprights. Their exact length should be determined by measurement, after the end rafters are secured. The end sawed off should be the square end, measurements being made from the extreme point of the mitred corner.
The roof is to be shingled. For this purpose, shingle lath, a standard commercial article, is to be nailed to the rafters at intervals of 51⁄2 or 6 inches. For a steep roof like this, 6 inches will answer. This lath is to project beyond the outside rafters 9 inches or 1 foot. There must be a shingle lath at the top of each rafter, no matter how near the next one may come, and sometimes the whole roof is covered with boards as a support for the shingles, instead of lath.
Begin shingling at the lower end of the rafters, allowing the first course to project an inch beyond the first lath. To insure the end of the roof being straight, it is best to saw the lath after it is nailed to rafters.
The first course of shingles should be double—i. e., one over the other, joints broken.
On good and permanent roofs, where the pitch is not as great as in this case, the method shown at a ([Fig. 218]) is frequently used. After the first course is laid, the second is begun with a third of a shingle, the next with two thirds, the next with a whole one. It makes a tighter roof than that in which each joint comes over the centre of the one below. The carpenter marks the courses after the first with a chalk line. Measure up six inches from the lower edge, at each end of the roof. Take a piece of mason's line or strong cord, rub it with a piece of chalk, hold it taut at the two pencil marks, pull it up in the centre, and allow it to snap back to the roof. It will leave a straight chalk line from end to end, and the lower edge of the next course of shingles is laid to this line. Two shingle nails are to be used on each shingle, driven into the shingle lath high enough up to be covered by the next course.
On very fine work, the edges of shingles where they touch are first planed, but for ordinary purposes this is not necessary.
Shingle one side of the roof clear up to the ridge, allowing the last course to present six inches or so to the weather. Saw off carefully all that part which projects, close to the ridge. This will allow the shingles from the second side to project over those of the first, and when the second side is finished it is to be sawed off at the ridge as before.
To protect the ridge from leaks, saddle boards are sometimes added. These are strips of pine lapped over the top and nailed, as shown in detailed drawing.
If the curved rafters are used, the pull of the nails will make the shingles conform to the curve, unless it is excessive.
Many methods are used by carpenters in finishing roofs, and considerable time and material are used in constructing cornices. In this simple structure, if the timbers have been planed as suggested, it will be well to leave it as it is, with the rafters exposed, especially if the ornamental curves have been sawed before erection. If the roof has been made with boards, instead of shingle laths, the whole construction is honestly and frankly visible. The old-fashioned method of putting on "gingerbread" work, ornaments sawed on a hand or jig-saw, is to be condemned. Let all your construction be strong, simple, and straightforward.
Shingles are sometimes stained or painted. Staining is by far the better treatment, but the shingles should be dipped into the stain and dried before they are put on. The stains sold by most paint stores come in a variety of colours. Some shade of green, red, or brown should be selected, according to the colour of the body of the structure. A red roof on a white structure looks well, as it is usually seen against a background of blue sky and green foliage. A light gray building with white trimmings and red roof makes a pleasing combination.
It only remains to construct the seat. This is made double, with a back between the uprights, and the seat cover is hinged to make a chest below for racquets, etc. This double seat is designed to give the greatest possible seating accommodation for this size of shelter. It has the disadvantage of one seat facing the wrong way, and if the structure is made longer it is suggested that the back seat be omitted.
Construct a box without top or bottom 34 inches by 3 feet 8 inches. The material may be the same as the floor, but in any case it must be tongue and groove matched boards. This box will just slip in between the uprights and must be securely nailed to them. To fasten to the floor, nail cleats to the latter just inside the box, and nail the sides and ends of the box to these cleats. Further to strengthen the box, square cleats should be nailed upright in each corner of the inside.
Fig. 218a. Box seat
The backbone of the box is a piece of 2 × 4 spruce. Its length will be the distance between the uprights or the length of the box. Saw down through the box ends exactly 2 inches, with the saw against the uprights, and remove the piece 4 × 2 from each end. Into these two spaces slip the 2 × 4 and toenail to uprights. Nail to the top of this 2 × 4 along its centre a piece of 1 × 3 pine, the same length as the 2 × 4. The box covers are to be hinged to this pine strip and will rest on the edge of the 2 × 4 which will carry the weight.
Seat covers are to be the same length as the box, with just enough clearance to let them move freely between the uprights. As they are 16 inches wide, it is doubtful whether a single board that width will be available. They may be made of tongue and groove boards, with cleats 3 × 7⁄8 inches screwed on the under side, just long enough to allow the cover to close. Outside edges should be rounded and three strong hinges used on each cover. As it has a bearing surface on front and ends of the box, no extra support will be needed.
If a support for the back is desired, two strips 3 × 11⁄4 with rounded edges may be fastened to the uprights, and as the pressure may be both ways, they should be nailed between two upright cleats at each end. The cleats 7⁄8 × 11⁄4 are nailed to uprights, or the strips may be mortised through.
The sharp edges of the uprights may be bevelled or chamfered where people are likely to come in contact with them.
The structure is now ready for painting. Set all nails with nail punch, and give the first or priming coat to the whole structure, shingles excepted. This should be done when the wood is dry, not directly after a rain. When this coat is dry, fill all nail holes with putty and give second coat of paint. If the priming coat was thin a third coat may be necessary to give the desired result. Use a little drier in the paint and when necessary to thin it use boiled linseed oil. As white would not be suitable for the seats and floor, a light gray for the seats and a darker shade for the floor may be used.
[XLV]
THE PERGOLA
Among the many structures used to beautify the grounds of a suburban or country place, the pergola is seen less than it should be. It is a luxury, but so is a couch hammock, and many other details of our modern life might be placed under the same heading. As an arbour for the training of the vines, the pergola adds more dignity to a place than any other structure, always assuming that it is well built and in good proportion. Its length must of course depend on the local circumstances. It should lead somewhere, as from the house to the flower garden, or from house to stable. It should, in other words, not be placed on the grounds simply as an ornament. Its purpose should be to give a certain amount of privacy to a walk.
The oldest recognized style of architecture is known as post and beam construction, as suggested in [Fig. 219], where two vertical members support a horizontal one. This style was used by the Egyptians and Greeks, and was a large factor in deciding the form of the old Greek temples. The pergola consists of two parallel rows of columns connected by longitudinal beams and cross beams.
A very artistic one may be built by two boys with the assistance of a third person in the heavy work of lifting and placing the columns. If a small-sized structure with 6-inch columns is built, two boys can handle the whole construction alone.
This small size is not recommended, however, as one of the first requisites of the pergola is a massive appearance of solidity and permanence.
The proportions for two sizes are given in the drawing, and they may be modified to suit the size of the ground, buildings, etc. ([Fig. 220].)
Wooden columns in many styles, sizes, and proportions are on the market and may be bought from any lumber dealer. The bases and caps are separate and should be ordered to fit the columns.
The construction of the pergola brings the young carpenter in contact with several new problems. The first is the subject of foundations. These may be in the form of concrete, which is permanent and solid, and will not decay, as any form of wooden post will do in time. The ground should be as nearly level as possible, and should be staked out with eight stakes, as shown in the drawing. ([Fig. 221].)
Fig. 219. The Pergola
The stakes are three feet from the centre of the columns in each case, and angle a c d should be made square at the beginning. Measure distance a b equal to c d. From a measure along a line stretched from a to b three feet, and then three spaces of twelve feet each. Measure the same distance from c along c d, and place stakes at each point. A line stretched from e to f should pass over the centre of the stakes marking the centre of each column, as these latter stakes will be dug out in the process of excavating for the foundation, while stakes e and f are necessary for the proper location of the holes.
After digging the first two holes, test their accuracy by again stretching a cord or masons' line from e to f. Proceed with the next set of holes in the same way, placing new stakes three feet out from centres to correspond with e and f. When the eight holes have been dug, the arrangement will appear as shown at g, twelve stakes being left in the ground. Should the pergola be longer or narrower, the same method would be used, the dimensions only being altered. The size of the holes will depend on the following considerations:
Fig. 220. The pergola
Assuming that we are building the large pergola with eight-inch columns, the base will be about twelve inches square. Measure the base and add two inches to it, making, say, a fourteen-inch square, the size of the foundation. A box in the form shown at a, 14 inches square inside, must be made. No nails are used on the box. It is held together by cleats c c. They must be made to fit snugly, and are to be knocked off when the cement has hardened—i. e., about four days after making.
These boxes may be full depth of the hole, three feet, or, as is sometimes done, the hole is made just the right size and the box, about eighteen inches in length, wedged into the top as shown at i. This method calls for considerable care in levelling the top of the box and securing the proper projection above ground, as well as in pouring in the cement without dislodging it, but the box is removed more easily than is the case with a full-length one. The decision about this point determines the size of the hole. In case the short box is used, the hole must be fifteen inches square and just enough shaved from the sides at top to receive the box.
If the full length box is used, the hole should be about twenty inches square, to allow the cleats to be knocked off and boards withdrawn.
Fig. 221. Details of pergola construction
This weighty question having been decided, prepare to mix concrete. Make a mixing board about five or six feet square of flooring boards fastened to heavy cleats on the under side. It should have two or three sides nailed on, as shown at k. Also prepare eight wooden blocks, as shown in drawing. These may be fifteen to eighteen inches long, sawed from 4 × 4 timber, planed smooth and with a slight taper toward the lower end. The purpose of these blocks will be apparent later on. The concrete is composed of four parts clean gravel to one of Portland cement, and the best is always the cheapest in the long run. Use a pail for mixing and place four pailfuls of gravel on the mixing board. Pour over this one pailful of dry cement and mix thoroughly, turning the whole mass several times. When thoroughly mixed, pour on water, half a pailful at a time, and turn again with the shovel until the whole mass is wet. Shovel this into the first box. It will probably take two such mixings to fill it. Now place in the top of the concrete one of the tapering blocks, allowing it to project about three or four inches above the surface of the concrete. The block should be rubbed with grease or oil before insertion to make it withdraw easily. As soon as the block is placed, pass the line from stakes e to f and make sure that the block is exactly at the centre.
In every case it is to be withdrawn in about an hour, or as soon as the concrete has set, but before it has gripped the block too tightly; otherwise withdrawal will be a difficult matter. The object of this performance is to leave in the centre of the foundation a hole about a foot deep and four inches across. Level the top of concrete with a trowel and test with the level.
All the foundations are made alike and no effort should be spared to see that the boxes are level and in line with each other. Test from end stakes a b c d and from across stakes with the masons' line. This work will be easier if the four end foundations are made first.
To do the work thoroughly, two boys may count on the process, from the staking out to the finishing of foundations, occupying about three days. It is the most important and laborious part of the work and when finished represents about one third of the labour on the pergola.
The concrete should stand at least four days before it is touched again, and during that time the timber may be prepared. Besides the eight columns, there will be needed:
| 6 pcs. 4 × 6 ins.—16 ft. long |
| 15 pcs. 3 × 6 ins.—14 ft. long |
| 144 ft. (running) 1 × 2 ins. |
| 8 pcs. of 5⁄8-in. round iron |
The iron should be 18 inches longer than the total height of the wooden columns, including base and cap. This should be determined by actual measurement. The rods can be obtained from a blacksmith. Have him cut a thread at each end and provide two nuts for each rod. They are to extend clear through each column from the bottom of the hole in the foundation, through the longitudinal timbers that rest on the cap, to bolt the whole structure together securely.
Columns come either built up or solid. The solid ones have a core bored out through the centre, so that in either case the rod can easily pass through from top to bottom. A hole should be bored 3⁄4 inch diameter through the centre of both cap and base to allow the bolt to pass easily.
In ordering timbers, have them dressed on all sides at the mill. Have the fifteen 3 × 6 inch pieces sawed on both ends as shown at l, and have one end on four of the 4 × 6 inch pieces sawed the same shape. The two remaining 4 × 6 inch pieces are to be square on the ends.
A week after making the concrete foundations, the boxes having been removed and the holes filled in with earth well tamped down, the openings in the top may be cut out with a long cold chisel, as shown at m. This need not be a very particular job. The object is to dovetail the cement, to be used in filling up the opening to the foundation, and it can be done roughly. The setting of the columns on their foundations is performed as follows:
Nail base and cap to each column and slip a long bolt clear through. At the bottom the bolt will be allowed to project. At the top pass it through a piece of wood 6 inches high, a 3⁄4-inch hole being bored for the purpose.
Fill the opening in the foundation with clear cement mixed with enough water to bring it to the consistency of paint. Set the column on its foundation, with the end of the bolt and its nut and a large washer immersed in the cement. This will harden quickly, making a strong bond with the foundation and holding the bolt rigid. Plumb the column, and if it shows a tendency to lean, place thin wedges under it until it stands true when tested by the plumb and level on all sides.
Treat all the posts alike and when one row has been set, run the masons' line along the bolts on top and see that they are in line. Everything should be ready before starting this job, as clear cement hardens quickly and any moving of the columns that may be necessary in lining them up must be done before it sets. A good method is to place the end posts first, tie the masons' line to the bolts and line the other two posts as they are set.
When they are all on their foundations at last you will begin to realize for the first time the value and beauty of the task you have undertaken. Our boys were so excited that every member of the family, and some of the neighbours, were dragged out as spectators. It did not seem possible that two boys could handle such a large proposition, but there it stood as if it were intended to stand for a century. Harry was for putting on the superstructure at once, but Ralph had to warn him not to touch it until the cement had thoroughly hardened.
They allowed it to stand two days before they removed the 6-inch blocks from the bolts at the top and began the work of placing the long 4 × 6 inch timbers. These members were lapped as shown in the drawing, 3⁄4-inch holes being bored to receive the bolts.
When all the timbers on one side were in place, the nuts were screwed down snug on each bolt with a monkey wrench. The work, with the cutting, fitting, and boring, consumed a whole day, and a second day was used up on the second row. It was not necessary to call the family out again. The boys had all the help that could be desired in lifting, and were also blessed with a continuous audience.
The cross timbers were gained out to a depth of 11⁄2 inches, and fitted over the long 4 × 6 inch pieces, as shown at n. There was one over the centre of each column, and an additional piece was removed to provide for the nut, which was thereby entirely concealed. The remaining cross pieces were spaced three feet apart on centres, and all spiked securely to the 4 × 6's. It was found advisable to bore 1⁄4-inch holes for the spikes, and to sink their heads below the surface with a nail set.
It only remained to nail on to the cross pieces five rows of 1 × 2 in the position shown.
All nail holes and cracks were puttied, and the entire structure down to the cement foundation was given three coats of white paint. Built in this manner, the pergola will stand for many years, and already the boys have planted wistaria, honeysuckles, crimson rambler, trumpet, and other vines to cover it.
The columns themselves may be easily made of concrete. The form may be made of six or eight inch iron pipe. When this is bought, have it split in half lengthwise at a machine shop. Six-inch pipe cut in this way will cost about a dollar a foot, but it will last a lifetime if protected from rust, and very often the concrete posts may be sold, so that the form will soon pay for itself.
Have a blacksmith make two iron bands, as shown at o. Have a 5⁄16-inch hole drilled at a through both ends. These bands are used to hold the two halves of the iron form together, and are tightened by a bolt and nut at a.
Dig a pit for the form to stand in, so that the cement may be easily poured in. This pit may be about three feet deep by two feet square, and the sides supported by a box without a bottom.
To make a column, clamp the two bands about the form, and place in the bottom end a circular piece of wood, with a hole in the centre to insure the iron rod being in the middle. Place the form upright in the pit, and secure it firmly by nailing strips of wood across the top of the box. Place the iron rod in the centre, passing it through the hole in the bottom. Pour in the cement quite wet, and tamp it down occasionally until full. It will settle a little, and will need to be filled to the top. A circular piece of wood, similar to the one at the bottom, may be used to centre the rod at the top. This must be done as soon as the form is filled, before the concrete has had a chance to set.
Use four parts of fine, clean sifted gravel to one of cement. Allow the form to stand four days. Remove the clamps, and draw the form out on the ground. Tap it gently, and remove one half of the iron pipe. Roll it over upon two pieces of board, and remove the other half. The concrete will be very heavy, and the assistance of a full-grown man may be needed to draw the form out of the pit.
The inside of the form should be cleaned and thoroughly oiled. This should always be done before making a column to insure its coming out easily, as concrete forms a strong bond with iron, and otherwise the column may be broken in trying to get it out. The result will be a perfectly round but not perfectly smooth column. It should be coated with a wash of clear cement and water, using a wide brush. The colour may be made white by adding a lump of lime to the cement and water, and two coats of this solution about the consistency of milk will be necessary. The last coat may be put on after the columns are on their foundations. The placing of the posts on the square foundations is heavy work and the help of a labourer should be secured.
These plain posts are not as ornamental as wooden columns, with their bases and capitals, but they make a very substantial structure that cannot decay and will last a century.
[XLVI]
POULTRY HOUSES
There are a hundred ways of raising chickens, and ninety of them are wrong.
This is not a treatise on poultry raising, for there are many elements which enter into the problem—incubation, brooding, feeding, etc. But assuming that one of the main points aimed at is the production of eggs in winter, when they are scarce and expensive, the housing of chickens is admitted by poultry raisers to be one of the first considerations.
The house should be sixteen feet deep, should face south, and no glass should be used in its construction. A window nine or ten feet long by two and a half feet high placed four feet above the ground is recommended, and it should be covered with netting or chicken wire on the outside, but left open all day, even in zero weather. It is closed at night, by a screen of canvas or duck fastened to a light wooden frame. The frame is hinged at the top, and hooked up to the ceiling during the day.
The following description is taken from the experience of several poultry men who have been successful, and have made money by selling eggs.
The principle of this construction is that ventilation is a prime necessity, and that dampness is the one thing to be avoided. With these objects attained, chickens will stand almost any amount of cold, and with proper feeding and the strictest cleanliness, egg production will continue throughout the winter.
Some successful men insist on a wooden floor, others recommend one of gravel ten inches deep. The construction given here calls for the gravel floor on the ground level.
Many recommend a litter of straw ten inches or more deep on the gravel. The morning meal is thrown on this litter so that the chickens are forced to scratch for their breakfast, getting the blood in circulation by this early morning exercise.
As the method of building this house is typical of many outdoor structures, it will be taken up in detail. It would make an excellent work shop or cabin, with a few modifications, such as a floor of boards, and the addition of a few windows. Before it is finished the builders will probably regret, as our boys did, that it was to be used by their chickens instead of for themselves. (See [Fig. 222].)
Fig. 222. The poultry house
Set eight locust or chestnut posts in the ground and saw off six inches above the lowest point. Level in the same manner as for the sheltered seat described for the tennis court, and see that the outsides of posts measure 15 feet 10 inches over all measurements.
Square the corners by the 3-4-5 method, laying the 4 × 4 inch sill pieces on top of posts while doing this. The sill is put together with halved joint, and spiked to the posts with twelve-penny wire nails. The corner posts are 4 × 4 inch spruce, with square ends toenailed to the sill.
Plumb these posts, and tie in position by temporary braces, using for this purpose shingle lath or strips of boards.
The plates along front and back are 2 × 4 inches, nailed to posts from the top.
The frame may now be finished by placing the 2 × 4-inch studding, toenailing to sill and plates on the ends, and sill and rafters on the sides.
The frames for door and window are shown in the illustration.
The rafters spaced three feet apart are 2 × 8 or 2 × 10 inches. This large size is due to the long span of sixteen feet, with no middle support from underneath.
The ends of rafters are cut to fit snugly over the plates, as shown, and sawed straight up and down to correspond with vertical walls front and back. No overhang is provided for the roof, as commercial roofing paper is to cover the whole outside of the house. In case it is to be used for other purposes than poultry raising, this feature should be modified, and the rafters allowed to project both front and back.
With the rafters nailed in position, permanent braces may be put in at the corners, as shown in the drawing, and temporary braces removed.
If the building is to be used as a shop, a second door directly opposite the one shown is recommended. For this purpose the position of the work bench would be on the front directly under the long window, and the two doors would then be in the proper place to permit the planing of long boards.
When the frame is finished, the question of siding must be taken up. If the original purpose of the building is to be carried out, poultry experts claim that a double wall is very desirable as a barrier against dampness, which arises primarily from the exhalations of the birds. If the walls are cold, this dampness will condense on them, while with a double wall this does not take place, as the dampness escapes with the air. The outside casing may be of ship-lap boards or tongued and grooved material. For a cabin or shop, novelty siding, clapboards or even shingles may be used. Bring the square ends of the boards flush with the openings for door and window, and nail to corner posts and studding with eight or ten penny wire nails.
Finish the two sides, sawing off the sheathing along the top of rafters. Cover front and back clear up to top of rafters, and bring ends of boards flush with outside of the side sheathing.
Several methods of finishing corners of frame buildings are shown in [Fig. 223]. At a is shown the corner of this chicken house. No corner boards are used over the outer sheathing, as the whole structure is to be covered with roofing paper.
Fig. 223. Details of poultry house
At b is shown the finish for a stable or cheap cottage, with outside trim nailed over the sheathing. This is the cheapest, easiest, and poorest method of corner finish for ordinary outhouses. At c a better method is shown, with trim nailed to the posts, and clapboards fitted up close to it and nailed to corner posts. A still better finish is shown at d, where the trim is nailed to posts but not lapped. The angles between corner trim filled with a quarter round moulding make a good joint and a neat finish. If the double wall is to be used, a second boarding is made on the inside of studding and under side of rafters, first covering the space with building paper tacked to the inside of studding, and nailing the boards—either ship-lap or tongue and groove—to the frame work.
Door and window sills are made with an outward slant to provide a water table. A cross section of window sill is shown in the detail drawing at e. As there is no window in this building except the canvas screen, the construction of a window frame is not necessary. If the double wall is made, a double door, one opening in and the other out, will be in order. The outside door, flush with outer sheathing, and the same arrangement inside are shown at f.
A door sill will not be necessary, and the construction of the doors is shown at g. The material is tongue and groove boards fitted to the opening, so as to close easily, yet to provide for expansion in wet weather, and held together by heavy cleats 3 × 7⁄8 inches on the inside, as shown. The inner door is fastened by a hook and eye, and the outer one with hasp, staple, and padlock.
As the window opening is covered with wire, the only way a thief can get in is by cutting the wire and canvas or by drawing the staple. The latter method can be prevented by the use of special staples, with threads cut on each end, and fastened on the inside by nuts, as shown at h. These staples are sold at all hardware stores.
The construction of the frame for the canvas screen is shown in [Fig. 222]. The lap joint is used throughout, and the outside dimensions are two inches greater than the window opening. Tack the canvas or duck to the side of the frame next the window, and provide two hooks and eyes to fasten it down at night. Strong iron butt hinges should be used on this frame, and heavy T or strap hinges on the doors.
The outside of the house is finished, except for a water-shed over the window, and the cover for the entire outside of strong roofing paper. This is sold usually with a special cement for making tight joints and with tin washers for the nails. The water table is simply a board projecting at an angle and fastened to triangular brackets, as shown at a ([Fig. 222]). The roofing paper brought down over this board, and tacked to the under side or edge, makes a watertight joint.
The inside woodwork consists of roosts, dropping platform, and nests.
The dropping platform is a floor of tongue and groove boards, placed three feet from the ground on posts, and extending the full length of the house.
The roosts are fastened to a strong frame, as shown in drawing, and the frame—in sections—is hinged at the back. Each morning this frame is raised, hooked to the ceiling, and the dropping platform cleaned.
The construction of the nests is a subject on which poultry experts differ widely, but whatever form is adopted, the material may usually be obtained from old boxes or packing cases.
The outdoor runs for summer consist of wire netting fastened to chestnut, cedar, or locust posts. If other woods are used, the lower parts should be coated with creosote. This is also a good disinfectant, to be used for cleaning the roosts occasionally.
Many accessories for the poultry house may be made of wood, but opinions of specialists are so antagonistic that it is hardly safe to advocate any one type. A feed trough is shown at i ([Fig. 223]). It may be made from box material, and consists of two boards nailed together at right angles, supported at the ends by two horizontal pieces nailed on. Brooder houses, feed, and incubator houses, and the many other details of poultry raising are well within the power of any careful boy, and the designs should be selected from the expert whose system he has decided to follow.
[XLVII]
HOUSING OF OUTDOOR PETS
The care of rabbits, guinea pigs, and other pets becomes of absorbing interest to every boy at some time, and he is fortunate indeed if he has room outdoors to engage in this pastime properly.
The comfort of the little animals, and their protection from their natural enemies, the cat, dog, weasel, etc., should be well looked after. [Fig. 224] shows a very simple and convenient house for animals which do not gnaw through wood, as the rabbit and guinea pig.
These two animals will usually live together peaceably, except when breeding. The mothers become sensitive and jealous of all strangers when raising a family. The house proper has a sloping roof, which is hinged to provide a convenient method of reaching any part of the inside.
The large space covered on all sides by wire netting is the yard, or runway.
The front of the house should face south, and be covered with netting, except the door, which slides up in the grooves provided, as shown in the detail.
The northern end of yard is boarded clear up to the top. This shuts off the cold north winds, and in that kind of a house rabbits will live the year round.
Fig. 224. Rabbit house
Guinea pigs will thrive in such a structure until the thermometer reaches zero.
These interesting and harmless creatures come from Brazil, and when the temperature reaches that point, it is better to take them indoors, as they catch cold and die of pneumonia, like human beings.
The runway is covered at the top with two-inch wire netting to keep out cats, who seem to take delight in killing both pigs and rabbits.
The upright corner posts should be set at least two feet in the ground, braced along the top by strips, to which the netting is fastened with staples, or double-pointed tacks.
A hemlock board should be set in the ground all around the yard, with a projection of an inch or two for securing the netting at the ground line.
Hemlock is cheap and will last longer in the ground than spruce. If the rabbits start to burrow, they become discouraged by finding this board in the way on every side. These planks or boards may be rough-sawed lumber.
The inside of the house should be coated with creosote and painted outside a bronze green. A dark-coloured house is warmer than a white one, as may be easily proved by placing a thermometer, first under a black hat, then under a white one. This is probably the reason why people in the tropics wear white clothing.
A door the full height of the yard should be provided at the far end, as it is sometimes necessary to get in for cleaning or other purposes.
The hinged roof should be made water tight by covering with some form of commercial roofing paper, or by using tongue and grooved boards well painted.
Fig. 225. Traps
The door sliding in grooves, as shown, has a long handle, which projects up through the top of the runway, so that it may be opened or closed from the outside. It can be made from box material.
A number of these houses may be placed in a row and allowed to open into a large yard, or there may be individual runs. The latter method is more satisfactory, as a large run can easily be obtained by providing doors between the yards.
In the country, where weasels, mink or other wild enemies bother the rabbits, they can be caught in traps. The ordinary box trap at a, [Fig. 225], is designed to catch the animals alive. Its construction is clearly shown in the drawing, one end covered with wire netting, or made solid, and the other provided with a door, arranged to drop easily in the groove when the trigger has been disturbed. The simple construction of the trigger is shown in the detail, while the bait is attached to a string. As soon as this is disturbed the door drops.
A typical dead-fall trap is shown at b. The weights placed on the sloping board should be heavy, as this trap is designed to kill its victim. For this reason it should never be used where there is any possibility of a pet cat or dog being caught. The trigger is very sensitive, and the slightest pull at the bait is sufficient to bring the weight down on the unfortunate animal.
The uprights should be mortised through the base board, and the cross piece at top halved to the uprights. The sloping board with weights fastened to it has a generous-sized hole fitted loosely over a dowel at the right-hand end of bottom board. A groove cut in the latter allows the weighted board to fit tightly when it falls, the dowel with bait dropping into the groove.
[Fig. 225] at c shows a snare frequently used. It should be placed in front of a hollow log, box, or barrel, so that the animal must put his head through the loop of wire in order to reach the bait.
The first pull at the end of the trigger releases the spindle, and the bent sapling does the rest. The loop of wire should be held open and in position by twigs conveniently placed.
The killing of our few remaining wild creatures, however, should never be done for sport. It is excusable only when they become destructive or troublesome. Squirrels, rabbits, and chipmunks are much more interesting as friends than as caged or killed victims.
[XLVIII]
OUTDOOR CARPENTRY
Outdoor construction or carpentry, as distinguished from the indoor work of the cabinet maker, calls for a general acquaintance with tools, some mathematics, an elementary knowledge of the strength of materials, and a good supply of common sense. It demands also some knowledge of the effects of frost on foundations, and requires judgment in providing for the elements, wind, rain, snow, and sun.
Every building may be resolved into certain parts, such as foundations, framing, roof, door, and window frames, outside covering or siding, flooring, partitions, doors and windows, wall covering or ceiling, interior finish, hardware, etc. These will be taken up in their order.