ZOONOMIA.
SECT. [I].
OF MOTION.
The whole of nature may be supposed to consist of two essences or substances; one of which may be termed spirit, and the other matter. The former of these possesses the power to commence or produce motion, and the latter to receive and communicate it. So that motion, considered as a cause, immediately precedes every effect; and, considered as an effect, it immediately succeeds every cause.
The MOTIONS OF MATTER may be divided into two kinds, primary and secondary. The secondary motions are those, which are given to or received from other matter in motion. Their laws have been successfully investigated by philosophers in their treatises on mechanic powers. These motions are distinguished by this circumstance, that the velocity multiplied into the quantity of matter of the body acted upon is equal to the velocity multiplied into the quantity of matter of the acting body.
The primary motions of matter may be divided into three classes, those belonging to gravitation, to chemistry, and to life; and each class has its peculiar laws. Though these three classes include the motions of solid, liquid, and aerial bodies; there is nevertheless a fourth division of motions; I mean those of the supposed ethereal fluids of magnetism, electricity, heat, and light; whose properties are not so well investigated as to be classed with sufficient accuracy.
1st. The gravitating motions include the annual and diurnal rotation of the earth and planets, the flux and reflux of the ocean, the descent of heavy bodies, and other phænomena of gravitation. The unparalleled sagacity of the great NEWTON has deduced the laws of this class of motions from the simple principle of the general attraction of matter. These motions are distinguished by their tendency to or from the centers of the sun or planets.
2d. The chemical class of motions includes all the various appearances of chemistry. Many of the facts, which belong to these branches of science, are nicely ascertained, and elegantly classed; but their laws have not yet been developed from such simple principles as those above-mentioned; though it is probable, that they depend on the specific attractions belonging to the particles of bodies, or to the difference of the quantity of attraction belonging to the sides and angles of those particles. The chemical motions are distinguished by their being generally attended with an evident decomposition or new combination of the active materials.
3d. The third class includes all the motions of the animal and vegetable world; as well those of the vessels, which circulate their juices, and of the muscles, which perform their locomotion, as those of the organs of sense, which constitute their ideas.
This last class of motion is the subject of the following pages; which, though conscious of their many imperfections, I hope may give some pleasure to the patient reader, and contribute something to the knowledge and to the cure of diseases.
SECT. [II].
EXPLANATIONS AND DEFINITIONS.
[I]. Outline of the animal economy.—[II]. [1]. Of the sensorium. [2]. Of the brain and nervous medulla. [3]. A nerve. [4]. A muscular fibre. [5]. The immediate organs of sense. [6]. The external organs of sense. [7]. An idea or sensual motion. [8]. Perception. [9]. Sensation. [10]. Recollection and suggestion. [11]. Habit, causation, association, catenation. [12]. Reflex ideas. [13]. Stimulus defined.
As some explanations and definitions will be necessary in the prosecution of the work, the reader is troubled with them in this place, and is intreated to keep them in his mind as he proceeds, and to take them for granted, till an apt opportunity occurs to evince their truth; to which I shall premise a very short outline of the animal economy.
[I].—[1]. The nervous system has its origin from the brain, and is distributed to every part of the body. Those nerves, which serve the senses, principally arise from that part of the brain, which is lodged in the head; and those, which serve the purposes of muscular motion, principally arise from that part of the brain, which is lodged in the neck and back, and which is erroneously called the spinal marrow. The ultimate fibrils of these nerves terminate in the immediate organs of sense and muscular fibres, and if a ligature be put on any part of their passage from the head or spine, all motion and perception cease in the parts beneath the ligature.
[2]. The longitudinal muscular fibres compose the locomotive muscles, whose contractions move the bones of the limbs and trunk, to which their extremities are attached. The annular or spiral muscular fibres compose the vascular muscles, which constitute the intestinal canal, the arteries, veins, glands, and absorbent vessels.
[3]. The immediate organs of sense, as the retina of the eye, probably consist of moving fibrils, with a power of contraction similar to that of the larger muscles above described.
[4]. The cellular membrane consists of cells, which resemble those of a sponge, communicating with each other, and connecting together all the other parts of the body.
[5]. The arterial system consists of the aortal and the pulmonary artery, which are attended through their whole course with their correspondent veins. The pulmonary artery receives the blood from the right chamber of the heart, and carries it to the minute extensive ramifications of the lungs, where it is exposed to the action of the air on a surface equal to that of the whole external skin, through the thin moist coats of those vessels, which are spread on the air-cells, which constitute the minute terminal ramifications of the wind-pipe. Here the blood changes its colour from a dark red to a bright scarlet. It is then collected by the branches of the pulmonary vein, and conveyed to the left chamber of the heart.
[6]. The aorta is another large artery, which receives the blood from the left chamber of the heart, after it has been thus aerated in the lungs, and conveys it by ascending and descending branches to every other part of the system; the extremities of this artery terminate either in glands, as the salivary glands, lacrymal glands, &c. or in capillary vessels, which are probably less involuted glands; in these some fluid, as saliva, tears, perspiration, are separated from the blood; and the remainder of the blood is absorbed or drank up by branches of veins correspondent to the branches of the artery; which are furnished with valves to prevent its return; and is thus carried back, after having again changed its colour to a dark red, to the right chamber of the heart. The circulation of the blood in the liver differs from this general system; for the veins which drink up the refluent blood from those arteries, which are spread on the bowels and mesentery, unite into a trunk in the liver, and form a kind of artery, which is branched into the whole substance of the liver, and is called the vena portarum; and from which the bile is separated by the numerous hepatic glands, which constitute that viscus.
[7]. The glands may be divided into three systems, the convoluted glands, such as those above described, which separate bile, tears, saliva, &c. Secondly, the glands without convolution, as the capillary vessels, which unite the terminations of the arteries and veins; and separate both the mucus, which lubricates the cellular membrane, and the perspirable matter, which preserves the skin moist and flexible. And thirdly, the whole absorbent system, consisting of the lacteals, which open their mouths into the stomach and intestines, and of the lymphatics, which open their mouths on the external surface of the body, and on the internal linings of all the cells of the cellular membrane, and other cavities of the body.
These lacteal and lymphatic vessels are furnished with numerous valves to prevent the return of the fluids, which they absorb, and terminate in glands, called lymphatic glands, and may hence be considered as long necks or mouths belonging to these glands. To these they convey the chyle and mucus, with a part of the perspirable matter, and atmospheric moisture; all which, after having passed through these glands, and having suffered some change in them, are carried forward into the blood, and supply perpetual nourishment to the system, or replace its hourly waste.
[8]. The stomach and intestinal canal have a constant vermicular motion, which carries forwards their contents, after the lacteals have drank up the chyle from them; and which is excited into action by the stimulus of the aliment we swallow, but which becomes occasionally inverted or retrograde, as in vomiting, and in the iliac passion.
[II]. [1]. The word sensorium in the following pages is designed to express not only the medullary part of the brain, spinal marrow, nerves, organs of sense, and of the muscles; but also at the same time that living principle, or spirit of animation, which resides throughout the body, without being cognizable to our senses, except by its effects. The changes which occasionally take place in the sensorium, as during the exertions of volition, or the sensations of pleasure or pain, are termed sensorial motions.
[2]. The similarity of the texture of the brain to that of the pancreas, and some other glands of the body, has induced the inquirers into this subject to believe, that a fluid, perhaps much more subtile than the electric aura, is separated from the blood by that organ for the purposes of motion and sensation. When we recollect, that the electric fluid itself is actually accumulated and given out voluntarily by the torpedo and the gymnotus electricus, that an electric shock will frequently stimulate into motion a paralytic limb, and lastly that it needs no perceptible tubes to convey it, this opinion seems not without probability; and the singular figure of the brain and nervous system seems well adapted to distribute it over every part of the body.
For the medullary substance of the brain not only occupies the cavities of the head and spine, but passes along the innumerable ramifications of the nerves to the various muscles and organs of sense. In these it lays aside its coverings, and is intermixed with the slender fibres, which constitute those muscles and organs of sense. Thus all these distant ramifications of the sensorium are united at one of their extremities, that is, in the head and spine; and thus these central parts of the sensorium constitute a communication between all the organs of sense and muscles.
[3]. A nerve is a continuation of the medullary substance of the brain from the head or spine towards the other parts of the body, wrapped in its proper membrane.
[4]. The muscular fibres are moving organs intermixed with that medullary substance, which is continued along the nerves, as mentioned above. They are indued with the power of contraction, and are again elongated either by antagonist muscles, by circulating fluids, or by elastic ligaments. So the muscles on one side of the forearm bend the fingers by means of their tendons, and those on the other side of the fore-arm extend them again. The arteries are distended by the circulating blood; and in the necks of quadrupeds there is a strong elastic ligament, which assists the muscles, which elevate the head, to keep it in its horizontal position, and to raise it after it has been depressed.
[5]. The immediate organs of sense consist in like manner of moving fibres enveloped in the medullary substance above mentioned; and are erroneously supposed to be simply an expansion of the nervous medulla, as the retina of the eye, and the rete mucosum of the skin, which are the immediate organs of vision, and of touch. Hence when we speak of the contractions of the fibrous parts of the body, we shall mean both the contractions of the muscles, and those of the immediate organs of sense. These fibrous motions are thus distinguished from the sensorial motions above mentioned.
[6]. The external organs of sense are the coverings of the immediate organs of sense, and are mechanically adapted for the reception or transmission of peculiar bodies, or of their qualities, as the cornea and humours of the eye, the tympanum of the ear, the cuticle of the fingers and tongue.
[7]. The word idea has various meanings in the writers of metaphysic: it is here used simply for those notions of external things, which our organs of sense bring us acquainted with originally; and is defined a contraction, or motion, or configuration, of the fibres, which constitute the immediate organ of sense; which will be explained at large in another part of the work. Synonymous with the word idea, we shall sometimes use the words sensual motion in contradistinction to muscular motion.
[8]. The word perception includes both the action of the organ of sense in consequence of the impact of external objects, and our attention to that action; that is, it expresses both the motion of the organ of sense, or idea, and the pain or pleasure that succeeds or accompanies it.
[9]. The pleasure or pain which necessarily accompanies all those perceptions or ideas which we attend to, either gradually subsides, or is succeeded by other fibrous motions. In the latter case it is termed sensation, as explained in Sect. [V. 2], and [VI. 2].—The reader is intreated to keep this in his mind, that through all this treatise the word sensation is used to express pleasure or pain only in its active state, by whatever means it is introduced into the system, without any reference to the stimulation of external objects.
[10]. The vulgar use of the word memory is too unlimited for our purpose: those ideas which we voluntarily recall are here termed ideas of recollection, as when we will to repeat the alphabet backwards. And those ideas which are suggested to us by preceding ideas are here termed ideas of suggestion, as whilst we repeat the alphabet in the usual order; when by habits previously acquired B is suggested by A, and C by B, without any effort of deliberation.
[11]. The word association properly signifies a society or convention of things in some respects similar to each other. We never say in common language, that the effect is associated with the cause, though they necessarily accompany or succeed each other. Thus the contractions of our muscles and organs of sense may be said to be associated together, but cannot with propriety be said to be associated with irritations, or with volition, or with sensation; because they are caused by them, as mentioned in Sect. [IV]. When fibrous contractions succeed other fibrous contractions, the connection is termed association; when fibrous contractions succeed sensorial motions, the connection is termed causation; when fibrous and sensorial motions reciprocally introduce each other in progressive trains or tribes, it is termed catenation of animal motions. All these connections are said to be produced by habit; that is, by frequent repetition.
[12]. It may be proper to observe, that by the unavoidable idiom of our language the ideas of perception, of recollection, or of imagination, in the plural number signify the ideas belonging to perception, to recollection, or to imagination; whilst the idea of perception, of recollection, or of imagination, in the singular number is used for what is termed "a reflex idea of any of those operations of the sensorium."
[13]. By the word stimulus is not only meant the application of external bodies to our organs of sense and muscular fibres, which excites into action the sensorial power termed irritation; but also pleasure or pain, when they excite into action the sensorial power termed sensation; and desire or aversion, when they excite into action the power of volition; and lastly, the fibrous contractions which precede association; as is further explained in Sect. [XII. 2. 1].
SECT. [III].
THE MOTIONS OF THE RETINA DEMONSTRATED BY EXPERIMENTS.
[I]. Of animal motions and of ideas. [II]. The fibrous structure of the retina. [III]. The activity of the retina in vision. [1]. Rays of light have no momentum. [2]. Objects long viewed become fainter. [3]. Spectra of black objects become luminous. [4]. Varying spectra from gyration. [5]. From long inspection of various colours. [IV]. Motions of the organs of sense constitute ideas. [1]. Light from pressing the eye-ball, and sound from the pulsation of the carotid artery. [2]. Ideas in sleep mistaken for perceptions. [3]. Ideas of imagination produce pain and sickness like sensations. [4]. When the organ of sense is destroyed, the ideas belonging to that sense perish. [V]. Analogy between muscular motions and sensual motions, or ideas. [1]. They are both originally excited by irritations. [2]. And associated together in the same manner. [3]. Both act in nearly the same times. [4]. Are alike strengthened or fatigued by exercise. [5]. Are alike painful from inflammation. [6]. Are alike benumbed by compression. [7]. Are alike liable to paralysis. [8]. To convulsion. [9]. To the influence of old age.—[VI]. Objections answered. [1]. Why we cannot invent new ideas. [2]. If ideas resemble external objects. [3]. Of the imagined sensation in an amputated limb. [4]. Abstract ideas.—[VII]. What are ideas, if they are not animal motions?
Before the great variety of animal motions can be duly arranged into natural classes and orders, it is necessary to smooth the way to this yet unconquered field of science, by removing some obstacles which thwart our passage. [I]. To demonstrate that the retina and other immediate organs of sense possess a power of motion, and that these motions constitute our ideas, according to the fifth and seventh of the preceding assertions, claims our first attention.
Animal motions are distinguished from the communicated motions, mentioned in the first section, as they have no mechanical proportion to their cause; for the goad of a spur on the skin of a horse shall induce him to move a load of hay. They differ from the gravitating motions there mentioned as they are exerted with equal facility in all directions, and they differ from the chemical class of motions, because no apparent decompositions or new combinations are produced in the moving materials.
Hence, when we say animal motion is excited by irritation, we do not mean that the motion bears any proportion to the mechanical impulse of the stimulus; nor that it is affected by the general gravitation of the two bodies; nor by their chemical properties, but solely that certain animal fibres are excited into action by something external to the moving organ.
In this sense the stimulus of the blood produces the contractions of the heart; and the substances we take into our stomach and bowels stimulate them to perform their necessary functions. The rays of light excite the retina into animal motion by their stimulus; at the same time that those rays of light themselves are physically converged to a focus by the inactive humours of the eye. The vibrations of the air stimulate the auditory nerve into animal action; while it is probable that the tympanum of the ear at the same time undergoes a mechanical vibration.
To render this circumstance more easy to be comprehended, motion may be defined to be a variation of figure; for the whole universe may be considered as one thing possessing a certain figure; the motions of any of its parts are a variation of this figure of the whole: this definition of motion will be further explained in Section [XIV. 2. 2]. on the production of ideas.
Now the motions of an organ of sense are a succession of configurations of that organ; these configurations succeed each other quicker or slower; and whatever configuration of this organ of sense, that is, whatever portion of the motion of it is, or has usually been, attended to, constitutes an idea. Hence the configuration is not to be considered as an effect of the motion of the organ, but rather as a part or temporary termination of it; and that, whether a pause succeeds it, or a new configuration immediately takes place. Thus when a succession of moving objects are presented to our view, the ideas of trumpets, horns, lords and ladies, trains and canopies, are configurations, that is, parts or links of the successive motions of the organ of vision.
These motions or configurations of the organs of sense differ from the sensorial motions to be described hereafter, as they appear to be simply contractions of the fibrous extremities of those organs, and in that respect exactly resemble the motions or contractions of the larger muscles, as appears from the following experiment. Place a circular piece of red silk about an inch in diameter on a sheet of white paper in a strong light, as in Plate I.—look for a minute on this area, or till the eye becomes somewhat fatigued, and then, gently closing your eyes, and shading them with your hand, a circular green area of the same apparent diameter becomes visible in the closed eye. This green area is the colour reverse to the red area, which had been previously inspected, as explained in the experiments on ocular spectra at the end of the work, and in Botanical Garden, P. 1. additional note, No. 1. Hence it appears, that a part of the retina, which had been fatigued by contraction in one direction, relieves itself by exerting the antagonist fibres, and producing a contraction in an opposite direction, as is common in the exertions of our muscles. Thus when we are tired with long action of our arms in one direction, as in holding a bridle on a journey, we occasionally throw them into an opposite position to relieve the fatigued muscles.
Mr. Locke has defined an idea to be "whatever is present to the mind;" but this would include the exertions of volition, and the sensations of pleasure and pain, as well as those operations of our system, which acquaint us with external objects; and is therefore too unlimited for our purpose. Mr. Lock seems to have fallen into a further error, by conceiving, that the mind could form a general or abstract idea by its own operation, which was the copy of no particular perception; as of a triangle in general, that was neither acute, obtuse, nor right angled. The ingenious Dr. Berkley and Mr. Hume have demonstrated, that such general ideas have no existence in nature, not even in the mind of their celebrated inventor. We shall therefore take for granted at present, that our recollection or imagination of external objects consists of a partial repetition of the perceptions, which were excited by those external objects, at the time we became acquainted with them; and that our reflex ideas of the operations of our minds are partial repetitions of those operations.
[II]. The following article evinces that the organ of vision consists of a fibrous part as well as of the nervous medulla, like other white muscles; and hence, as it resembles the muscular parts of the body in its structure, we may conclude, that it must resemble them in possessing a power of being excited into animal motion.—The subsequent experiments on the optic nerve, and on the colours remaining in the eye, are copied from a paper on ocular spectra published in the seventy-sixth volume of the Philos. Trans. by Dr. R. Darwin of Shrewsbury; which, as I shall have frequent occasion to refer to, is reprinted in this work, Sect. [XL]. The retina of an ox's eye was suspended in a glass of warm water, and forcibly torn in a few places; the edges of these parts appeared jagged and hairy, and did not contract and become smooth like simple mucus, when it is distended till it breaks; which evinced that it consisted of fibres. This fibrous construction became still more distinct to the light by adding some caustic alcali to the water; as the adhering mucus was first eroded, and the hair-like fibres remained floating in the vessel. Nor does the degree of transparency of the retina invalidate this evidence of its fibrous structure, since Leeuwenhoek has shewn, that the crystalline humour itself consists of fibres. Arc. Nat. V. I. 70.
Hence it appears, that as the muscles consist of larger fibres intermixed with a smaller quantity of nervous medulla, the organ of vision consists of a greater quantity of nervous medulla intermixed with smaller fibres. It is probable that the locomotive muscles of microscopic animals may have greater tenuity than these of the retina; and there is reason to conclude from analogy, that the other immediate organs of sense, as the portio mollis of the auditory nerve, and the rete mucosum of the skin, possess a similarity of structure with the retina, and a similar power of being excited into animal motion.
[III]. The subsequent articles shew, that neither mechanical impressions, nor chemical combinations of light, but that the animal activity of the retina constitutes vision.
[1]. Much has been conjectured by philosophers about the momentum of the rays of light; to subject this to experiment a very light horizontal balance was constructed by Mr. Michel, with about an inch square of thin leaf-copper suspended at each end of it, as described in Dr. Priestley's History of Light and Colours. The focus of a very large convex mirror was thrown by Dr. Powel, in his lectures on experimental philosophy, in my presence, on one wing of this delicate balance, and it receded from the light; thrown on the other wing, it approached towards the light, and this repeatedly; so that no sensible impulse could be observed, but what might well be ascribed to the ascent of heated air.
Whence it is reasonable to conclude, that the light of the day must be much too weak in its dilute state to make any mechanical impression on so tenacious a substance as the retina of the eye.—Add to this, that as the retina is nearly transparent, it could therefore make less resistance to the mechanical impulse of light; which, according, to the observations related by Mr. Melvil in the Edinburgh Literary Essays, only communicates heat, and should therefore only communicate momentum, where it is obstructed, reflected, or refracted.—From whence also may be collected the final cause of this degree of transparency of the retina, viz. left by the focus of stronger lights, heat and pain should have been produced in the retina, instead of that stimulus which excites it into animal motion.
[2]. On looking long on an area of scarlet silk of about an inch in diameter laid on white paper, as in Plate I. the scarlet colour becomes fainter, till at length it entirely vanishes, though the eye is kept uniformly and steadily upon it. Now if the change or motion of the retina was a mechanical impression, or a chemical tinge of coloured light, the perception would every minute become stronger and stronger,—whereas in this experiment it becomes every instant weaker and weaker. The same circumstance obtains in the continued application of sound, or of sapid bodies, or of odorous ones, or of tangible ones, to their adapted organs of sense.
Thus when a circular coin, as a shilling, is pressed on the palm of the hand, the sense of touch is mechanically compressed; but it is the stimulus of this pressure that excites the organ of touch into animal action, which constitutes the perception of hardness and of figure; for in some minutes the perception ceases, though the mechanical pressure of the object remains.
[3]. Make with ink on white paper a very black spot about half an inch in diameter, with a tail about an inch in length, so as to resemble a tadpole, as in Plate II.; look steadfastly for a minute on the center of this spot, and, on moving the eye a little, the figure of the tadpole will be seen on the white part of the paper; which figure of the tadpole will appear more luminous than the other part of the white paper; which can only be explained by supposing that a part of the retina, on which the tadpole was delineated, to have become more sensible to light than the other parts of it, which were exposed to the white paper; and not from any idea of mechanical impression or chemical combination of light with the retina.
[4]. When any one turns round rapidly, till he becomes dizzy, and falls upon the ground, the spectra of the ambient objects continue to present themselves in rotation, and he seems to behold the objects still in motion. Now if these spectra were impressions on a passive organ, they either must continue as they were received last, or not continue at all.
[5]. Place a piece of red silk about an inch in diameter on a sheet of white paper in a strong light, as in Plate I; look steadily upon it from the distance of about half a yard for a minute; then closing your eye-lids, cover them with your hands and handkerchief, and a green spectrum will be seen in your eyes resembling in form the piece of red silk. After some seconds of time the spectrum will disappear, and in a few more seconds will reappear; and thus alternately three or four times, if the experiment be well made, till at length it vanishes entirely.
[6]. Place a circular piece of white paper, about four inches in diameter, in the sunshine, cover the center of this with a circular piece of black silk, about three inches in diameter; and the center of the black silk with a circle of pink silk, about two inches in diameter; and the center of the pink silk with a circle of yellow silk, about one inch in diameter; and the center of this with a circle of blue silk, about half an inch in diameter; make a small spot with ink in the center of the blue silk, as in Plate III.; look steadily for a minute on this central spot, and then closing your eyes, and applying your hand at about an inch distance before them, so as to prevent too much or too little light from passing through the eye-lids, and you will see the most beautiful circles of colours that imagination can conceive; which are most resembled by the colours occasioned by pouring a drop or two of oil on a still lake in a bright day. But these circular irises of colours are not only different from the colours of the silks above mentioned, but are at the same time perpetually changing as long as they exist.
From all these experiments it appears, that these spectra in the eye are not owing to the mechanical impulse of light impressed on the retina; nor to its chemical combination with that organ; nor to the absorption and emission of light, as is supposed, perhaps erroneously, to take place in calcined shells and other phosphorescent bodies, after having been exposed to the light: for in all these cases the spectra in the eye should either remain of the same colour, or gradually decay, when the object is withdrawn; and neither their evanescence during the presence of their object, as in the second experiment, nor their change from dark to luminous, as in the third experiment, nor their rotation, as in the fourth experiment, nor the alternate presence and evanescence of them, as in the fifth experiment, nor the perpetual change of colours of them, as in the last experiment, could exist.
[IV]. The subsequent articles shew, that these animal motions or configurations of our organs of sense constitute our ideas.
[1]. If any one in the dark presses the ball of his eye, by applying his finger to the external corner of it, a luminous appearance is observed; and by a smart stroke on the eye great slashes of fire are perceived. (Newton's Optics.) So that when the arteries, that are near the auditory nerve, make stronger pulsations than usual, as in some fevers, an undulating sound is excited in the ears. Hence it is not the presence of the light and sound, but the motions of the organ, that are immediately necessary to constitute the perception or idea of light and sound.
[2]. During the time of sleep, or in delirium, the ideas of imagination are mistaken for the perceptions of external objects; whence it appears, that these ideas of imagination, are no other than a reiteration of those motions of the organs of sense, which were originally excited by the stimulus of external objects: and in our waking hours the simple ideas, that we call up by recollection or by imagination, as the colour of red, or the smell of a rose, are exact resemblances of the same simple ideas from perception; and in consequence must be a repetition of those very motions.
[3]. The disagreeable sensation called the tooth-edge is originally excited by the painful jarring of the teeth in biting the edge of the glass, or porcelain cup, in which our food was given us in our infancy, as is further explained in the Section [XVI. 10], on Instinct.—This disagreeable sensation is afterwards excitable not only by a repetition of the sound, that was then produced, but by imagination alone, as I have myself frequently experienced; in this case the idea of biting a china cup, when I imagine it very distinctly, or when I see another person bite a cup or glass, excites an actual pain in the nerves of my teeth. So that this idea and pain seem to be nothing more than the reiterated motions of those nerves, that were formerly so disagreeably affected.
Other ideas that are excited by imagination or recollection in many instances produce similar effects on the constitution, as our perceptions had formerly produced, and are therefore undoubtedly a repetition of the same motions. A story which the celebrated Baron Van Swieton relates of himself is to this purpose. He was present when the putrid carcase of a dead dog exploded with prodigious stench; and some years afterwards, accidentally riding along the same road, he was thrown into the same sickness and vomiting by the idea of the stench, as he had before experienced from the perception of it.
[4]. Where the organ of sense is totally destroyed, the ideas which were received by that organ seem to perish along with it, as well as the power of perception. Of this a satisfactory instance has fallen under my observation. A gentleman about sixty years of age had been totally deaf for near thirty years: he appeared to be a man of good understanding, and amused himself with reading, and by conversing either by the use of the pen, or by signs made with his fingers, to represent letters. I observed that he had so far forgot the pronunciation of the language, that when he attempted to speak, none of his words had distinct articulation, though his relations could sometimes understand his meaning. But, which is much to the point, he assured me, that in his dreams he always imagined that people conversed with him by signs or writing, and never that he heard any one speak to him. From hence it appears, that with the perceptions of sounds he has also lost the ideas of them; though the organs of speech still retain somewhat of their usual habits of articulation.
This observation may throw some light on the medical treatment of deaf people; as it may be learnt from their dreams whether the auditory nerve be paralytic, or their deafness be owing to some defect of the external organ.
It rarely happens that the immediate organ of vision is perfectly destroyed. The most frequent causes of blindness are occasioned by defects of the external organ, as in cataracts and obfuscations of the cornea. But I have had the opportunity of conversing with two men, who had been some years blind; one of them had a complete gutta serena, and the other had lost the whole substance of his eyes. They both told me that they did not remember to have ever dreamt of visible objects, since the total loss of their sight.
[V]. Another method of discovering that our ideas are animal motions of the organs of sense, is from considering the great analogy they bear to the motions of the larger muscles of the body. In the following articles it will appear that they are originally excited into action by the irritation of external objects like our muscles; are associated together like our muscular motions; act in similar time with them; are fatigued by continued exertion like them; and that the organs of sense are subject to inflammation, numbness, palsy, convulsion, and the defects of old age, in the same manner as the muscular fibres.
[1]. All our perceptions or ideas of external objects are universally allowed to have been originally excited by the stimulus of those external objects; and it will be shewn in a succeeding section, that it is probable that all our muscular motions, as well those that are become voluntary as those of the heart and glandular system, were originally in like manner excited by the stimulus of something external to the organ of motion.
[2]. Our ideas are also associated together after their production precisely in the same manner as our muscular motions; which will likewise be fully explained in the succeeding section.
[3]. The time taken up in performing an idea is likewise much the same as that taken up in performing a muscular motion. A musician can press the keys of an harpsichord with his fingers in the order of a tune he has been accustomed to play, in as little time as he can run over those notes in his mind. So we many times in an hour cover our eye-balls with our eye-lids without perceiving that we are in the dark; hence the perception or idea of light is not changed for that of darkness in so small a time as the twinkling of an eye; so that in this case the muscular motion of the eye-lid is performed quicker than the perception of light can be changed for that of darkness.—So if a fire-stick be whirled round in the dark, a luminous circle appears to the observer; if it be whirled somewhat slower, this circle becomes interrupted in one part; and then the time taken up in such a revolution of the stick is the same that the observer uses in changing his ideas: thus the δολικοσκοτον εγκος of Homer, the long shadow of the flying javelin, is elegantly designed to give us an idea of its velocity, and not of its length.
[4]. The fatigue that follows a continued attention of the mind to one object is relieved by changing the subject of our thoughts; as the continued movement of one limb is relieved by moving another in its stead. Whereas a due exercise of the faculties of the mind strengthens and improves those faculties, whether of imagination or recollection; as the exercise of our limbs in dancing or fencing increases the strength and agility of the muscles thus employed.
[5]. If the muscles of any limb are inflamed, they do not move without pain; so when the retina is inflamed, its motions also are painful. Hence light is as intolerable in this kind of ophthalmia, as pressure is to the finger in the paronychia. In this disease the patients frequently dream of having their eyes painfully dazzled; hence the idea of strong light is painful as well as the reality. The first of these facts evinces that our perceptions are motions of the organs of sense; and the latter, that our imaginations are also motions of the same organs.
[6]. The organs of sense, like the moving muscles, are liable to become benumbed, or less sensible, from compression. Thus, if any person on a light day looks on a white wall, he may perceive the ramifications of the optic artery, at every pulsation of it, represented by darker branches on the white wall; which is evidently owing to its compressing the retina during the diastole of the artery. Savage Nosolog.
[7]. The organs of sense and the moving muscles are alike liable to be affected with palsy, as in the gutta serena, and in some cases of deafness; and one side of the face has sometimes lost its power of sensation, but retained its power of motion; other parts of the body have lost their motions but retained their sensation, as in the common hemiplagia; and in other instances both these powers have perished together.
[8]. In some convulsive diseases a delirium or insanity supervenes, and the convulsions cease; and conversely the convulsions shall supervene, and the delirium cease. Of this I have been a witness many times in a day in the paroxysms of violent epilepsies; which evinces that one kind of delirium is a convulsion of the organs of sense, and that our ideas are the motions of these organs: the subsequent cases will illustrate this observation.
Miss G——, a fair young lady, with light eyes and hair, was seized with most violent convulsions of her limbs, with outrageous hiccough, and most vehement efforts to vomit: after near an hour was elapsed this tragedy ceased, and a calm talkative delirium supervened for about another hour; and these relieved each other at intervals during the greatest part of three or four days. After having carefully considered this disease, I thought the convulsions of her ideas less dangerous than those of her muscles; and having in vain attempted to make any opiate continue in her stomach, an ounce of laudanum was rubbed along the spine of her back, and a dram of it was used as an enema; by this medicine a kind of drunken delirium was continued many hours; and when it ceased the convulsions did not return; and the lady continued well many years, except some lighter relapses, which were relieved in the same manner.
Miss H——, an accomplished young lady, with light eyes and hair, was seized with convulsions of her limbs, with hiccough, and efforts to vomit, more violent than words can express; these continued near an hour, and were succeeded with a cataleptic spasm of one arm, with the hand applied to her head; and after about twenty minutes these spasms ceased, and a talkative reverie supervened for near an other hour, from which no violence, which it was proper to use, could awaken her. These periods of convulsions, first of the muscles, and then of the ideas, returned twice a day for several weeks; and were at length removed by great doses of opium, after a great variety of other medicines and applications had been in vain experienced. This lady was subject to frequent relapses, once or twice a year for many years, and was as frequently relieved by the same method.
Miss W——, an elegant young lady, with black eyes and hair, had sometimes a violent pain of her side, at other times a most painful strangury, which were every day succeeded by delirium; which gave a temporary relief to the painful spasms. After the vain exhibition of variety of medicines and applications by different physicians, for more than a twelvemonth, she was directed to take some doses of opium, which were gradually increased, by which a drunken delirium was kept up for a day or two, and the pains prevented from returning. A flesh diet, with a little wine or beer, instead of the low regimen she had previously used, in a few weeks completely established her health; which, except a few relapses, has continued for many years.
[9]. Lastly, as we advance in life all the parts of the body become more rigid, and are rendered less susceptible of new habits of motion, though they retain those that were before established. This is sensibly observed by those who apply themselves late in life to music, fencing, or any of the mechanic arts. In the same manner many elderly people retain the ideas they had learned early in life, but find great difficulty in acquiring new trains of memory; insomuch that in extreme old age we frequently see a forgetfulness of the business of yesterday, and at the same time a circumstantial remembrance of the amusements of their youth; till at length the ideas of recollection and activity of the body gradually cease together,—such is the condition of humanity!—and nothing remains but the vital motions and sensations.
[VI]. [1]. In opposition to this doctrine of the production of our ideas, it may be asked, if some of our ideas, like other animal motions, are voluntary, why can we not invent new ones, that have not been received by perception? The answer will be better understood after having perused the succeeding section, where it will be explained, that the muscular motions likewise are originally excited by the stimulus of bodies external to the moving organ; and that the will has only the power of repeating the motions thus excited.
[2]. Another objector may ask, Can the motion of an organ of sense resemble an odour or a colour? To which I can only answer, that it has not been demonstrated that any of our ideas resemble the objects that excite them; it has generally been believed that they do not; but this shall be discussed at large in Sect. [XIV].
[3]. There is another objection that at first view would seem less easy to surmount. After the amputation, of a foot or a finger, it has frequently happened, that an injury being offered to the stump of the amputated limb, whether from cold air, too great pressure, or other accidents, the patient has complained, of a sensation of pain in the foot or finger, that was cut off. Does not this evince that all our ideas are excited in the brain, and not in the organs of sense? This objection is answered, by observing that our ideas of the shape, place, and solidity of our limbs, are acquired by our organs of touch and of sight, which are situated in our fingers and eyes, and not by any sensations in the limb itself.
In this case the pain or sensation, which formerly has arisen in the foot or toes, and been propagated along the nerves to the central part of the sensorium, was at the same time accompanied with a visible idea of the shape and place, and with a tangible idea of the solidity of the affected limb: now when these nerves are afterwards affected by any injury done to the remaining stump with a similar degree or kind of pain, the ideas of the shape, place, or solidity of the lost limb, return by association; as these ideas belong to the organs of sight and touch, on which they were first excited.
[4]. If you wonder what organs of sense can be excited into motion, when you call up the ideas of wisdom or benevolence, which Mr. Locke has termed abstracted ideas; I ask you by what organs of sense you first became acquainted with these ideas? And the answer will be reciprocal; for it is certain that all our ideas were originally acquired by our organs of sense; for whatever excites our perception must be external to the organ that perceives it, and we have no other inlets to knowledge but by our perceptions: as will be further explained in Section [XIV]. and [XV]. on the Productions and Classes of Ideas.
[VII]. If our recollection or imagination be not a repetition of animal movements, I ask, in my turn, What is it? You tell me it consists of images or pictures of things. Where is this extensive canvas hung up? or where are the numerous receptacles in which those are deposited? or to what else in the animal system have they any similitude?
That pleasing picture of objects, represented in miniature on the retina of the eye, seems to have given rise to this illusive oratory! It was forgot that this representation belongs rather to the laws of light, than to those of life; and may with equal elegance be seen in the camera obscura as in the eye; and that the picture vanishes for ever, when the object is withdrawn.
SECT. [IV].
LAWS OF ANIMAL CAUSATION.
[I]. The fibres, which constitute the muscles and organs of sense, possess a power of contraction. The circumstances attending the exertion of this power of CONTRACTION constitute the laws of animal motion, as the circumstances attending the exertion of the power of ATTRACTION constitute the laws of motion of inanimate matter.
[II]. The spirit of animation is the immediate cause of the contraction of animal fibres, it resides in the brain and nerves, and is liable to general or partial diminution or accumulation.
[III]. The stimulus of bodies external to the moving organ is the remote cause of the original contractions of animal fibres.
[IV]. A certain quantity of stimulus produces irritation, which is an exertion of the spirit of animation exciting the fibres into contraction.
[V]. A certain quantity of contraction of animal fibres, if it be perceived at all, produces pleasure; a greater or less quantity of contraction, if it be perceived at all, produces pain; these constitute sensation.
[VI]. A certain quantity of sensation produces desire or aversion; these constitute volition.
[VII]. All animal motions which have occurred at the same time, or in immediate succession, become so connected, that when one of them is reproduced, the other has a tendency to accompany or succeed it. When fibrous contractions succeed or accompany other fibrous contractions, the connection is termed association; when fibrous contractions succeed sensorial motions, the connexion is termed causation; when fibrous and sensorial motions reciprocally introduce each other, it is termed catenation of animal motions. All these connections are said to be produced by habit, that is, by frequent repetition. These laws of animal causation will be evinced by numerous facts, which occur in our daily exertions; and will afterwards be employed to explain the more recondite phænomena of the production, growth, diseases, and decay of the animal system.
SECT. [V].
OF THE FOUR FACULTIES OR MOTIONS OF THE SENSORIUM.
[1]. Four sensorial powers. [2]. Irritation, sensation, volition, association defined. [3]. Sensorial motions distinguished from fibrous motions.
[1]. The spirit of animation has four different modes of action, or in other words the animal sensorium possesses four different faculties, which are occasionally exerted, and cause all the contractions of the fibrous parts of the body. These are the faculty of causing fibrous contractions in consequence of the irritations excited by external bodies, in consequence of the sensations of pleasure or pain, in consequence of volition, and in consequence of the associations of fibrous contractions with other fibrous contractions, which precede or accompany them.
These four faculties of the sensorium during their inactive state are termed irritability, sensibility, voluntarity, and associability; in their active state they are termed as above, irritation, sensation, volition, association.
[2]. IRRITATION is an exertion or change of some extreme part of the sensorium residing in the muscles or organs of sense, in consequence of the appulses of external bodies.
SENSATION is an exertion or change of the central parts of the sensorium, or of the whole of it, beginning at some of those extreme parts of it, which reside in the muscles or organs of sense.
VOLITION is an exertion or change of the central parts of the sensorium, or of the whole of it, terminating in some of those extreme parts of it, which reside in the muscles or organs of sense.
ASSOCIATION is an exertion or change of some extreme part of the sensorium residing in the muscles or organs of sense, in consequence of some antecedent or attendant fibrous contractions.
[3]. These four faculties of the animal sensorium may at the time of their exertions be termed motions without impropriety of language; for we cannot pass from a state of insensibility or inaction to a state of sensibility or of exertion without some change of the sensorium, and every change includes motion. We shall therefore sometimes term the above described faculties sensorial motions to distinguish them from fibrous motions; which latter expression includes the motions of the muscles and organs of sense.
The active motions of the fibres, whether those of the muscles or organs of sense, are probably simple contractions; the fibres being again elongated by antagonist muscles, by circulating fluids, or sometimes by elastic ligaments, as in the necks of quadrupeds. The sensorial motions, which constitute the sensations of pleasure or pain, and which constitute volition, and which cause the fibrous contractions in consequence of irritation or of association, are not here supposed to be fluctuations or refluctuations of the spirit of animation; nor are they supposed to be vibrations or revibrations, nor condensations or equilibrations of it; but to be changes or motions of it peculiar to life.
SECT. [VI].
OF THE FOUR CLASSES OF FIBROUS MOTIONS.
[I]. Origin of fibrous contractions. [II]. Distribution of them into four classes, irritative motions, sensitive motions, voluntary motions, and associate motions, defined.
[I]. All the fibrous contractions of animal bodies originate from the sensorium, and resolve themselves into four classes, correspondent with the four powers or motions of the sensorium above described, and from which they have their causation.
[1]. These fibrous contractions were originally caused by the irritations excited by objects, which are external to the moving organ. As the pulsations of the heart are owing to the irritations excited by the stimulus of the blood; and the ideas of perception are owing to the irritations excited by external bodies.
[2]. But as painful or pleasurable sensations frequently accompanied those irritations, by habit these fibrous contractions became causeable by the sensations, and the irritations ceased to be necessary to their production. As the secretion of tears in grief is caused by the sensation of pain; and the ideas of imagination, as in dreams or delirium, are excited by the pleasure or pain, with which they were formerly accompanied.
[3]. But as the efforts of the will frequently accompanied these painful or pleasureable sensations, by habit the fibrous contractions became causable by volition; and both the irritations and sensations ceased to be necessary to their production. As the deliberate locomotions of the body, and the ideas of recollection, as when we will to repeat the alphabet backwards.
[4]. But as many of these fibrous contractions frequently accompanied other fibrous contractions, by habit they became causable by their associations with them; and the irritations, sensations, and volition, ceased to be necessary to their production. As the actions of the muscles of the lower limbs in fencing are associated with those of the arms; and the ideas of suggestion are associated with other ideas, which precede or accompany them; as in repeating carelessly the alphabet in its usual order after having began it.
[II]. We shall give the following names to these four classes of fibrous motions, and subjoin their definitions.
[1]. Irritative motions. That exertion or change of the sensorium, which is caused by the appulses of external bodies, either simply subsides, or is succeeded by sensation, or it produces fibrous motions; it is termed irritation, and irritative motions are those contractions of the muscular fibres, or of the organs of sense, that are immediately consequent to this exertion or change of the sensorium.
[2]. Sensitive motions. That exertion or change of the sensorium, which constitutes pleasure or pain, either simply subsides, or is succeeded by volition, or it produces fibrous motions; it is termed sensation, and the sensitive motions are those contractions of the muscular fibres, or of the organs of sense, that are immediately consequent to this exertion or change of the sensorium.
[3]. Voluntary motions. That exertion or change of the sensorium, which constitutes desire or aversion, either simply subsides, or is succeeded by fibrous motions; it is then termed volition, and voluntary motions are those contractions of the muscular fibres, or of the organs of sense, that are immediately consequent to this exertion or change of the sensorium.
[4]. Associate motions. That exertion or change of the sensorium, which accompanies fibrous motions, either simply subsides, or is succeeded by sensation or volition, or it produces other fibrous motions; it is then termed association, and the associate motions are those contractions of the muscular fibres, or of the organs of sense, that are immediately consequent to this exertion or change of the sensorium.
SECT. [VII].
OF IRRITATIVE MOTIONS.
[I]. [1]. Some muscular motions are excited by perpetual irritations. [2]. Others more frequently by sensations. [3]. Others by volition. Case of involuntary stretchings in paralytic limbs. [4]. Some sensual motions are excited by perpetual irritations. [5]. Others more frequently by sensation or volition.
[II]. [1]. Muscular motions excited by perpetual irritations occasionally become obedient sensation and to volition. [2]. And the sensual motions.
[III]. [1]. Other muscular motions are associated with the irritative ones. [2]. And other ideas with irritative ones. Of letters, language, hieroglyphics. Irritative ideas exist without our attention to them.
[I]. [1]. Many of our muscular motions are excited by perpetual irritations, as those of the heart and arterial system by the circumfluent blood. Many other of them are excited by intermitted irritations, as those of the stomach and bowels by the aliment we swallow; of the bile-ducts by the bile; of the kidneys, pancreas, and many other glands, by the peculiar fluids they separate from the blood; and those of the lacteal and other absorbent vessels by the chyle, lymph, and moisture of the atmosphere. These motions are accelerated or retarded, as their correspondent irritations are increased or diminished, without our attention or consciousness, in the same manner as the various secretions of fruit, gum, resin, wax, and, honey, are produced in the vegetable world, and as the juices of the earth and the moisture of the atmosphere are absorbed by their roots and foliage.
[2]. Other muscular motions, that are most frequently connected with our sensations, as those of the sphincters of the bladder and anus, and the musculi erectores penis, were originally excited into motion by irritation, for young children make water, and have other evacuations without attention to these circumstances; "et primis etiam ab incunabulis tenduntur sæpius puerorum penes, amore nondum expergefacto." So the nipples of young women are liable to become turgid by irritation, long before they are in a situation to be excited by the pleasure of giving milk to the lips of a child.
[3]. The contractions of the larger muscles of our bodies, that are most frequently connected with volition, were originally excited into action by internal irritations: as appears from the stretching or yawning of all animals after long sleep. In the beginning of some fevers this irritation of the muscles produces perpetual stretching and yawning; in other periods of fever an universal restlessness arises from the same cause, the patient changing the attitude of his body every minute. The repeated struggles of the fœtus in the uterus must be owing to this internal irritation: for the fœtus can have no other inducement to move its limbs but the tædium or irksomeness of a continued posture.
The following case evinces, that the motions of stretching the limbs after a continued attitude are not always owing to the power of the will. Mr. Dean, a mason, of Austry in Leicestershire, had the spine of the third vertebra of the back enlarged; in some weeks his lower extremities became feeble, and at length quite paralytic: neither the pain of blisters, the heat of fomentations, nor the utmost efforts of the will could produce the least motion in these limbs; yet twice or thrice a day for many months his feet, legs, and thighs, were affected for many minutes with forceable stretchings, attended with the sensation of fatigue; and he at length recovered the use of his limbs, though the spine continued protuberant. The same circumstance is frequently seen in a less degree in the common hemiplagia; and when this happens, I have believed repeated and strong shocks of electricity to have been of great advantage.
[4]. In like manner the various organs of sense are originally excited into motion by various external stimuli adapted to this purpose, which motions are termed perceptions or ideas; and many of these motions during our waking hours are excited by perpetual irritation, as those of the organs of hearing and of touch. The former by the constant low indistinct noises that murmur around us, and the latter by the weight of our bodies on the parts which support them; and by the unceasing variations of the heat, moisture, and pressure of the atmosphere; and these sensual motions, precisely as the muscular ones above mentioned, obey their correspondent irritations without our attention or consciousness.
[5]. Other classes of our ideas are more frequently excited by our sensations of pleasure or pain, and others by volition: but that these have all been originally excited by stimuli from external objects, and only vary in their combinations or reparations, has been fully evinced by Mr. Locke: and are by him termed the ideas of perception in contradistinction to those, which he calls the ideas of reflection.
[II]. [1]. These muscular motions, that are excited by perpetual irritation, are nevertheless occasionally excitable by the sensations of pleasure or pain, or by volition; as appears by the palpitation of the heart from fear, the increased secretion of saliva at the sight of agreeable food, and the glow on the skin of those who are ashamed. There is an instance told in the Philosophical Transactions of a man, who could for a time stop the motion of his heart when he pleased; and Mr. D. has often told me, be could so far increase the peristaltic motion of his bowels by voluntary efforts, as to produce an evacuation by stool at any time in half an hour.
[2]. In like manner the sensual motions, or ideas, that are excited by perpetual irritation, are nevertheless occasionally excited by sensation or volition; as in the night, when we listen under the influence of fear, or from voluntary attention, the motions excited in the organ of hearing by the whispering of the air in our room, the pulsation of our own arteries, or the faint beating of a distant watch, become objects of perception.
[III]. [1]. Innumerable trains or tribes of other motions are associated with these muscular motions which are excited by irritation; as by the stimulus of the blood in the right chamber of the heart, the lungs are induced to expand themselves; and the pectoral and intercostal muscles, and the diaphragm, act at the same time by their associations with them. And when the pharinx is irritated by agreeable food, the muscles of deglutition are brought into action by association. Thus when a greater light falls on the eye, the iris is brought into action without our attention; and the ciliary process, when the focus is formed before or behind the retina, by their associations with the increased irritative motions of the organ of vision. Many common actions of life are produced in a similar manner. If a fly settle on my forehead, whilst I am intent on my present occupation, I dislodge it with my finger, without exciting my attention or breaking the train of my ideas.
[2]. In like manner the irritative ideas suggest to us many other trains or tribes of ideas that are associated with them. On this kind of connection, language, letters, hieroglyphics, and every kind of symbol, depend. The symbols themselves produce irritative ideas, or sensual motions, which we do not attend to; and other ideas, that are succeeded by sensation, are excited by their association with them. And as these irritative ideas make up a part of the chain of our waking thoughts, introducing other ideas that engage our attention, though themselves are unattended to, we find it very difficult to investigate by what steps many of our hourly trains of ideas gain their admittance.
It may appear paradoxical, that ideas can exist, and not be attended to; but all our perceptions are ideas excited by irritation, and succeeded by sensation. Now when these ideas excited by irritation give us neither pleasure nor pain, we cease to attend to them. Thus whilst I am walking through that grove before my window, I do not run against the trees or the benches, though my thoughts are strenuously exerted on some other object. This leads us to a distinct knowledge of irritative ideas, for the idea of the tree or bench, which I avoid, exists on my retina, and induces by association the action of certain locomotive muscles; though neither itself nor the actions of those muscles engage my attention.
Thus whilst we are conversing on this subject, the tone, note, and articulation of every individual word forms its correspondent irritative idea on the organ of hearing; but we only attend to the associated ideas, that are attached by habit to these irritative ones, and are succeeded by sensation; thus when we read the words "PRINTING-PRESS" we do not attend to the shape, size, or existence of the letters which compose these words, though each of them excites a correspondent irritative motion of our organ of vision, but they introduce by association our idea of the most useful of modern inventions; the capacious reservoir of human knowledge, whose branching streams diffuse sciences, arts, and morality, through all nations and all ages.
SECT. [VIII].
OF SENSITIVE MOTIONS.
[I]. [1]. Sensitive muscular motions were originally excited into action by irritation. [2]. And sensitive sensual motions, ideas of imagination, dreams. [II]. [1]. Sensitive muscular motions are occasionally obedient to volition. [2]. And sensitive sensual motions. [III]. [1]. Other muscular motions are associated with the sensitive ones. [2]. And other sensual motions.
[I]. [1]. Many of the motions of our muscles, that are excited into action by irritation, are at the same time accompanied with painful or pleasurable sensations; and at length become by habit causable by the sensations. Thus the motions of the sphincters of the bladder and anus were originally excited into action by irritation; for young children give no attention to these evacuations; but as soon as they become sensible of the inconvenience of obeying these irritations, they suffer the water or excrement to accumulate, till it disagreeably affects them; and the action of those sphincters is then in consequence of this disagreeable sensation. So the secretion of saliva, which in young children is copiously produced by irritation, and drops from their mouths, is frequently attended with the agreeable sensation produced by the mastication of tasteful food;, till at length the sight of such food to a hungry person excites into action these salival glands; as is seen in the slavering of hungry dogs.
The motions of those muscles, which are affected by lascivious ideas, and those which are exerted in smiling, weeping, starting from fear, and winking at the approach of danger to the eye, and at times the actions of every large muscle of the body become causable by our sensations. And all these motions are performed with strength and velocity in proportion to the energy of the sensation that excites them, and the quantity of sensorial power.
[2]. Many of the motions of our organs of sense, or ideas, that were originally excited into action by irritation, become in like manner more frequently causable by our sensations of pleasure or pain. These motions are then termed the ideas of imagination, and make up all the scenery and transactions of our dreams. Thus when any painful or pleasurable sensations possess us, as of love, anger, fear; whether in our sleep or waking hours, the ideas, that have been formerly excited by the objects of these sensations, now vividly recur before us by their connection with these sensations themselves. So the fair smiling virgin, that excited your love by her presence, whenever that sensation recurs, rises before you in imagination; and that with all the pleasing circumstances, that had before engaged your attention. And in sleep, when you dream under the influence of fear, all the robbers, fires, and precipices, that you formerly have seen or heard of, arise before you with terrible vivacity. All these sensual motions, like the muscular ones above mentioned, are performed with strength and velocity in proportion to the energy of the sensation of pleasure or pain, which excites them, and the quantity of sensorial power.
[II]. [1]. Many of these muscular motions above described, that are most frequently excited by our sensations, are nevertheless occasionally causable by volition; for we can smile or frown spontaneously, can make water before the quantity or acrimony of the urine produces a disagreeable sensation, and can voluntarily masticate a nauseous drug, or swallow a bitter draught, though our sensation would strongly dissuade us.
[2]. In like manner the sensual motions, or ideas, that are most frequently excited by our sensations, are nevertheless occasionally causeable by volition, as we can spontaneously call up our last night's dream before us, tracing it industriously step by step through all its variety of scenery and transaction; or can voluntarily examine or repeat the ideas, that have been excited by out disgust or admiration.
[III]. [1]. Innumerable trains or tribes of motions are associated with these sensitive muscular motions above mentioned; as when a drop of water falling into the wind-pipe disagreeably affects the air-vessels of the lungs, they are excited into violent action; and with these sensitive motions are associated the actions of the pectoral and intercostal muscles, and the diaphragm; till by their united and repeated succussions the drop is returned through the larinx. The same occurs when any thing disagreeably affects the nostrils, or the stomach, or the uterus; variety of muscles are excited by association into forcible action, not to be suppressed by the utmost efforts of the will; as in sneezing, vomiting, and parturition.
[2]. In like manner with these sensitive sensual motions, or ideas of imagination, are associated many other trains or tribes of ideas, which by some writers of metaphysics have been classed under the terms of resemblance, causation, and contiguity; and will be more fully treated of hereafter.
SECT. [IX].
OF VOLUNTARY MOTIONS.
[I]. [1]. Voluntary muscular motions are originally excited by irritations. [2]. And voluntary ideas. Of reason. [II]. [1]. Voluntary muscular motions are occasionally causable by sensations. [2]. And voluntary ideas. [III]. [1]. Voluntary muscular motions are occasionally obedient to irritations. [2]. And voluntary ideas. [IV]. [1]. Voluntary muscular motions are associated with other muscular motions. [2]. And voluntary ideas.
When pleasure or pain affect the animal system, many of its motions both muscular and sensual are brought into action; as was shewn in the preceding section, and were called sensitive motions. The general tendency of these motions is to arrest and to possess the pleasure, or to dislodge or avoid the pain: but if this cannot immediately be accomplished, desire or aversion are produced, and the motions in consequence of this new faculty of the sensorium are called voluntary.
[I]. [1]. Those muscles of the body that are attached to bones, have in general their principal connections with volition, as I move my pen or raise my body. These motions were originally excited by irritation, as was explained in the section on that subject, afterwards the sensations of pleasure or pain, that accompanied the motions thus excited, induced a repetition of them; and at length many of them were voluntarily practised in succession or in combination for the common purposes of life, as in learning to walk, or to speak; and are performed with strength and velocity in proportion to the energy of the volition, that excites them, and the quantity of sensorial power.
[2]. Another great class of voluntary motions consists of the ideas of recollection. We will to repeat a certain train of ideas, as of the alphabet backwards; and if any ideas, that do not belong to this intended train, intrude themselves by other connections, we will to reject them, and voluntarily persist in the determined train. So at my approach to a house which I have but once visited, and that at the distance of many months, I will to recollect the names of the numerous family I expect to see there, and I do recollect them.
On this voluntary recollection of ideas our faculty of reason depends, as it enables us to acquire an idea of the dissimilitude of any two ideas. Thus if you voluntarily produce the idea of a right-angled triangle, and then of a square; and after having excited these ideas repeatedly, you excite the idea of their difference, which is that of another right-angled triangle inverted over the former; you are said to reason upon this subject, or to compare your ideas.
These ideas of recollection, like the muscular motions above mentioned, were originally excited by the irritation of external bodies, and were termed ideas of perception: afterwards the pleasure or pain, that accompanied these motions, induced a repetition of them in the absence of the external body, by which they were first excited; and then they were termed ideas of imagination. At length they become voluntarily practised in succession or in combination for the common purposes of life; as when we make ourselves masters of the history of mankind, or of the sciences they have investigated; and are then called ideas of recollection; and are performed with strength and velocity in proportion to the energy of the volition that excites them, and the quantity of sensorial power.
[II]. [1]. The muscular motions above described, that are most frequently obedient to the will are nevertheless occasionally causable by painful or pleasurable sensation, as in the starting from fear, and the contraction of the calf of the leg in the cramp.
[2]. In like manner the sensual motions, or ideas, that are most frequently connected with volition, are nevertheless occasionally causable by painful or pleasurable sensation. As the histories of men, or the description of places, which we have voluntarily taken pains to remember, sometimes occur to us in our dreams.
[III]. [1]. The muscular motions that are generally subservient to volition, are also occasionally causable by irritation, as in stretching the limbs after sleep, and yawning. In this manner a contraction of the arm is produced by passing the electric fluid from the Leyden phial along its muscles; and that even though the limb is paralytic. The sudden motion of the arm produces a disagreeable sensation in the joint, but the muscles seem to be brought into action simply by irritation.
[2]. The ideas, that are generally subservient to the will, are in like manner occasionally excited by irritation; as when we view again an object, we have before well studied, and often recollected.
[IV]. [1]. Innumerable trains or tribes of motions are associated with these voluntary muscular motions above mentioned; as when I will to extend my arm to a distant object, some other muscles are brought into action, and preserve the balance of my body. And when I wish to perform any steady exertion, as in threading a needle, or chopping with an ax, the pectoral muscles are at the same time brought into action to preserve the trunk of the body motionless, and we cease to respire for a time.
[2]. In like manner the voluntary sensual motions, or ideas of recollection, are associated with many other trains or tribes of ideas. As when I voluntarily recollect a gothic window, that I saw some time ago, the whole front of the cathedral occurs to me at the same time.
SECT. [X].
OF ASSOCIATE MOTIONS.
[I]. [1]. Many muscular motions excited by irritations in trains or tribes become associated. [2]. And many ideas. [II]. [1]. Many sensitive muscular motions become associated. [2]. And many sensitive ideas. [III]. [1]. Many voluntary muscular motions become associated. [2]. And then become obedient to sensation or irritation. [3]. And many voluntary ideas become associated.
All the fibrous motions, whether muscular or sensual, which are frequently brought into action together, either in combined tribes, or in successive trains, become so connected by habit, that when one of them is reproduced the others have a tendency to succeed or accompany it.
[I]. [1]. Many of our muscular motions were originally excited in successive trains, as the contractions of the auricles and of the ventricles of the heart; and others in combined tribes, as the various divisions of the muscles which compose the calf of the leg, which were originally irritated into synchronous action by the tædium or irksomeness of a continued posture. By frequent repetitions these motions acquire associations, which continue during our lives, and even after the destruction of the greatest part of the sensorium; for the heart of a viper or frog will continue to pulsate long after it is taken from the body; and when it has entirely ceased to move, if any part of it is goaded with a pin, the whole heart will again renew its pulsations. This kind of connection we shall term irritative association, to distinguish it from sensitive and voluntary associations.
[2]. In like manner many of our ideas are originally excited in tribes; as all the objects of sight, after we become so well acquainted with the laws of vision, as to distinguish figure and distance as well as colour; or in trains, as while we pass along the objects that surround us. The tribes thus received by irritation become associated by habit, and have been termed complex ideas by the writers of metaphysics, as this book, or that orange. The trains have received no particular name, but these are alike associations of ideas, and frequently continue during our lives. So the taste of a pine-apple, though we eat it blindfold, recalls the colour and shape of it; and we can scarcely think on solidity without figure.
[II]. [1]. By the various efforts of our sensations to acquire or avoid their objects, many muscles are daily brought into successive or synchronous actions; these become associated by habit, and are then excited together with great facility, and in many instances gain indissoluble connections. So the play of puppies and kittens is a representation of their mode of fighting or of taking their prey; and the motions of the muscles necessary for those purposes become associated by habit, and gain a great adroitness of action by these early repetitions: so the motions of the abdominal muscles, which were originally brought into concurrent action, with the protrusive motion of the rectum or bladder by sensation, become so conjoined with them by habit, that they not only easily obey these sensations occasioned by the stimulus of the excrement and urine, but are brought into violent and unrestrainable action in the strangury and tenesmus. This kind of connection we shall term sensitive association.
[2]. So many of our ideas, that have been excited together or in succession by our sensations, gain synchronous or successive associations, that are sometimes indissoluble but with life. Hence the idea of an inhuman or dishonourable action perpetually calls up before us the idea of the wretch that was guilty of it. And hence those unconquerable antipathies are formed, which some people have to the sight of peculiar kinds of food, of which in their infancy they have eaten to excess or by constraint.
[III]. [1]. In learning any mechanic art, as music, dancing, or the use of the sword, we teach many of our muscles to act together or in succession by repeated voluntary efforts; which by habit become formed into tribes or trains of association, and serve all our purposes with great facility, and in some instances acquire an indissoluble union. These motions are gradually formed into a habit of acting together by a multitude of repetitions, whilst they are yet separately causable by the will, as is evident from the long time that is taken up by children in learning to walk and to speak; and is experienced by every one, when he first attempts to skate upon the ice or to swim: these we shall term voluntary associations.
[2]. All these muscular movements, when they are thus associated into tribes or trains, become afterwards not only obedient to volition, but to the sensations and irritations; and the same movement composes a part of many different tribes or trains of motion. Thus a single muscle, when it acts in consort with its neighbours on one side, assists to move the limb in one direction; and in another, when, it acts with those in its neighbourhood on the other side; and in other directions, when it acts separately or jointly with those that lie immediately under or above it; and all these with equal facility after their associations have been well established.
The facility, with which each muscle changes from one associated tribe to another, and that either backwards or forwards, is well observable in the muscles of the arm in moving the windlass of an air-pump; and the slowness of those muscular movements, that have not been associated by habit, may be experienced by any one, who shall attempt to saw the air quick perpendicularly with one hand, and horizontally with the other at the same time.
[3]. In learning every kind of science we voluntarily associate many tribes and trains of ideas, which afterwards are ready for all the purposes either of volition, sensation, or irritation; and in some instances acquire indissoluble habits of acting together, so as to affect our reasoning, and influence our actions. Hence the necessity of a good education.
These associate ideas are gradually formed into habits of acting together by frequent repetition, while they are yet separately obedient to the will; as is evident from the difficulty we experience in gaining so exact an idea of the front of St. Paul's church, as to be able to delineate it with accuracy, or in recollecting a poem of a few pages.
And these ideas, thus associated into tribes, not only make up the parts of the trains of volition, sensation, and irritation; but the same idea composes a part of many different tribes and trains of ideas. So the simple idea of whiteness composes a part of the complex idea of snow, milk, ivory; and the complex idea of the letter A composes a part of the several associated trains of ideas that make up the variety of words, in which this letter enters.
The numerous trains of these associated ideas are divided by Mr. Hume into three classes, which he has termed contiguity, causation, and resemblance. Nor should we wonder to find them thus connected together, since it is the business of our lives to dispose them into those three classes; and we become valuable to ourselves and our friends, as we succeed in it. Those who have combined an extensive class of ideas by the contiguity of time or place, are men learned in the history of mankind, and of the sciences they have cultivated. Those who have connected a great class of ideas of resemblances, possess the source of the ornaments of poetry and oratory, and of all rational analogy. While those who have connected great classes of ideas of causation, are furnished with the powers of producing effects. These are the men of active wisdom, who lead armies to victory, and kingdoms to prosperity; or discover and improve the sciences, which meliorate and adorn the condition of humanity.
SECT. [XI].
ADDITIONAL OBSERVATIONS ON THE SENSORIAL POWERS.
[I]. Stimulation is of various kinds adapted to the organs of sense, to the muscles, to hollow membranes, and glands. Some objects irritate our senses by repeated impulses. [II]. [1]. Sensation and volition frequently affect the whole sensorium. [2]. Emotions, passions, appetites. [3]. Origin of desire and aversion. Criterion of voluntary actions, difference of brutes and men. [4]. Sensibility and voluntarity. [III]. Associations formed before nativity, irritative motions mistaken for officiated ones.
Irritation.
[I]. The various organs of sense require various kinds of stimulation to excite them into action; the particles of light penetrate the cornea and humours of the eye, and then irritate the naked retina; rapid particles, dissolved or diffused in water or saliva, and odorous ones, mixed or combined with the air, irritate the extremities of the nerves of taste and smell; which either penetrate, or are expanded on the membranes of the tongue and nostrils; the auditory nerves are stimulated by the vibrations of the atmosphere communicated by means of the tympanum and of the fluid, whether of air or of water, behind it; and the nerves of touch by the hardness of surrounding bodies, though the cuticle is interposed between these bodies and the medulla of the nerve.
As the nerves of the senses have each their appropriated objects, which stimulate them into activity; so the muscular fibres, which are the terminations of other sets of nerves, have their peculiar objects, which excite them into action; the longitudinal muscles are stimulated into contraction by extension, whence the stretching or pandiculation after a long continued posture, during which they have been kept in a state of extension; and the hollow muscles are excited into action by distention, as those of the rectum and bladder are induced to protrude their contents from their sense of the distention rather than of the acrimony of those contents.
There are other objects adapted to stimulate the nerves, which terminate in variety of membranes, and those especially which form the terminations of canals; thus the preparations of mercury particularly affect the salivary glands, ipecacuanha the stomach, aloe the sphincter of the anus, cantharides that of the bladder, and lastly every gland of the body appears to be indued with a kind of taste, by which it selects or forms each its peculiar fluid from the blood; and by which it is irritated into activity.
Many of these external properties of bodies, which stimulate our organs of sense, do not seem to effect this by a single impulse, but by repeated impulses; as the nerve of the ear is probably not excitable by a single vibration of air, nor the optic nerve by a single particle of light; which circumstance produces some analogy between those two senses, at the same time the solidity of bodies is perceived by a single application of a solid body to the nerves of touch, and that even through the cuticle; and we are probably possessed of a peculiar sense to distinguish the nice degrees of heat and cold.
The senses of touch and of hearing acquaint us with the mechanical impact and vibration of bodies, those of smell and taste seem to acquaint us with some of their chemical properties, while the sense of vision and of heat acquaint us with the existence of their peculiar fluids.
Sensation and Volition.
[II]. Many motions are produced by pleasure or pain, and that even in contradiction to the power of volition, as in laughing, or in the strangury; but as no name has been given to pleasure or pain, at the time it is exerted so as to cause fibrous motions, we have used the term sensation for this purpose; and mean it to bear the same analogy to pleasure and pain, that the word volition does to desire and aversion.
[1]. It was mentioned in the fifth Section, that, what we have termed sensation is a motion of the central parts, or of the whole sensorium, beginning at some of the extremities of it. This appears first, because our pains and pleasures are always caused by our ideas or muscular motions, which are the motions of the extremities of the sensorium. And, secondly, because the sensation of pleasure or pain frequently continues some time after the ideas or muscular motions which excited it have ceased: for we often feel a glow of pleasure from an agreeable reverie, for many minutes after the ideas, that were the subject of it, have escaped our memory; and frequently experience a dejection of spirits without being able to assign the cause of it but by much recollection.
When the sensorial faculty of desire or aversion is exerted so as to cause fibrous motions, it is termed volition; which is said in Sect. [V]. to be a motion of the central parts, or of the whole sensorium, terminating in some of the extremities of it. This appears, first, because our desires and aversions always terminate in recollecting and comparing our ideas, or in exerting our muscles; which are the motions of the extremities of the sensorium. And, secondly, because desire or aversion begins, and frequently continues for a time in the central parts of the sensorium, before it is peculiarly exerted at the extremities of it; for we sometimes feel desire or aversion without immediately knowing their objects, and in consequence without immediately exerting any of our muscular or sensual motions to attain them: as in the beginning of the passion of love, and perhaps of hunger, or in the ennui of indolent people.
Though sensation and volition begin or terminate at the extremities or central parts of the sensorium, yet the whole of it is frequently influenced by the exertion of these faculties, as appears from their effects on the external habit: for the whole skin is reddened by shame, and an universal trembling is produced by fear: and every muscle of the body is agitated in angry people by the desire of revenge.
There is another very curious circumstance, which shews that sensation and volition are movements of the sensorium in contrary directions; that is, that volition begins at the central parts of it, and proceeds to the extremities; and that sensation begins at the extremities, and proceeds to the central parts: I mean that these two sensorial faculties cannot be strongly exerted at the same time; for when we exert our volition strongly, we do not attend to pleasure or pain; and conversely, when we are strongly affected with the sensation of pleasure or pain, we use no volition. As will be further explained in Section [XVIII]. on sleep, and Section [XXXIV]. on volition.
[2]. All our emotions and passions seem to arise out of the exertions of these two faculties of the animal sensorium. Pride, hope, joy, are the names of particular pleasures: shame, despair, sorrow, are the names of peculiar pains: and love, ambition, avarice, of particular desires: hatred, disgust, fear, anxiety, of particular aversions. Whilst the passion of anger includes the pain from a recent injury, and the aversion to the adversary that occasioned it. And compassion is the pain we experience at the sight of misery, and the desire of relieving it.
There is another tribe of desires, which are commonly termed appetites, and are the immediate consequences of the absence of some irritative motions. Those, which arise from defect of internal irritations, have proper names conferred upon them, as hunger, thirst, lust, and the desire of air, when our respiration is impaired by noxious vapours; and of warmth, when we are exposed to too great a degree of cold. But those, whose stimuli are external to the body, are named from the objects, which are by nature constituted to excite them; these desires originate from our past experience of the pleasurable sensations they occasion, as the smell of an hyacinth, or the taste of a pine-apple.
Whence it appears, that our pleasures and pains are at least as various and as numerous as our irritations; and that our desires and aversions must be as numerous as our pleasures and pains. And that as sensation is here used as a general term for our numerous pleasures and pains, when they produce the contractions of our fibres; so volition is the general name for our desires and aversions, when they produce fibrous contractions. Thus when a motion of the central parts, or of the whole sensorium, terminates in the exertion of our muscles, it is generally called voluntary action; when it terminates in the exertion of our ideas, it is termed recollection, reasoning, determining.
[3]. As the sensations of pleasure and pain are originally introduced by the irritations of external objects: so our desires and aversions are originally introduced by those sensations; for when the objects of our pleasures or pains are at a distance, and we cannot instantaneously possess the one, or avoid the other, then desire or aversion is produced, and a voluntary exertion of our ideas or muscles succeeds.
The pain of hunger excites you to look out for food, the tree, that shades you, presents its odoriferous fruit before your eyes, you approach, pluck, and eat.
The various movements of walking to the tree, gathering the fruit, and masticating it, are associated motions introduced by their connection with sensation; but if from the uncommon height of the tree, the fruit be inaccessible, and you are prevented from quickly possessing the intended pleasure, desire is produced. The consequence of this desire is, first, a deliberation about the means to gain the object of pleasure in process of time, as it cannot be procured immediately; and, secondly, the muscular action necessary for this purpose.
You voluntarily call up all your ideas of causation, that are related to the effect you desire, and voluntarily examine and compare them, and at length determine whether to ascend the tree, or to gather stones from the neighbouring brook, is easier to practise, or more promising of success; and, finally, you gather the stones, and repeatedly fling them to dislodge the fruit.
Hence then we gain a criterion to distinguish voluntary acts or thoughts from those caused by sensation. As the former are always employed about the means to acquire pleasurable objects, or the means to avoid painful ones; while the latter are employed in the possession of those, which are already in our power.
Hence the activity of this power of volition produces the great difference between the human and the brute creation. The ideas and the actions of brutes are almost perpetually employed about their present pleasures, or their present pains; and, except in the few instances which are mentioned in Section [XVI], on instinct, they seldom busy themselves about the means of procuring future bliss, or of avoiding future misery; so that the acquiring of languages, the making of tools, and labouring for money, which are all only the means to procure pleasures; and the praying to the Deity, as another means to procure happiness, are characteristic of human nature.
[4]. As there are many diseases produced by the quantity of the sensation of pain or pleasure being too great or too little; so are there diseases produced by the susceptibility of the constitution to motions causable by these sensations being too dull or too vivid. This susceptibility of the system to sensitive motions is termed sensibility, to distinguish it from sensation, which is the actual existence or exertion of pain or pleasure.
Other classes of diseases are owing to the excessive promptitude, or sluggishness of the constitution to voluntary exertions, as well as to the quantity of desire or of aversion. This susceptibility of the system to voluntary motions is termed voluntarity, to distinguish it from volition, which is the exertion of desire or aversion; these diseases will be treated of at length in the progress of the work.
Association.
[III]. [1]. It is not easy to assign a cause, why those animal movements, that have once occurred in succession, or in combination, should afterwards have a tendency to succeed or accompany each other. It is a property of animation, and distinguishes this order of being from the other productions of nature.
When a child first wrote the word man, it was distinguished in his mind into three letters, and those letters into many parts of letters; but by repeated use the word man becomes to his hand in writing it, as to his organs of speech in pronouncing it, but one movement without any deliberation, or sensation, or irritation, interposed between the parts of it. And as many separate motions of our muscles thus become united, and form, as it were, one motion; so each separate motion before such union may be conceived to consist of many parts or spaces moved through; and perhaps even the individual fibres of our muscles have thus gradually been brought to act in concert, which habits began to be acquired as early as the very formation of the moving organs, long before the nativity of the animal; as explained in the Section [XVI. 2]. on instinct.
[2]. There are many motions of the body, belonging to the irritative class, which might by a hasty observer be mistaken for associated ones; as the peristaltic motion of the stomach and intestines, and the contractions of the heart and arteries, might be supposed to be associated with the irritative motions of their nerves of sense, rather than to be excited by the irritation of their muscular fibres by the distention, acrimony, or momentum of the blood. So the distention or elongation of muscles by objects external to them irritates them into contraction, though the cuticle or other parts may intervene between the stimulating body and the contracting muscle. Thus a horse voids his excrement when its weight or bulk irritates the rectum or sphincter ani. These muscles act from the irritation of distention, when he excludes his excrement, but the muscles of the abdomen and diaphragm are brought into motion by association with those of the sphincter and rectum.
SECT. [XII].
OF STIMULUS, SENSORIAL EXERTION, AND FIBROUS CONTRACTION.
[I]. Of fibrous contraction. [1]. Two particles of a fibre cannot approach without the intervention of something, as in magnetism, electricity, elasticity. Spirit of life is not electric ether. Galvani's experiments. [2]. Contraction of a fibre. [3]. Relaxation succeeds. [4]. Successive contractions, with intervals. Quick pulse from debility, from paucity of blood. Weak contractions performed in less time, and with shorter intervals. [5]. Last situation of the fibres continues after contraction. [6]. Contraction greater than usual induces pleasure or pain. [7]. Mobility of the fibres uniform. Quantity of sensorial power fluctuates. Constitutes excitability. [II]. Of sensorial exertion. [1]. Animal motion includes stimulus, sensorial power, and contractile fibres. The sensorial faculties act separately or conjointly. Stimulus of four kinds. Strength and weakness defined. Sensorial power perpetually exhausted and renewed. Weakness from defect of stimulus. From defect of sensorial power, the direct and indirect debility of Dr. Brown. Why we become warm in Buxton bath after a time, and see well after a time in a darkish room. Fibres may act violently, or with their whole force, and yet feebly. Great exertion in inflammation explained. Great muscular force of some insane people. [2]. Occasional accumulation of sensorial power in muscles subject to constant stimulus. In animals sleeping in winter. In eggs, seeds, schirrous tumours, tendons, bones. [3]. Great exertion introduces pleasure or pain. Inflammation. Libration of the system between torpor and activity. Fever-fits. [4]. Desire and aversion introduced. Excess of volition cures fevers. [III]. Of repeated stimulus. [1]. A stimulus repeated too frequently looses effect. As opium, wine, grief. Hence old age. Opium and aloes in small doses. [2]. A stimulus not repeated too frequently does not lose effect. Perpetual movement of the vital organs. [3]. A stimulus repeated at uniform times produces greater effect. Irritation combined with association. [4]. A stimulus repeated frequently and uniformly may be withdrawn, and the action of the organ will continue. Hence the bark cures agues, and strengthens weak constitutions. [5]. Defect of stimulus repeated at certain intervals causes fever-fits. [6]. Stimulus long applied ceases to act a second time. [7]. If a stimulus excites sensation in an organ not usually excited into sensation, inflammation is produced. [IV]. Of stimulus greater than natural. [1]. A stimulus greater than natural diminishes the quantity of sensorial power in general. [2]. In particular organs. [3]. Induces the organ into spasmodic actions. [4]. Induces the antagonist fibres into action. [5]. Induces the organ into convulsive or fixed spasms. [6]. Produces paralysis of the organ. [V]. Of stimulus less than natural. [1]. Stimulus less than natural occasions accumulation of sensorial power in general. [2]. In particular organs, flushing of the face in a frosty morning. In fibres subject to perpetual stimulus only. Quantity of sensorial power inversely as the stimulus. [3]. Induces pain. As of cold, hunger, head-ach. [4]. Induces more feeble and frequent contraction. As in low fevers. Which are frequently owing to deficiency of sensorial power rather than to deficiency of stimulus. [5]. Inverts successive trains of motion. Inverts ideas. [6]. Induces paralysis and death. [VI]. Cure of increased exertion. [1]. Natural cure of exhaustion of sensorial power. [2]. Decrease the irritations. Venesection. Cold. Abstinence. [3]. Prevent the previous cold fit. Opium. Bark. Warmth. Anger. Surprise. [4]. Excite some other part of the system. Opium and warm bath relieve pains both from defect and from excess of stimulus. [5]. First increase the stimulus above, and then decrease it beneath the natural quantity. [VII]. Cure of decreased exertion. [1]. Natural cure by accumulation of sensorial power. Ague-fits. Syncope. [2]. Increase the stimulation, by wine, opium, given so as not to intoxicate. Cheerful ideas. [3]. Change the kinds of stimulus. [4]. Stimulate the associated organs. Blisters of use in heart-burn, and cold extremities. [5]. Decrease the stimulation for a time, cold bath. [6]. Decrease the stimulation below natural, and then increase it above natural. Bark after emetics. Opium after venesection. Practice of Sydenham in chlorosis. [7]. Prevent unnecessary expenditure of sensorial power. Decumbent posture, silence, darkness. Pulse quickened by rising out of bed. [8]. To the greatest degree of quiescence apply the least stimulus. Otherwise paralysis or inflammation of the organ ensues. Gin, wine, blisters, destroy by too great stimulation in fevers with debility. Intoxication in the slightest degree succeeded by debility. Golden rule for determining the best degree of stimulus in low fevers. Another golden rule for determining the quantity of spirit which those, who are debilitated by drinking it, may safely omit.
[I]. Of fibrous contraction.
[1]. If two particles of iron lie near each other without motion, and afterwards approach each other; it is reasonable to conclude that something besides the iron particles is the cause of their approximation; this invisible something is termed magnetism. In the same manner, if the particles, which compose an animal muscle, do not touch each other in the relaxed state of the muscle, and are brought into contact during the contraction of the muscle, it is reasonable to conclude, that some other agent is the cause of this new approximation. For nothing can act, where it does not exist; for to act includes to exist; and therefore the particles of the muscular fibre (which in its state of relaxation are supposed not to touch) cannot affect each other without the influence of some intermediate agent; this agent is here termed the spirit of animation, or sensorial power, but may with equal propriety be termed the power, which causes contraction; or may be called by any other name, which the reader may choose to affix to it.
The contraction of a muscular fibre may be compared to the following electric experiment, which is here mentioned not as a philosophical analogy, but as an illustration or simile to facilitate the conception of a difficult subject. Let twenty very small Leyden phials properly coated be hung in a row by fine silk threads at a small distance from each other; let the internal charge of one phial be positive, and of the other negative alternately, if a communication be made from the internal surface of the first to the external surface of the last in the row, they will all of them instantly approach each other, and thus shorten a line that might connect them like a muscular fibre. See Botanic Garden, p. 1. Canto I. 1. 202, note on Gymnotus.
The attractions of electricity or of magnetism do not apply philosophically to the illustration of the contraction of animal fibres, since the force of those attractions increases in some proportion inversely as the distance, but in muscular motion there appears no difference in velocity or strength during the beginning or end of the contraction, but what may be clearly ascribed to the varying mechanic advantage in the approximation of one bone to another. Nor can muscular motion be assimilated with greater plausibility to the attraction of cohesion or elasticity; for in bending a steel spring, as a small sword, a less force is required to bend it the first inch than the second; and the second than the third; the particles of steel on the convex side of the bent spring endeavouring to restore themselves more powerfully the further they are drawn from each other. See Botanic Garden, P. I. addit. Note XVIII.
I am aware that this may be explained another way, by supposing the elasticity of the spring to depend more on the compression of the particles on the concave side than on the extension of them on the convex side; and by supposing the elasticity of the elastic gum to depend more on the resistance to the lateral compression of its particles than to the longitudinal extension of them. Nevertheless in muscular contraction, as above observed, there appears no difference in the velocity or force of it at its commencement or at its termination; from whence we must conclude that animal contraction is governed by laws of its own, and not by those of mechanics, chemistry, magnetism, or electricity.
On these accounts I do not think the experiments conclusive, which were lately published by Galvani, Volta, and others, to shew a similitude between the spirit of animation, which contracts the muscular fibres, and the electric fluid. Since the electric fluid may act only as a more potent stimulus exciting the muscular fibres into action, and not by supplying them with a new quantity of the spirit of life. Thus in a recent hemiplegia I have frequently observed, when the patient yawned and stretched himself, that the paralytic limbs moved also, though they were totally disobedient to the will. And when he was electrified by passing shocks from the affected hand to the affected foot, a motion of the paralytic limbs was also produced. Now as in the act of yawning the muscles of the paralytic limbs were excited into action by the stimulus of the irksomeness of a continued posture, and not by any additional quantity of the spirit of life; so we may conclude, that the passage of the electric fluid, which produced a similar effect, acted only as a stimulus, and not by supplying any addition of sensorial power.
If nevertheless this theory should ever become established, a stimulus must be called an eductor of vital ether; which stimulus may consist of sensation or volition, as in the electric eel, as well as in the appulses of external bodies; and by drawing off the charges of vital fluid may occasion the contraction or motions of the muscular fibres, and organs of sense.
[2]. The immediate effect of the action of the spirit of animation or sensorial power on the fibrous parts of the body, whether it acts in the mode of irritation, sensation, volition, or association, is a contraction of the animal fibre, according to the second law of animal causation. Sect. [IV]. Thus the stimulus of the blood induces the contraction of the heart; the agreeable taste of a strawberry produces the contraction of the muscles of deglutition; the effort of the will contracts the muscles, which move the limbs in walking; and by association other muscles of the trunk are brought into contraction to preserve the balance of the body. The fibrous extremities of the organs of sense have been shewn, by the ocular spectra in Sect. [III]. to suffer similar contraction by each of the above modes of excitation; and by their configurations to constitute our ideas.
[3]. After animal fibres have for some time been excited into contraction, a relaxation succeeds, even though the exciting cause continues to act. In respect to the irritative motions this is exemplified in the peristaltic contractions of the bowels; which cease and are renewed alternately, though the stimulus of the aliment continues to be uniformly applied; in the sensitive motions, as in strangury, tenesmus, and parturition, the alternate contractions and relaxations of the muscles exist, though the stimulus is perpetual. In our voluntary exertions it is experienced, as no one can hang long by the hands, however vehemently he wills so to do; and in the associate motions the constant change of our attitudes evinces the necessity of relaxation to those muscles, which have been long in action.
This relaxation of a muscle after its contraction, even though the stimulus continues to be applied, appears to arise from the expenditure or diminution of the spirit of animation previously resident in the muscle, according to the second law of animal causation in Sect. [IV]. In those constitutions, which are termed weak, the spirit of animation becomes sooner exhausted, and tremulous motions are produced, as in the hands of infirm people, when they lift a cup to their mouths. This quicker exhaustion of the spirit of animation is probably owing to a less quantity of it residing in the acting fibres, which therefore more frequently require a supply from the nerves, which belong to them.
[4]. If the sensorial power continues to act, whether it acts in the mode of irritation, sensation, volition, or association, a new contraction of the animal fibre succeeds after a certain interval; which interval is of shorter continuance in weak people than in strong ones. This is exemplified in the shaking of the hands of weak people, when they attempt to write. In a manuscript epistle of one of my correspondents, which is written in a small hand, I observed from four to six zigzags in the perpendicular stroke of every letter, which shews that both the contractions of the fingers, and intervals between them, must have been performed in very short periods of time.
The times of contraction of the muscles of enfeebled people being less, and the intervals between those contractions being less also, accounts for the quick pulse in fevers with debility, and in dying animals. The shortness of the intervals between one contraction and another in weak constitutions, is probably owing to the general deficiency of the quantity of the spirit of animation, and that therefore there is a less quantity of it to be received at each interval of the activity of the fibres. Hence in repeated motions, as of the fingers in performing on the harpsichord, it would at first sight appear, that swiftness and strength were incompatible; nevertheless the single contraction of a muscle is performed with greater velocity as well as with greater force by vigorous constitutions, as in throwing a javelin.
There is however another circumstance, which may often contribute to cause the quickness of the pulse in nervous fevers, as in animals bleeding to death in the slaughter-house; which is the deficient quantity of blood; whence the heart is but half distended, and in consequence sooner contracts. See Sect. [XXXII. 2. 1].
For we must not confound frequency of repetition with quickness of motion, or the number of pulsations with the velocity, with which the fibres, which constitute the coats of the arteries, contract themselves. For where the frequency of the pulsations is but seventy-five in a minute, as in health; the contracting fibres, which constitute the sides of the arteries, may move through a greater space in a given time, than where the frequency of pulsation is one hundred and fifty in a minute, as in some fevers with great debility. For if in those fevers the arteries do not expand themselves in their diastole to more than half the usual diameter of their diastole in health, the fibres which constitute their coats, will move through a less space in a minute than in health, though they make two pulsations for one.
Suppose the diameter of the artery during its systole to be one line, and that the diameter of the same artery during its diastole is in health is four lines, and in a fever with, great debility only two lines. It follows, that the arterial fibres contract in health from a circle of twelve lines in circumference to a circle of three lines in circumference, that is they move through a space of nine lines in length. While the arterial fibres in the fever with debility would twice contract from a circle of six lines to a circle of three lines; that is while they move through a space equal to six lines. Hence though the frequency of pulsation in fever be greater as two to one, yet the velocity of contraction in health is greater as nine to six, or as three to two.
On the contrary in inflammatory diseases with strength, as in the pleurisy, the velocity of the contracting sides of the arteries is much greater than in health, for if we suppose the number of pulsations in a pleurisy to be half as much more than in health, that is as one hundred and twenty to eighty, (which is about what generally happens in inflammatory diseases) and if the diameter of the artery in diastole be one third greater than in health, which I believe is near the truth, the result will be, that the velocity of the contractile sides of the arteries will be in a pleurisy as two and a half to one, compared to the velocity of their contraction in a state of health, for if the circumference of the systole of the artery be three lines, and the diastole in health be twelve lines in circumference, and in a pleurisy eighteen lines; and secondly, if the artery pulsates thrice in the diseased state for twice in the healthy one, it follows, that the velocity of contraction in the diseased state to that in the healthy state will be forty-five to eighteen, or as two and a half to one.
From hence it would appear, that if we had a criterion to determine the velocity of the arterial contractions, it would at the same time give us their strength, and thus be of more service in distinguishing diseases, than the knowledge of their frequency. As such a criterion cannot be had, the frequency of pulsation, the age of the patient being allowed for, will in some measure assist us to distinguish arterial strength from arterial debility, since in inflammatory diseases with strength the frequency seldom exceeds one hundred and eighteen or one hundred and twenty pulsations in a minute; unless under peculiar circumstance, as the great additional stimuli of wine or of external heat.
[5]. After a muscle or organ of sense has been excited into contraction, and the sensorial power ceases to act, the last situation or configuration of it continues; unless it be disturbed by the action of some antagonist fibres, or other extraneous power. Thus in weak or languid people, wherever they throw their limbs on their bed or sofa, there they lie, till another exertion changes their attitude; hence one kind of ocular spectra seems to be produced after looking at bright objects; thus when a fire-stick is whirled round in the night, there appears in the eye a complete circle of fire; the action or configuration of one part of the retina not ceasing before the return of the whirling fire.
Thus if any one looks at the setting sun for a short time, and then covers his closed eyes with his hand, he will for many seconds of time perceive the image of the sun on his retina. A similar image of all other bodies would remain some time in the eye, but is effaced by the eternal change of the motions of the extremity of this nerve in our attention to other objects. See Sect. [XVIII. 5]. on Sleep. Hence the dark spots, and other ocular spectra, are more frequently attended to, and remain longer in the eyes of weak people, as after violent exercise, intoxication, or want of sleep.
[6]. A contraction of the fibres somewhat greater than usual introduces pleasurable sensation into the system, according to the fourth law of animal causation. Hence the pleasure in the beginning of drunkenness is owing to the increased action of the system from the stimulus of vinous spirit or of opium. If the contractions be still greater in energy or duration, painful sensations are introduced, as in consequence of great heat, or caustic applications, or fatigue.
If any part of the system, which is used to perpetual activity, as the stomach, or heart, or the fine vessels of the skin, acts for a time with less energy, another kind of painful sensation ensues, which is called hunger, or faintness, or cold. This occurs in a less degree in the locomotive muscles, and is called wearysomeness. In the two former kinds of sensation there is an expenditure of sensorial power, in these latter there is an accumulation of it.
[7]. We have used the words exertion of sensorial power as a general term to express either irritation, sensation, volition, or association; that is, to express the activity or motion of the spirit of animation, at the time it produces the contractions of the fibrous parts of the system. It may be supposed that there may exist a greater or less mobility of the fibrous parts of our system, or a propensity to be stimulated into contraction by the greater or less quantity or energy of the spirit of animation; and that hence if the exertion of the sensorial power be in its natural state, and the mobility of the fibres be increased, the same quantity of fibrous contraction will be caused, as if the mobility of the fibres continues in its natural state, and the sensorial exertion be increased.
Thus it may be conceived, that in diseases accompanied with strength, as in inflammatory fevers with arterial strength, that the cause of greater fibrous contraction, may exist in the increased mobility of the fibres, whose contractions are thence both more forceable and more frequent. And that in diseases attended with debility, as in nervous fevers, where the fibrous contractions are weaker, and more frequent, it may be conceived that the cause consists in a decrease of mobility of the fibres; and that those weak constitutions, which are attended with cold extremities and large pupils of the eyes, may possess less mobility of the contractile fibres, as well as less quantity of exertion of the spirit of animation.
In answer to this mode of reasoning it may be sufficient to observe, that the contractile fibres consist of inert matter, and when the sensorial power is withdrawn, as in death, they possess no power of motion at all, but remain in their last state, whether of contraction or relaxation, and must thence derive the whole of this property from the spirit of animation. At the same time it is not improbable, that the moving fibres of strong people may possess a capability of receiving or containing a greater quantity of the spirit of animation than those of weak people.
In every contraction of a fibre there is an expenditure of the sensorial power, or spirit of animation; and where the exertion of this sensorial power has been for some time increased, and the muscles or organs of sense have in consequence acted with greater energy, its propensity to activity is proportionally lessened; which is to be ascribed to the exhaustion or diminution of its quantity. On the contrary, where there has been less fibrous contraction than usual for a certain time, the sensorial power or spirit of animation becomes accumulated in the inactive part of the system. Hence vigour succeeds rest, and hence the propensity to action of all our organs of sense and muscles is in a state of perpetual fluctuation. The irritability for instance of the retina, that is, its quantity of sensorial power, varies every moment according to the brightness or obscurity of the object last beheld compared with the present one. The same occurs to our sense of heat, and to every part of our system, which is capable of being excited into action.
When this variation of the exertion of the sensorial power becomes much and permanently above or beneath the natural quantity, it becomes a disease. If the irritative motions be too great or too little, it shews that the stimulus of external things affect this sensorial power too violently or too inertly. If the sensitive motions be too great or too little, the cause arises from the deficient or exuberant quantity of sensation produced in consequence of the motions of the muscular fibres or organs of sense; if the voluntary actions are diseased the cause is to be looked for in the quantity of volition produced in consequence of the desire or aversion occasioned by the painful or pleasurable sensations above mentioned. And the diseases of associations probably depend on the greater or less quantity of the other three sensorial powers by which they were formed.
From whence it appears that the propensity to action, whether it be called irritability, sensibility, voluntarity, or associability, is only another mode of expression for the quantity of sensorial power residing in the organ to be excited. And that on the contrary the words inirritability and insensibility, together with inaptitude to voluntary and associate motions, are synonymous with deficiency of the quantity of sensorial power, or of the spirit of animation, residing in the organs to be excited.
[II]. Of sensorial Exertion.
[1]. There are three circumstances to be attended to in the production of animal motions, 1st. The stimulus. 2d. The sensorial power. 3d. The contractile fibre. 1st. A stimulus, external to the organ, originally induces into action the sensorial faculty termed irritation; this produces the contraction of the fibres, which, if it be perceived at all, introduces pleasure or pain; which in their active state are termed sensation; which is another sensorial faculty, and occasionally produces contraction of the fibres; this pleasure or pain is therefore to be considered as another stimulus, which may either act alone or in conjunction with the former faculty of the sensorium termed irritation.
This new stimulus of pleasure or pain either induces into action the sensorial faculty termed sensation, which then produces the contraction of the fibres; or it introduces desire or aversion, which excite into action another sensorial faculty, termed volition, and may therefore be considered as another stimulus, which either alone or in conjunction with one or both of the two former faculties of the sensorium produces the contraction of animal fibres. There is another sensorial power, that of association, which perpetually, in conjunction with one or more of the above, and frequently singly, produces the contraction of animal fibres, and which is itself excited into action by the previous motions of contracting fibres.
Now as the sensorial power, termed irritation, residing in any particular fibres, is excited into exertion by the stimulus of external bodies acting on those fibres; the sensorial power, termed sensation, residing in any particular fibres is excited into exertion by the stimulus of pleasure or pain acting on those fibres; the sensorial power, termed volition, residing in any particular fibres is excited into exertion by the stimulus of desire or aversion; and the sensorial power, termed association, residing in any particular fibres, is excited into action by the stimulus of other fibrous motions, which had frequently preceded them. The word stimulus may therefore be used without impropriety of language, for any of these four causes, which excite the four sensorial powers into exertion. For though the immediate cause of volition has generally been termed a motive; and that of irritation only has generally obtained the name of stimulus; yet as the immediate cause, which excites the sensorial powers of sensation, or of association into exertion, have obtained no general name, we shall use the word stimulus for them all.
Hence the quantity of motion produced in any particular part of the animal system will be as the quantity of stimulus and the quantity of sensorial power, or spirit of animation, residing in the contracting fibres. Where both these quantities are great, strength is produced, when that word is applied to the motions of animal bodies. Where either of them is deficient, weakness is produced, as applied to the motions of animal bodies.
Now as the sensorial power, or spirit of animation, is perpetually exhausted by the expenditure of it in fibrous contractions, and is perpetually renewed by the secretion or production of it in the brain and spinal marrow, the quantity of animal strength must be in a perpetual state of fluctuation on this account; and if to this be added the unceasing variation of all the four kinds of stimulus above described, which produce the exertions of the sensorial powers, the ceaseless vicissitude of animal strength becomes easily comprehended.
If the quantity of sensorial power remains the same, and the quantity of stimulus be lessened, a weakness of the fibrous contractions ensues, which may be denominated debility from defect of stimulus. If the quantity of stimulus remains the same, and the quantity of sensorial power be lessened, another kind of weakness ensues, which may be termed debility from defect of sensorial power; the former of these is called by Dr. Brown, in his Elements of Medicine, direct debility, and the latter indirect debility. The coincidence of some parts of this work with correspondent deductions in the Brunonian Elementa Medicina, a work (with some exceptions) of great genius, must be considered as confirmations of the truth of the theory, as they were probably arrived at by different trains of reasoning.
Thus in those who have been exposed to cold and hunger there is a deficiency of stimulus. While in nervous fever there is a deficiency of sensorial power. And in habitual drunkards, in a morning before their usual potation, there is a deficiency both of stimulus and of sensorial power. While, on the other hand, in the beginning of intoxication there is an excess of stimulus; in the hot-ach, after the hands have been immersed in snow, there is a redundancy of sensorial power; and in inflammatory diseases with arterial strength, there is an excess of both.
Hence if the sensorial power be lessened, while the quantity of stimulus remains the same as in nervous fever, the frequency of repetition of the arterial contractions may continue, but their force in respect to removing obstacles, as in promoting the circulation of the blood, or the velocity of each contraction, will be diminished, that is, the animal strength will be lessened. And secondly, if the quantity of sensorial power be lessened, and the stimulus be increased to a certain degree, as in giving opium in nervous fevers, the arterial contractions may be performed more frequently than natural, yet with less strength.
And thirdly, if the sensorial power continues the same in respect to quantity, and the stimulus be somewhat diminished, as in going into a darkish room, or into a coldish bath, suppose of about eighty degrees of heat, as Buxton-bath, a temporary weakness of the affected fibres is induced, till an accumulation of sensorial power gradually succeeds, and counterbalances the deficiency of stimulus, and then the bath ceases to feel cold, and the room ceases to appear dark; because the fibres of the subcutaneous vessels, or of the organs of sense, act with their usual energy.
A set of muscular fibres may thus be stimulated into violent exertion, that is, they may act frequently, and with their whole sensorial power, but may nevertheless not act strongly; because the quantity of their sensorial power was originally small, or was previously exhausted. Hence a stimulus may be great, and the irritation in consequence act with its full force, as in the hot paroxysms of nervous fever; but if the sensorial power, termed irritation, be small in quantity, the force of the fibrous contractions, and the times of their continuance in their contracted state, will be proportionally small.
In the same manner in the hot paroxysm of putrid fevers, which are shewn in Sect. [XXXIII]. to be inflammatory fevers with arterial debility, the sensorial power termed sensation is exerted with great activity, yet the fibrous contractions, which produce the circulation of the blood, are performed without strength, because the quantity of sensorial power then residing in that part of the system is small.
Thus in irritative fever with arterial strength, that is, with excess of spirit of animation, the quantity of exertion during the hot part of the paroxysm is to be estimated from the quantity of stimulus, and the quantity of sensorial power. While in sensitive (or inflammatory) fever with arterial strength, that is, with excess of spirit of animation, the violent and forcible actions of the vascular system during the hot part of the paroxysm are induced by the exertions of two sensorial powers, which are excited by two kinds of stimulus. These are the sensorial power of irritation excited by the stimulus of bodies external to the moving fibres, and the sensorial power of sensation excited by the pain in consequence of the increased contractions of those moving fibres.
And in insane people in some cases the force of their muscular actions will be in proportion to the quantity of sensorial power, which they possess, and the quantity of the stimulus of desire or aversion, which excites their volition into action. At the same time in other cases the stimulus of pain or pleasure, and the stimulus of external bodies, may excite into action the sensorial powers of sensation and irritation, and thus add greater force to their muscular actions.
[2]. The application of the stimulus, whether that stimulus be some quality of external bodies, or pleasure or pain, or desire or aversion, or a link of association, excites the correspondent sensorial power into action, and this causes the contraction of the fibre. On the contraction of the fibre a part of the spirit of animation becomes expended, and the fibre ceases to contract, though the stimulus continues to be applied; till in a certain time the fibre having received a supply of sensorial power is ready to contract again, if the stimulus continues to be applied. If the stimulus on the contrary be withdrawn, the same quantity of quiescent sensorial power becomes resident in the fibre as before its contraction; as appears from the readiness for action of the large locomotive muscles of the body in a short time after common exertion.
But in those muscular fibres, which are subject to constant stimulus, as the arteries, glands, and capillary vessels, another phenomenon occurs, if their accustomed stimulus be withdrawn; which is, that the sensorial power becomes accumulated in the contractile fibres, owing to the want of its being perpetually expended, or carried away, by their usual unremitted contractions. And on this account those muscular fibres become afterwards excitable into their natural actions by a much weaker stimulus; or into unnatural violence of action by their accustomed stimulus, as is seen in the hot fits of intermittent fevers, which are in consequence of the previous cold ones. Thus the minute vessels of the skin are constantly stimulated by the fluid matter of heat; if the quantity of this stimulus of heat be a while diminished, as in covering the hands with snow, the vessels cease to act, as appears from the paleness of the skin; if this cold application of snow be continued but a short time, the sensorial power, which had habitually been supplied to the fibres, becomes now accumulated in them, owing to the want of its being expended by their accustomed contractions. And thence a less stimulus of heat will now excite them into violent contractions.
If the quiescence of fibres, which had previously been subject to perpetual stimulus, continues a longer time; or their accustomed stimulus be more completely withdrawn; the accumulation of sensorial power becomes still greater, as in those exposed to cold and hunger; pain is produced, and the organ gradually dies from the chemical changes, which take place in it; or it is at a great distance of time restored to action by stimulus applied with great caution in small quantity, as happens to some larger animals and to many insects, which during the winter months lie benumbed with cold, and are said to sleep, and to persons apparently drowned, or apparently frozen to death. Snails have been said to revive by throwing them into water after having been many years shut up in the cabinets of the curious; and eggs and seeds in general are restored to life after many months of torpor by the stimulus of warmth and moisture.
The inflammation of schirrous tumours, which have long existed in a state of inaction, is a process of this kind; as well as the sensibility acquired by inflamed tendons and bones, which had at their formation a similar sensibility, which had so long lain dormant in their uninflamed state.
[3]. If after long quiescence from defect of stimulus the fibres, which had previously been habituated to perpetual stimulus, are again exposed to but their usual quantity of it; as in those who have suffered the extremes of cold or hunger; a violent exertion of the affected organ commences, owing, as above explained, to the great accumulation of sensorial power. This violent exertion not only diminishes the accumulated spirit of animation, but at the same time induces pleasure or pain into the system, which, whether it be succeeded by inflammation or not, becomes an additional stimulus, and acting along with the former one, produces still greater exertions; and thus reduces the sensorial power in the contracting fibres beneath its natural quantity.
When the spirit of animation is thus exhausted by useless exertions, the organ becomes torpid or unexcitable into action, and a second fit of quiescence succeeds that of abundant activity. During this second fit of quiescence the sensorial power becomes again accumulated, and another fit of exertion follows in train. These vicissitudes of exertion and inertion of the arterial system constitute the paroxysms of remittent fevers; or intermittent ones, when there is an interval of the natural action of the arteries between the exacerbations.
In these paroxysms of fevers, which consist of the libration of the arterial system between the extremes of exertion and quiescence, either the fits become less and less violent from the contractile fibres becoming coming less excitable to the stimulus by habit, that is, by becoming accustomed to it, as explained below [XII. 3. 1]. or the whole sensorial power becomes exhausted, and the arteries cease to beat, and the patient dies in the cold part of the paroxysm. Or secondly, so much pain is introduced into the system by the violent contractions of the fibres, that inflammation arises, which prevents future cold fits by expending a part of the sensorial power in the extension of old vessels or the production of new ones; and thus preventing the too great accumulation or exertion of it in other parts of the system; or which by the great increase of stimulus excites into great action the whole glandular system as well as the arterial, and thence a greater quantity of sensorial power is produced in the brain, and thus its exhaustion in any peculiar part of the system ceases to be affected.
[4]. Or thirdly, in consequence of the painful or pleasurable sensation above mentioned, desire and aversion are introduced, and inordinate volition succeeds; which by its own exertions expends so much of the spirit of animation, that the two other sensorial faculties, or irritation and sensation, act so much more feebly; that the paroxysms of fever, or that libration between the extremes of exertion and inactivity of the arterial system, gradually subsides. On this account a temporary insanity is a favourable sign in fevers, as I have had some opportunities of observing.
[III]. Of repeated Stimulus.
[1]. When a stimulus is repeated more frequently than the expenditure of sensorial power can be renewed in the acting organ, the effect of the stimulus becomes gradually diminished. Thus if two grains of opium be swallowed by a person unused to so strong a stimulus, all the vascular systems in the body act with greater energy, all the secretions and the absorption from those secreted fluids are increased in quantity; and pleasure or pain are introduced into the system, which adds an additional stimulus to that already too great. After some hours the sensorial power becomes diminished in quantity, expended by the great activity of the system; and thence, when the stimulus of the opium is withdrawn, the fibres will not obey their usual degree of natural stimulus, and a consequent torpor or quiescence succeeds, as is experienced by drunkards, who on the day after a great excess of spirituous potation feel indigestion, head-ach, and general debility.
In this fit of torpor or quiescence of a part or of the whole of the system, an accumulation of the sensorial power in the affected fibres is formed, and occasions a second paroxysm of exertion by the application only of the natural stimulus, and thus a libration of the sensorial exertion between one excess and the other continues for two or three days, where the stimulus was violent in degree; and for weeks in some fevers, from the stimulus of contagious matter.
But if a second dose of opium be exhibited before the fibres have regained their natural quantity of sensorial power, its effect will be much less than the former, because the spirit of animation or sensorial power is in part exhausted by the previous excess of exertion. Hence all medicines repeated too frequently gradually lose their effect, as opium and wine. Many things of disagreeable taste at first cease to be disagreeable by frequent repetition, as tobacco; grief and pain gradually diminish, and at length cease altogether, and hence life itself becomes tolerable.
Besides the temporary diminution of the spirit of animation or sensorial power, which is naturally stationary or resident in every living fibre, by a single exhibition of a powerful stimulus, the contractile fibres themselves, by the perpetual application of a new quantity of stimulus, before they have regained their natural quantity of sensorial power, appear to suffer in their capability of receiving so much as the natural quantity of sensorial power; and hence a permanent deficiency of spirit of animation takes place, however long the stimulus may have been withdrawn. On this cause depends the permanent debility of those, who have been addicted to intoxication, the general weakness of old age, and the natural debility or inirritability of those, who have pale skins and large pupils of their eyes.
There is a curious phenomenon belongs to this place, which has always appeared difficult of solution; and that is, that opium or aloes may be exhibited in small doses at first, and gradually increased to very large ones without producing stupor or diarrhœa. In this case, though the opium and aloes are given in such small doses as not to produce intoxication or catharsis, yet they are exhibited in quantities sufficient in some degree to exhaust the sensorial power, and hence a stronger and a stronger dose is required; otherwise the medicine would soon cease to act at all.
On the contrary, if the opium or aloes be exhibited in a large dose at first, so as to produce intoxication or diarrhœa; after a few repetitions the quantity of either of them may be diminished, and they will still produce this effect. For the more powerful stimulus dissevers the progressive catenations of animal motions, described in Sect. [XVII]. and introduces a new link between them; whence every repetition strengthens this new association or catenation, and the stimulus may be gradually decreased, or be nearly withdrawn, and yet the effect shall continue; because the sensorial power of association or catenation being united with the stimulus, increases in energy with every repetition of the catenated circle; and it is by these means that all the irritative associations of motions are originally produced.
[2]. When a stimulus is repeated at such distant intervals of time, that the natural quantity of sensorial power becomes completely restored in the acting fibres, it will act with the same energy as when first applied. Hence those who have lately accustomed themselves to large doses of opium by beginning with small ones, and gradually increasing them, and repeating them frequently, as mentioned in the preceding paragraph; if they intermit the use of it for a few days only, must begin again with as small doses as they took at first, otherwise they will experience the inconveniences of intoxication.
On this circumstance depend the constant unfailing effects of the various kinds of stimulus, which excite into action all the vascular systems in the body; the arterial, venous, absorbent, and glandular vessels, are brought into perpetual unwearied action by the fluids, which are adapted to stimulate them; but these have the sensorial power of association added to that of irritation, and even in some degree that of sensation, and even of volition, as will be spoken of in their places; and life itself is thus carried on by the production of sensorial power being equal to its waste or expenditure in the perpetual movement of the vascular organization.
[3]. When a stimulus is repeated at uniform intervals of time with such distances between them, that the expenditure of sensorial power in the acting fibres becomes completely renewed, the effect is produced with greater facility or energy. For the sensorial power of association is combined with the sensorial power of irritation, or, in common language, the acquired habit assists the power of the stimulus.
This circumstance not only obtains in the annual and diurnal catenations of animal motions explained in Sect. [XXXVI]. but in every less circle of actions or ideas, as in the burthen of a song, or the iterations of a dance; and constitutes the pleasure we receive from repetition and imitation; as treated of in Sect. [XXII. 2].
[4]. When a stimulus has been many times repeated at uniform intervals, so as to produce the complete action of the organ, it may then be gradually diminished, or totally withdrawn, and the action of the organ will continue. For the sensorial power of association becomes united with that of irritation, and by frequent repetition becomes at length of sufficient energy to carry on the new link in the circle of actions, without the irritation which at first introduced it.
Hence, when the bark is given at stated intervals for the cure of intermittent fevers, if sixty grains of it be given every three hours for the twenty-four hours preceding the expected paroxysm, so as to stimulate the defective part of the system into action, and by that means to prevent the torpor or quiescence of the fibres, which constitutes the cold fit; much less than half the quantity, given before the time at which another paroxysm of quiescence would have taken place, will be sufficient to prevent it; because now the sensorial power, termed association, acts in a twofold manner. First, in respect to the period of the catenation in which the cold fit was produced, which is now dissevered by the stronger stimulus of the first doses of the bark; and, secondly, because each dose of bark being repeated at periodical times, has its effect increased by the sensorial faculty of association being combined with that of irritation.
Now, when sixty grains of Peruvian bark are taken twice a day, suppose at ten o'clock and at six, for a fortnight, the irritation excited by this additional stimulus becomes a part of the diurnal circle of actions, and will at length carry on the increased action of the system without the assistance of the stimulus of the bark. On this theory the bitter medicines, chalybeates, and opiates in appropriated doses, exhibited for a fortnight, give permanent strength to pale feeble children, and other weak constitutions.
[5]. When a defect of stimulus, as of heat, recurs at certain diurnal intervals, which induces some torpor or quiescence of a part of the system, the diurnal catenation of actions becomes disordered, and a new association with this link of torpid action is formed; on the next period the quantity of quiescence will be increased, suppose the same defect of stimulus to recur, because now the new association conspires with the defective irritation in introducing the torpid action of this part of the diurnal catenation. In this manner many fever-fits commence, where the patient is for some days indisposed at certain hours, before the cold paroxysm of fever is completely formed. See Sect. [XVII. 3. 3]. on Catenation of Animal Motions.
[6]. If a stimulus, which at first excited the affected organ into so great exertion as to produce sensation, be continued for a certain time, it will cease to produce sensation both then and when repeated, though the irritative motions in consequence of it may continue or be re-excited.
Many catenations of irritative motions were at first succeeded by sensation, as the apparent motions of objects when we walk past them, and probably the vital motions themselves in the early state of our existence. But as those sensations were followed by no movements of the system in consequence of them, they gradually ceased to be produced, not being joined to any succeeding link of catenation. Hence contagious matter, which has for some weeks stimulated the system into great and permanent sensation, ceases afterwards to produce general sensation, or inflammation, though it may still induce topical irritations. See Sect. [XXXIII. 2. 8]. [XIX. 9].
Our absorbent system then seems to receive those contagious matters, which it has before experienced, in the same manner as it imbibes common moisture or other fluids; that is, without being thrown into so violent action as to produce sensation; the consequence of which is an increase of daily energy or activity, till inflammation and its consequences succeed.
[7]. If a stimulus excites an organ into such violent contractions as to produce sensation, the motions of which organ had not usually produced sensation, this new sensorial power, added to the irritation occasioned by the stimulus, increases the activity of the organ. And if this activity be catenated with the diurnal circle of actions, an increasing inflammation is produced; as in the evening paroxysms of small-pox, and other fevers with inflammation. And hence schirrous tumours, tendons and membranes, and probably the arteries themselves become inflamed, when they are strongly stimulated.
[IV]. Of Stimulus greater than natural.
[1]. A quantity of stimulus greater than natural, producing an increased exertion of sensorial power, whether that exertion be in the mode of irritation, sensation, volition, or association, diminishes the general quantity of it. This fact is observable in the progress of intoxication, as the increased quantity or energy of the irritative motions, owing to the stimulus of vinous spirit, introduces much pleasurable sensation into the system, and much exertion of muscular or sensual motions in consequence of this increased sensation; the voluntary motions, and even the associate ones, become much impaired or diminished; and delirium and staggering succeed. See Sect. [XXI]. on Drunkenness. And hence the great prostration of the strength of the locomotive muscles in some fevers, is owing to the exhaustion of sensorial power by the increased action of the arterial system.
In like manner a stimulus greater than natural, applied to a part of the system, increases the exertion of sensorial power in that part, and diminishes it in some other part. As in the commencement of scarlet fever, it is usual to see great redness and heat on the faces and breasts of children, while at the same time their feet are colder than natural; partial heats are observable in other fevers with debility, and are generally attended with torpor or quiescence of some other part of the system. But these partial exertions of sensorial power are sometimes attended with increased partial exertions in other parts of the system, which sympathize with them, as the flushing of the face after a full meal. Both these therefore are to be ascribed to sympathetic associations, explained in Sect. [XXXV]. and not to general exhaustion or accumulation of sensorial power.
[2]. A quantity of stimulus greater than natural, producing an increased exertion of sensorial power in any particular organ, diminishes the quantity of it in that organ. This appears from the contractions of animal fibres being not so easily excited by a less stimulus after the organ has been subjected to a greater. Thus after looking at any luminous object of a small size, as at the setting sun, for a short time, so as not much to fatigue the eye, this part of the retina becomes less sensible to smaller quantities of light; hence when the eyes are turned on other less luminous parts of the sky, a dark spot is seen resembling the shape of the sun, or other luminous object which we last behold. See Sect. [XL. No. 2].
Thus we are some time before we can distinguish objects in an obscure room after coming from bright day-light, though the iris presently contracts itself. We are not able to hear weak sounds after loud ones. And the stomachs of those who have been much habituated to the stronger stimulus of fermented or spirituous liquors, are not excited into due action by weaker ones.
[3]. A quantity of stimulus something greater than the last mentioned, or longer continued, induces the organ into spasmodic action, which ceases and recurs alternately. Thus on looking for a time on the setting sun, so as not greatly to fatigue the sight, a yellow spectrum is seen when the eyes are closed and covered, which continues for a time, and then disappears and recurs repeatedly before it entirely vanishes. See Sect. [XL. No. 5]. Thus the action of vomiting ceases and is renewed by intervals, although the emetic drug is thrown up with the first effort. A tenesmus continues by intervals some time after the exclusion of acrid excrement; and the pulsations of the heart of a viper are said to continue some time after it is cleared from its blood.
In these cases the violent contractions of the fibres produce pain according to law 4; and this pain constitutes an additional kind or quantity of excitement, which again induces the fibres into contraction, and which painful excitement is again renewed, and again induces contractions of the fibres with gradually diminishing effect.
[4]. A quantity of stimulus greater than that last mentioned, or longer continued, induces the antagonist muscles into spasmodic action. This is beautifully illustrated by the ocular spectra described in Sect. [XL. No. 6]. to which the reader is referred. From those experiments there is reason to conclude that the fatigued part of the retina throws itself into a contrary mode of action like oscitation or pandiculation, as soon as the stimulus, which has fatigued it, is withdrawn; but that it still remains liable to be excited into action by any other colours except the colour with which it has been fatigued. Thus the yawning and stretching the limbs after a continued action or attitude seems occasioned by the antagonist muscles being stimulated by their extension during the contractions of those in action, or in the situation in which that action last left them.
[5]. A quantity of stimulus greater than the last, or longer continued, induces variety of convulsions or fixed spasms either of the affected organ or of the moving fibres in the other parts of the body. In respect to the spectra in the eye, this is well illustrated in No. [7] and [8], of Sect. XL. Epileptic convulsions, as the emprosthotonos and opisthotonos, with the cramp of the calf of the leg, locked jaw, and other cataleptic fits, appear to originate from pain, as some of these patients scream aloud before the convulsion takes place; which seems at first to be an effort to relieve painful sensation, and afterwards an effort to prevent it.
In these cases the violent contractions of the fibres produce so much pain, as to constitute a perpetual excitement; and that in so great a degree as to allow but small intervals of relaxation of the contracting fibres as in convulsions, or no intervals at all as in fixed spasms.
[6]. A quantity of stimulus greater than the last, or longer continued, produces a paralysis of the organ. In many cases this paralysis is only a temporary effect, as on looking long on a small area of bright red silk placed on a sheet of white paper on the floor in a strong light, the red silk gradually becomes paler, and at length disappears; which evinces that a part of the retina, by being violently excited, becomes for a time unaffected by the stimulus of that colour. Thus cathartic medicines, opiates, poisons, contagious matter, cease to influence our system after it has been habituated to the use of them, except by the exhibition of increased quantities of them; our fibres not only become unaffected by stimuli, by which they have previously been violently irritated, as by the matter of the small-pox or measles; but they also become unaffected by sensation, where the violent exertions, which disabled them, were in consequence of too great quantity of sensation. And lastly the fibres, which become disobedient to volition, are probably disabled by their too violent exertions in consequence of too great a quantity of volition.
After every exertion of our fibres a temporary paralysis succeeds, whence the intervals of all muscular contractions, as mentioned in No. 3 and 4 of this Section; the immediate cause of these more permanent kinds of paralysis is probably owing in the same manner to the too great exhaustion of the spirit of animation in the affected part; so that a stronger stimulus is required, or one of a different kind from that, which occasioned those too violent contractions, to again excite the affected organ into activity; and if a stronger stimulus could be applied, it must again induce paralysis.
For these powerful stimuli excite pain at the same time, that they produce irritation; and this pain not only excites fibrous motions by its stimulus, but it also produces volition; and thus all these stimuli acting at the same time, and sometimes with the addition of their associations, produce so great exertion as to expend the whole of the sensorial power in the affected fibres.
[V]. Of Stimulus less than natural.
[1]. A quantity of stimulus less than natural, producing a decreased exertion of sensorial power, occasions an accumulation of the general quantity of it. This circumstance is observable in the hemiplagia, in which the patients are perpetually moving the muscles, which are unaffected. On this account we awake with greater vigour after sleep, because during so many hours, the great usual expenditure of sensorial power in the performance of voluntary actions, and in the exertions of our organs of sense, in consequence of the irritations occasioned by external objects had been suspended, and a consequent accumulation had taken place.
In like manner the exertion of the sensorial power less than natural in one part of the system, is liable to produce an increase of the exertion of it in some other part. Thus by the action of vomiting, in which the natural exertion of the motions of the stomach are destroyed or diminished, an increased absorption of the pulmonary and cellular lymphatics is produced, as is known by the increased absorption of the fluid deposited in them in dropsical cases. But these partial quiescences of sensorial power are also sometimes attended with other partial quiescences, which sympathize with them, as cold and pale extremities from hunger. These therefore are to be ascribed to the associations of sympathy explained in Sect. [XXXV]. and not to the general accumulation of sensorial power.
[2]. A quantity of stimulus less than natural, applied to fibres previously accustomed to perpetual stimulus, is succeeded by accumulation of sensorial power in the affected organ. The truth of this proposition is evinced, because a stimulus less than natural, if it be somewhat greater than that above mentioned, will excite the organ so circumstanced into violent activity. Thus on a frosty day with wind, the face of a person exposed to the wind is at first pale and shrunk; but on turning the face from the wind, it becomes soon of a glow with warmth and flushing. The glow of the skin in emerging from the cold-bath is owing to the same cause.
It does not appear, that an accumulation of sensorial power above the natural quantity is acquired by those muscles, which are not subject to perpetual stimulus, as the locomotive muscles: these, after the greatest fatigue, only acquire by rest their usual aptitude to motion; whereas the vascular system, as the heart and arteries, after a short quiescence, are thrown into violent action by their natural quantity of stimulus.
Nevertheless by this accumulation of sensorial power during the application of decreased stimulus, and by the exhaustion of it during the action of increased stimulus, it is wisely provided, that the actions of the vascular muscles and organs of sense are not much deranged by small variations of stimulus; as the quantity of sensorial power becomes in some measure inversely as the quantity of stimulus.
[3]. A quantity of stimulus less than that mentioned above, and continued for some time, induces pain in the affected organ, as the pain of cold in the hands, when they are immersed in snow, is owing to a deficiency of the stimulation of heat. Hunger is a pain from the deficiency of the stimulation of food. Pain in the back at the commencement of ague-fits, and the head-achs which attend feeble people, are pains from defect of stimulus, and are hence relieved by opium, essential oils, spirit of wine.
As the pains, which originate from defect of stimulus, only occur in those parts of the system, which have been previously subjected to perpetual stimulus; and as an accumulation of sensorial power is produced in the quiescent organ along with the pain, as in cold or hunger, there is reason to believe, that the pain is owing to the accumulation of sensorial power. For, in the locomotive muscles, in the retina of the eye, and other organs of senses, no pain occurs from the absence of stimulus, nor any great accumulation of sensorial power beyond their natural quantity, since these organs have not been used to a perpetual supply of it. There is indeed a greater accumulation occurs in the organ of vision after its quiescence, because it is subject to more constant stimulus.
[4]. A certain quantity of stimulus less than natural induces the moving organ into feebler and more frequent contractions, as mentioned in No. [I. 4]. of this Section. For each contraction moving through a less space, or with less force, that is, with less expenditure of the spirit of animation, is sooner relaxed, and the spirit of animation derived at each interval into the acting fibres being less, these intervals likewise become shorter. Hence the tremours of the hands of people accustomed to vinous spirit, till they take their usual stimulus; hence the quick pulse in fevers attended with debility, which is greater than in fevers attended with strength; in the latter the pulse seldom beats above 120 times in a minute, in the former it frequently exceeds 140.
It must be observed, that in this and the two following articles the decreased action of the system is probably more frequently occasioned by deficiency in the quantity of sensorial power, than in the quantity of stimulus. Thus those feeble constitutions which have large pupils of their eyes, and all who labour under nervous fevers, seem to owe their want of natural quantity of activity in the system to the deficiency of sensorial power; since, as far as can be seen, they frequently possess the natural quantity of stimulus.
[5]. A certain quantity of stimulus, less than that above mentioned, inverts the order of successive fibrous contractions; as in vomiting the vermicular motions of the stomach and duodenum are inverted, and their contents ejected, which is probably owing to the exhaustion of the spirit of animation in the acting muscles by a previous excessive stimulus, as by the root of ipecacuanha, and the consequent defect of sensorial power. The same retrograde motions affect the whole intestinal canal in ileus; and the œsophagus in globus hystericus. See this further explained in Sect. [XXIX. No. 11]. on Retrograde Motions.
I must observe, also, that something similar happens in the production of our ideas, or sensual motions, when they are too weakly excited; when any one is thinking intensely about one thing, and carelessly conversing about another, he is liable to use the word of a contrary meaning to that which he designed, as cold weather for hot weather, summer for winter.
[6]. A certain quantity of stimulus, less than that above mentioned, is succeeded by paralysis, first of the voluntary and sensitive motions, and afterwards of those of irritation, and of association, which constitutes death.
[VI]. Cure of increased Exertion.
[1]. The cure, which nature has provided for the increased exertion of any part of the system, consists in the consequent expenditure of the sensorial power. But as a greater torpor follows this exhaustion of sensorial power, as explained in the next paragraph, and a greater exertion succeeds this torpor, the constitution frequently sinks under these increasing librations between exertion and quiescence; till at length complete quiescence, that is, death, closes the scene.
For, during the great exertion of the system in the hot fit of fever, an increase of stimulus is produced from the greater momentum of the blood, the greater distention of the heart and arteries, and the increased production of heat, by the violent actions of the system occasioned by this augmentation of stimulus, the sensorial power becomes diminished in a few hours much beneath its natural quantity, the vessels at length cease to obey even these great degrees of stimulus, as shewn in Sect. [XL. 9. 1]. and a torpor of the whole or of a part of the system ensues.
Now as this second cold fit commences with a greater deficiency of sensorial power, it is also attended with a greater deficiency of stimulus than in the preceding cold fit, that is, with less momentum of blood, less distention of the heart. On this account the second cold fit becomes more violent and of longer duration than the first; and as a greater accumulation of sensorial power must be produced before the system of vessels will again obey the diminished stimulus, it follows, that the second hot fit of fever will be more violent than the former one. And that unless some other causes counteract either the violent exertions in the hot fit, or the great torpor in the cold fit, life will at length be extinguished by the expenditure of the whole of the sensorial power. And from hence it appears, that the true means of curing fevers must be such as decrease the action of the system in the hot fit, and increase it in the cold fit; that is, such as prevent the too great diminution of sensorial power in the hot fit, and the too great accumulation of it in the cold one.
[2]. Where the exertion of the sensorial powers is much increased, as in the hot fits of fever or inflammation, the following are the usual means of relieving it. Decrease the irritations by blood-letting, and other evacuations; by cold water taken into the stomach, or injected as an enema, or used externally; by cold air breathed into the lungs, and diffused over the skin; with food of less stimulus than the patient has been accustomed to.
[3]. As a cold fit, or paroxysm of inactivity of some parts of the system, generally precedes the hot fit, or paroxysm of exertion, by which the sensorial power becomes accumulated, this cold paroxysm should be prevented by stimulant medicines and diet, as wine, opium, bark, warmth, cheerfulness, anger, surprise.
[4]. Excite into greater action some other part of the system, by which means the spirit of animation may be in part expended, and thence the inordinate actions of the diseased part may be lessened. Hence when a part of the skin acts violently, as of the face in the eruption of the small-pox, if the feet be cold they should be covered. Hence the use of a blister applied near a topical inflammation. Hence opium and warm bath relieve pains both from excess and defect of stimulus.
[5]. First increase the general stimulation above its natural quantity, which may in some degree exhaust the spirit of animation, and then decrease the stimulation beneath its natural quantity. Hence after sudorific medicines and warm air, the application of refrigerants may have greater effect, if they could be administered without danger of producing too great torpor of some part of the system; as frequently happens to people in health from coming out of a warm room into the cold air, by which a topical inflammation in consequence of torpor of the mucous membrane of the nostril is produced, and is termed a cold in the head.
[VII]. Cure of decreased Exertion.
[1]. Where the exertion of the sensorial powers is much decreased, as in the cold fits of fever, a gradual accumulation of the spirit of animation takes place; as occurs in all cases where inactivity or torpor of a part of the system exists; this accumulation of sensorial power increases, till stimuli less than natural are sufficient to throw it into action, then the cold fit ceases; and from the action of the natural stimuli a hot one succeeds with increased activity of the whole system.
So in fainting fits, or syncope, there is a temporary deficiency of sensorial exertion, and a consequent quiescence of a great part of the system. This quiescence continues, till the sensorial power becomes again accumulated in the torpid organs; and then the usual diurnal stimuli excite the revivescent parts again into action; but as this kind of quiescence continues but a short time compared to the cold paroxysm of an ague, and less affects the circulatory system, a less superabundancy of exertion succeeds in the organs previously torpid, and a less excess of arterial activity. See Sect. [XXXIV. 1. 6].
[2]. In the diseases occasioned by a defect of sensorial exertion, as in cold fits of ague, hysteric complaint, and nervous fever, the following means are those commonly used. 1. Increase the stimulation above its natural quantity for some weeks, till a new habit of more energetic contraction of the fibres is established. This is to be done by wine, opium, bark, steel, given at exact periods, and in appropriate quantities; for if these medicines be given in such quantity, as to induce the least degree of intoxication, a debility succeeds from the useless exhaustion of spirit of animation in consequence of too great exertion of the muscles or organs of sense. To these irritative stimuli should be added the sensitive ones of cheerful ideas, hope, affection.
[3]. Change the kinds of stimulus. The habits acquired by the constitution depend on such nice circumstances, that when one kind of stimulus ceases to excite the sensorial power into the quantity of exertion necessary to health, it is often sufficient to change the stimulus for another apparently similar in quantity and quality. Thus when wine ceases to stimulate the constitution, opium in appropriate doses supplies the defect; and the contrary. This is also observed in the effects of cathartic medicines, when one loses its power, another, apparently less efficacious, will succeed. Hence a change of diet, drink, and stimulating medicines, is often advantageous in diseases of debility.
[4]. Stimulate the organs, whose motions are associated with the torpid parts of the system. The actions of the minute vessels of the various parts of the external skin are not only associated with each other, but are strongly associated with those of some of the internal membranes, and particularly of the stomach. Hence when the exertion of the stomach is less than natural, and indigestion and heartburn succeed, nothing so certainly removes these symptoms as the stimulus of a blister on the back. The coldness of the extremities, as of the nose, ears, or fingers, are hence the best indication for the successful application of blisters.
[5]. Decrease the stimulus for a time. By lessening the quantity of heat for a minute or two by going into the cold bath, a great accumulation of sensorial power is produced; for not only the minute vessels of the whole external skin for a time become inactive, as appears by their paleness; but the minute vessels of the lungs lose much of their activity also by concert with those of the skin, as appears from the difficulty of breathing at first going into cold water. On emerging from the bath the sensorial power is thrown into great exertion by the stimulus of the common degree of the warmth of the atmosphere, and a great production of animal heat is the consequence. The longer a person continues in the cold bath the greater must be the present inertion of a great part of the system, and in consequence a greater accumulation of sensorial power. Whence M. Pomè recommends some melancholy patients to be kept from two to six hours in spring-water, and in baths still colder.
[6]. Decrease the stimulus for a time below the natural, and then increase it above natural. The effect of this process, improperly used, is seen in giving much food, or applying much warmth, to those who have been previously exposed to great hunger, or to great cold. The accumulated sensorial power is thrown into so violent exertion, that inflammations and mortifications supervene, and death closes the catastrophe. In many diseases this method is the most successful; hence the bark in agues produces more certain effect after the previous exhibition of emetics. In diseases attended with violent pain, opium has double the effect, if venesection and a cathartic have been previously used. On this seems to have been founded the successful practice of Sydenham, who used venesection and a cathartic in chlorosis before the exhibition of the bark, steel, and opiates.
[7]. Prevent any unnecessary expenditure of sensorial power. Hence in fevers with debility, a decumbent posture is preferred, with silence, little light, and such a quantity of heat as may prevent any chill sensation, or any coldness of the extremities. The pulse of patients in fevers with debility increases in frequency above ten pulsations in a minute on their rising out of bed. For the expenditure of sensorial power to preserve an erect posture of the body adds to the general deficiency of it, and thus affects the circulation.
[8]. The longer in time and the greater in degree the quiescence or inertion of an organ has been, so that it still retains life or excitability, the less stimulus should at first be applied to it. The quantity of stimulation is a matter of great nicety to determine, where the torpor or quiescence of the fibres has been experienced in a great degree, or for a considerable time, as in cold fits of the ague, in continued fevers with great debility, or in people famished at sea, or perishing with cold. In the two last cases, very minute quantities of food should be first supplied, and very few additional degrees of heat. In the two former cases, but little stimulus of wine or medicine, above what they had been lately accustomed to, should be exhibited, and this at frequent and stated intervals, so that the effect of one quantity may be observed before the exhibition of another.
If these circumstances are not attended to, as the sensorial power becomes accumulated in the quiescent fibres, an inordinate exertion takes place by the increase of stimulus acting on the accumulated quantity of sensorial power, and either the paralysis, or death of the contractile fibres ensues, from the total expenditure of the sensorial power in the affected organ, owing to this increase of exertion, like the debility after intoxication. Or, secondly, the violent exertions above mentioned produce painful sensation, which becomes a new stimulus, and by thus producing inflammation, and increasing the activity of the fibres already too great, sooner exhausts the whole of the sensorial power in the acting organ, and mortification, that is, the death of the part, supervenes.
Hence there have been many instances of people, whose limbs have been long benumbed by exposure to cold, who have lost them by mortification on their being too hastily brought to the fire; and of others, who were nearly famished at sea, who have died soon after having taken not more than an usual meal of food. I have heard of two well-attested instances of patients in the cold fit of ague, who have died from the exhibition of gin and vinegar, by the inflammation which ensued. And in many fevers attended with debility, the unlimited use of wine, and the wanton application of blisters, I believe, has destroyed numbers by the debility consequent to too great stimulation, that is, by the exhaustion of the sensorial power by its inordinate exertion.
Wherever the least degree of intoxication exists, a proportional debility is the consequence; but there is a golden rule by which the necessary and useful quantity of stimulus in fevers with debility may be ascertained. When wine or beer are exhibited either alone or diluted with water, if the pulse becomes slower the stimulus is of a proper quantity; and should be repeated every two or three hours, or when the pulse again becomes quicker.
In the chronical debility brought on by drinking spirituous or fermented liquors, there is another golden rule by which I have successfully directed the quantity of spirit which they may safely lessen, for there is no other means by which they can recover their health. It should be premised, that where the power of digestion in these patients is totally destroyed, there is not much reason to expect a return to healthful vigour.
I have directed several of these patients to omit one fourth part of the quantity of vinous spirit they have been lately accustomed to, and if in a fortnight their appetite increases, they are advised to omit another fourth part; but if they perceive that their digestion becomes impaired from the want of this quantity of spirituous potation, they are advised to continue as they are, and rather bear the ills they have, than risk the encounter of greater. At the same time flesh-meat with or without spice is recommended, with Peruvian bark and steel in small quantities between their meals, and half a grain of opium or a grain, with five or eight grains of rhubarb at night.
SECT. [XIII].
OF VEGETABLE ANIMATION.
[I]. [1]. Vegetables are irritable; mimosa, dionæa muscipula. Vegetable secretions. [2]. Vegetable buds are inferior animals, are liable to greater or less irritability. [II]. Stamens and pistils of plants shew marks of sensibility. [III]. Vegetables possess some degree of volition. [IV]. Motions of plants are associated like those of animals. [V]. [1]. Vegetable structure like that of animals, their anthers and stigmas are living creatures. Male-flowers of Vallisneria. [2]. Whether vegetables, possess ideas? They have organs of sense as of touch and smell, and ideas of external things?
[I]. [1]. The fibres of the vegetable world, as well as those of the animal, are excitable into a variety of motion by irritations of external objects. This appears particularly in the mimosa or sensitive plant, whose leaves contract on the slightest injury; the dionæa muscipula, which was lately brought over from the marshes of America, presents us with another curious instance of vegetable irritability; its leaves are armed with spines on their upper edge, and are spread on the ground around the stem; when an insect creeps on any of them in its passage to the flower or seed, the leaf shuts up like a steel rat-trap, and destroys its enemy. See Botanic Garden, Part II. note on Silene.
The various secretions of vegetables, as of odour, fruit, gum, resin, wax, honey, seem brought about in the same manner as in the glands of animals; the tasteless moisture of the earth is converted by the hop-plant into a bitter juice; as by the caterpillar in the nut-shell the sweet kernel is converted into a bitter powder. While the power of absorption in the roots and barks of vegetables is excited into action by the fluids applied to their mouths like the lacteals and lymphatics of animals.
[2]. The individuals of the vegetable world may be considered as inferior or less perfect animals; a tree is a congeries of many living buds, and in this respect resembles the branches of coralline, which are a congeries of a multitude of animals. Each of these buds of a tree has its proper leaves or petals for lungs, produces its viviparous or its oviparous offspring in buds or seeds; has its own roots, which extending down the stem of the tree are interwoven with the roots of the other buds, and form the bark, which is the only living part of the stem, is annually renewed, and is superinduced upon the former bark, which then dies, and with its stagnated juices gradually hardening into wood forms the concentric circles, which we see in blocks of timber.
The following circumstances evince the individuality of the buds of trees. First, there are many trees, whose whole internal wood is perished, and yet the branches are vegete and healthy. Secondly, the fibres of the barks of trees are chiefly longitudinal, resembling roots, as is beautifully seen in those prepared barks, that were lately brought from Otaheita. Thirdly, in horizontal wounds of the bark of trees, the fibres of the upper lip are always elongated downwards like roots, but those of the lower lip do not approach to meet them. Fourthly, if you wrap wet moss round any joint of a vine, or cover it with moist earth, roots will shoot out from it. Fifthly, by the inoculation or engrafting of trees many fruits are produced from one stem. Sixthly, a new tree is produced from a branch plucked from an old one, and set in the ground. Whence it appears that the buds of deciduous trees are so many annual plants, that the bark is a contexture of the roots of each individual bud; and that the internal wood is of no other use but to support them in the air, and that thus they resemble the animal world in their individuality.
The irritability of plants, like that of animals, appears liable to be increased or decreased by habit; for those trees or shrubs, which are brought from a colder climate to a warmer, put out their leaves and blossoms a fortnight sooner than the indigenous ones.
Professor Kalm, in his Travels in New York, observes that the apple-trees brought from England blossom a fortnight sooner than the native ones. In our country the shrubs, that are brought a degree or two from the north, are observed to flourish better than those, which come from the south. The Siberian barley and cabbage are said to grow larger in this climate than the similar more southern vegetables. And our hoards of roots, as of potatoes and onions, germinate with less heat in spring, after they have been accustomed to the winter's cold, than in autumn after the summer's heat.
[II]. The stamens and pistils of flowers shew evident marks of sensibility, not only from many of the stamens and some pistils approaching towards each other at the season of impregnation, but from many of them closing their petals and calyxes during the cold parts of the day. For this cannot be ascribed to irritation, because cold means a defect of the stimulus of heat; but as the want of accustomed stimuli produces pain, as in coldness, hunger, and thirst of animals, these motions of vegetables in closing up their flowers must be ascribed to the disgreeable sensation, and not to the irritation of cold. Others close up their leaves during darkness, which, like the former, cannot be owing to irritation, as the irritating material is withdrawn.
The approach of the anthers in many flowers to the stigmas, and of the pistils of some flowers to the anthers, must be ascribed to the passion of love, and hence belongs to sensation, not to irritation.
[III]. That the vegetable world possesses some degree of voluntary powers, appears from their necessity to sleep, which we have shewn in Sect. [XVIII]. to consist in the temporary abolition of voluntary power. This voluntary power seems to be exerted in the circular movement of the tendrils of vines, and other climbing vegetables; or in the efforts to turn the upper surface of their leaves, or their flowers to the light.
[IV]. The associations of fibrous motions are observable in the vegetable world, as well as in the animal. The divisions of the leaves of the sensitive plant have been accustomed to contract at the same time from the absence of light; hence if by any other circumstance, as a slight stroke or injury, one division is irritated into contraction, the neighbouring ones contract also, from their motions being associated with those of the irritated part. So the various stamina of the class of syngenesia have been accustomed to contract together in the evening, and thence if you stimulate one of them with a pin, according to the experiment of M. Colvolo, they all contract from their acquired associations.
To evince that the collapsing of the sensitive plant is not owing to any mechanical vibrations propagated along the whole branch, when a single leaf is struck with the finger, a leaf of it was slit with sharp scissors, and some seconds of time passed before the plant seemed sensible of the injury; and then the whole branch collapsed as far as the principal stem: this experiment was repeated several times with the least possible impulse to the plant.
[V]. [1]. For the numerous circumstances in which vegetable buds are analogous to animals, the reader is referred to the additional notes at the end of the Botanic Garden, Part I. It is there shewn, that the roots of vegetables resemble the lacteal system of animals; the sap-vessels in the early spring, before their leaves expand, are analogous to the placental vessels of the fœtus; that the leaves of land-plants resemble lungs, and those of aquatic plants the gills of fish; that there are other systems of vessels resembling the vena portarum of quadrupeds, or the aorta of fish; that the digestive power of vegetables is similar to that of animals converting the fluids, which they absorb, into sugar; that their seeds resemble the eggs of animals, and their buds and bulbs their viviparous offspring. And, lastly, that the anthers and stigmas are real animals, attached indeed to their parent tree like polypi or coral insects, but capable of spontaneous motion; that they are affected with the passion of love, and furnished with powers of reproducing their species, and are fed with honey like the moths and butterflies, which plunder their nectaries. See Botanic Garden, Part I. add. note XXXIX.
The male flowers of vallisneria approach still nearer to apparent animality, as they detach themselves from the parent plant, and float on the surface of the water to the female ones. Botanic Garden, Part II. Art. Vallisneria. Other flowers of the classes of monecia and diecia, and polygamia, discharge the fecundating farina, which floating in the air is carried to the stigma of the female flowers, and that at considerable distances. Can this be effected by any specific attraction? or, like the diffusion of the odorous particles of flowers, is it left to the currents of winds, and the accidental miscarriages of it counteracted by the quantity of its production?
[2]. This leads us to a curious enquiry, whether vegetables have ideas of external things? As all our ideas are originally received by our senses, the question may be changed to, whether vegetables possess any organs of sense? Certain it is, that they possess a sense of heat and cold, another of moisture and dryness, and another of light and darkness; for they close their petals occasionally from the presence of cold, moisture, or darkness. And it has been already shewn, that these actions cannot be performed simply from irritation, because cold and darkness are negative quantities, and on that account sensation or volition are implied, and in consequence a sensorium or union of their nerves. So when we go into the light, we contract the iris; not from any stimulus of the light on the fine muscles of the iris, but from its motions being associated with the sensation of too much light on the retina: which could not take place without a sensorium or center of union of the nerves of the iris with those of vision. See Botanic Garden, Part I. Canto 3. l. 440. note.
Besides these organs of sense, which distinguish cold, moisture, and darkness, the leaves of mimosa, and of dionæa, and of drosera, and the stamens of many flowers, as of the berbery, and the numerous class of syngenesia, are sensible to mechanic impact, that is, they possess a sense of touch, as well as a common sensorium; by the medium of which their muscles are excited into action. Lastly, in many flowers the anthers, when mature, approach the stigma, in others the female organ approaches to the male. In a plant of collinsonia, a branch of which is now before me, the two yellow stamens are about three eights of an inch high, and diverge from each other, at an angle of about fifteen degrees, the purple style is half an inch high, and in some flowers is now applied to the stamen on the right hand, and in others to that of the left; and will, I suppose, change place to-morrow in those, where the anthers have not yet effused their powder.
I ask, by what means are the anthers in many flowers, and stigmas in other flowers, directed to find their paramours? How do either of them know, that the other exists in their vicinity? Is this curious kind of storge produced by mechanic attraction, or by the sensation of love? The latter opinion is supported by the strongest analogy, because a reproduction of the species is the consequence; and then another organ of sense must be wanted to direct these vegetable amourettes to find each other, one probably analogous to our sense of smell, which in the animal world directs the new-born infant to its source of nourishment, and they may thus possess a faculty of perceiving as well as of producing odours.
Thus, besides a kind of taste at the extremities of their roots, similar to that of the extremities of our lacteal vessels, for the purpose of selecting their proper food: and besides different kinds of irritability residing in the various glands, which separate honey, wax, resin, and other juices from their blood; vegetable life seems to possess an organ of sense to distinguish the variations of heat, another to distinguish the varying degrees of moisture, another of light, another of touch, and probably another analogous to our sense of smell. To these must be added the indubitable evidence of their passion of love, and I think we may truly conclude, that they are furnished with a common sensorium belonging to each bud and that they must occasionally repeat those perceptions either in their dreams or waking hours, and consequently possess ideas of so many of the properties of the external world, and of their own existence.
SECT. [XIV].
OF THE PRODUCTION OF IDEAS.
[I]. Of material and immaterial beings. Doctrine of St. Paul. [II]. [1]. Of the sense of touch. Of solidity. [2]. Of figure. Motion. Time. Place. Space. Number. [3]. Of the penetrability of matter. [4]. Spirit of animation possesses solidity, figure, visibility, &c. Of Spirits and angels. [5]. The existence of external things. [III]. Of vision. [IV]. Of hearing. [V]. Of smell and taste. [VI]. Of the organ of sense by which we perceive heat and cold, not by the sense of touch. [VII]. Of the sense of extension, the whole of the locomotive muscles may be considered as one organ of sense. [VIII]. Of the senses of hunger, thirst, want of fresh air, suckling children, and lust. [IX]. Of many other organs of sense belonging to the glands. Of painful sensations from the excess of light, pressure, heat, itching, caustics, and electricity.
[I]. Philosophers have been much perplexed to understand, in what manner we become acquainted with the external world; insomuch that Dr. Berkly even doubted its existence, from having observed (as he thought) that none of our ideas resemble their correspondent objects. Mr. Hume asserts, that our belief depends on the greater distinctness or energy of our ideas from perception; and Mr. Reid has lately contended, that our belief of external objects is an innate principle necessarily joined with our perceptions.
So true is the observation of the famous Malbranch, "that our senses are not given us to discover the essences of things, but to acquaint us with the means of preserving our existence," (L. I. ch. v.) a melancholy reflection to philosophers!
Some philosophers have divided all created beings into material and immaterial: the former including all that part of being, which obeys the mechanic laws of action and reaction, but which can begin no motion of itself; the other is the cause of all motion, and is either termed the power of gravity, or of specific attraction, or the spirit of animation. This immaterial agent is supposed to exist in or with matter, but to be quite distinct from it, and to be equally capable of existence, after the matter, which now possesses it, is decomposed.
Nor is this theory ill supported by analogy, since heat, electricity, and magnetism, can be given to or taken from a piece of iron; and must therefore exist, whether separated from the metal, or combined with it. From a parity of reasoning, the spirit of animation, would appear to be capable of existing as well separately from the body as with it.
I beg to be understood, that I do not wish to dispute about words, and am ready to allow, that the powers of gravity, specific attraction, electricity, magnetism, and even the spirit of animation, may consist of matter of a finer kind; and to believe, with St. Paul and Malbranch, that the ultimate cause only of all motion is immaterial, that is God. St. Paul says, "in him we live and move, and have our being;" and, in the 15th chapter to the Corinthians, distinguishes between the psyche or living spirit, and the pneuma or reviving spirit. By the words spirit of animation or sensorial power, I mean only that animal life, which mankind possesses in common with brutes, and in some degree even with vegetables, and leave the consideration of the immortal part of us, which is the object of religion, to those who treat of revelation.
[II]. [1]. Of the Sense of Touch.
The first idea we become acquainted with, are those of the sense of touch; for the fœtus must experience some varieties of agitation, and exert some muscular action, in the womb; and may with great probability be supposed thus to gain some ideas of its own figure, of that of the uterus, and of the tenacity of the fluid, that surrounds it, (as appears from the facts mentioned in the succeeding Section upon Instinct.)
Many of the organs of sense are confined to a small part of the body, as the nostrils, ear, or eye, whilst the sense of touch is diffused over the whole skin, but exists with a more exquisite degree of delicacy at the extremities of the fingers and thumbs, and in the lips. The sense of touch is thus very commodiously disposed for the purpose of encompassing smaller bodies, and for adapting itself to the inequalities of larger ones. The figure of small bodies seems to be learnt by children by their lips as much as by their fingers; on which account they put every new object to their mouths, when they are satiated with food, as well as when they are hungry. And puppies seem to learn their ideas of figure principally by the lips in their mode of play.
We acquire our tangible ideas of objects either by the simple pressure of this organ of touch against a solid body, or by moving our organ of touch along the surface of it. In the former case we learn the length and breadth of the object by the quantity of our organ of touch, that is impressed by it: in the latter case we learn the length and breadth of objects by the continuance of their pressure on our moving organ of touch.
It is hence, that we are very slow in acquiring our tangible ideas, and very slow in recollecting them; for if I now think of the tangible idea of a cube, that is, if I think of its figure, and of the solidity of every part of that figure, I must conceive myself as passing my fingers over it, and seem in some measure to feel the idea, as I formerly did the impression, at the ends of them, and am thus very slow in distinctly recollecting it.
When a body compresses any part of our sense of touch, what happens? First, this part of our sensorium undergoes a mechanical compression, which is termed a stimulus; secondly, an idea, or contraction of a part of the organ of sense is excited; thirdly, a motion of the central parts, or of the whole sensorium, which is termed sensation, is produced; and these three constitute the perception of solidity.
[2]. Of Figure, Motion, Time, Place, Space, Number.
No one will deny, that the medulla of the brain and nerves has a certain figure; which, as it is diffused through nearly the whole of the body, must have nearly the figure of that body. Now it follows, that the spirit of animation, or living principle, as it occupies this medulla, and no other part, (which is evinced by a great variety of cruel experiments on living animals,) it follows, that this spirit of animation has also the same figure as the medulla above described. I appeal to common sense! the spirit of animation acts, Where does it act? It acts wherever there is the medulla above mentioned; and that whether the limb is yet joined to a living animal, or whether it be recently detached from it; as the heart of a viper or frog will renew its contractions, when pricked with a pin, for many minutes of time after its exsection from the body.—Does it act any where else?—No; then it certainly exists in this part of space, and no where else; that is, it hath figure; namely, the figure of the nervous system, which is nearly the figure of the body. When the idea of solidity is excited, as above explained, a part of the extensive organ of touch is compressed by some external body, and this part of the sensorium so compressed exactly resembles in figure the figure of the body that compressed it. Hence, when we acquire the idea of solidity, we acquire at the same time the idea of FIGURE; and this idea of figure, or motion of a part of the organ of touch, exactly resembles in its figure the figure of the body that occasions it; and thus exactly acquaints us with this property of the external world.
Now, as the whole universe with all its parts possesses a certain form or figure, if any part of it moves, that form or figure of the whole is varied: hence, as MOTION is no other than a perpetual variation of figure, our idea of motion is also a real resemblance of the motion that produced it.
It may be said in objection to this definition of motion, that an ivory globe may revolve on its axis, and that here will be a motion without change of figure. But the figure of the particle x on one side of this globe is not the same figure as the figure of y on the other side, any more than the particles themselves are the same, though they are similar figures; and hence they cannot change place with each other without disturbing or changing the figure of the whole.
Our idea of TIME is from the same source, but is more abstracted, as it includes only the comparative velocities of these variations of figure; hence if it be asked, How long was this book in printing? it may be answered, Whilst the sun was passing through Aries.
Our idea of PLACE includes only the figure of a group of bodies, not the figures of the bodies themselves. If it be asked where is Nottinghamshire, the answer is, it is surrounded by Derbyshire, Lincolnshire and Leicestershire; hence place is our idea of the figure of one body surrounded by the figures of other bodies.
The idea of SPACE is a more abstracted idea of place excluding the group of bodies.
The idea of NUMBER includes only the particular arrangements, or distributions of a group of bodies, and is therefore only a more abstracted idea of the parts of the figure of the group of bodies; thus when I say England is divided into forty counties, I only speak of certain divisions of its figure.
Hence arises the certainty of the mathematical sciences, as they explain these properties of bodies, which are exactly resembled by our ideas of them, whilst we are obliged to collect almost all our other knowledge from experiment; that is, by observing the effects exerted by one body upon another.
[3]. Of the Penetrability of Matter.
The impossibility of two bodies existing together in the same space cannot be deduced from our idea of solidity, or of figure. As soon as we perceive the motions of objects that surround us, and learn that we possess a power to move our own bodies, we experience, that those objects, which excite in us the idea of solidity and of figure, oppose this voluntary movement of our own organs; as whilst I endeavour to compress between my hands an ivory ball into a spheroid. And we are hence taught by experience, that our own body and those, which we touch, cannot exist in the same part of space.
But this by no means demonstrates, that no two bodies can exist together in the same part of space. Galilæo in the preface to his works seems to be of opinion, that matter is not impenetrable; Mr. Michel, and Mr. Boscowich in his Theoria. Philos. Natur. have espoused this hypothesis: which has been lately published by Dr. Priestley, to whom the world is much indebted for so many important discoveries in science. (Hist. of Light and Colours, p. 391.) The uninterrupted passage of light through transparent bodies, of the electric æther through metallic and aqueous bodies, and of the magnetic effluvia through all bodies, would seem to give some probability to this opinion. Hence it appears, that beings may exist without possessing the property of solidity, as well as they can exist without possessing the properties, which excite our smell or taste, and can thence occupy space without detruding other bodies from it; but we cannot become acquainted with such beings by our sense of touch, any more than we can with odours or flavours without our senses of smell and taste.
But that any being can exist without existing in space, is to my ideas utterly incomprehensible. My appeal is to common sense. To be implies a when and a where; the one is comparing it with the motions of other beings, and the other with their situations.
If there was but one object, as the whole creation may be considered as one object, then I cannot ask where it exists? for there are no other objects to compare its situation with. Hence if any one denies, that a being exists in space, he denies, that there are any other beings but that one; for to answer the question, "Where does it exist?" is only to mention the situation of the objects that surround it.
In the same manner if it be asked—"When does a being exist?" The answer only specifies the successive motions either of itself, or of other bodies; hence to say, a body exists not in time, is to say, that there is, or was, no motion in the world.
[4]. Of the Spirit of Animation.
But though there may exist beings in the universe, that have not the property of solidity; that is, which can possess any part of space, at the same time that it is occupied by other bodies; yet there may be other beings, that can assume this property of solidity, or disrobe themselves of it occasionally, as we are taught of spirits, and of angels; and it would seem, that THE SPIRIT OF ANIMATION must be endued with this property, otherwise how could it occasionally give motion to the limbs of animals?—or be itself stimulated into motion by the obtrusions of surrounding bodies, as of light, or odour?
If the spirit of animation was always necessarily penetrable, it could not influence or be influenced by the solidity of common matter; they would exist together, but could not detrude each other from the part of space, where they exist; that is, they could not communicate motion to each other. No two things can influence or affect each other, which have not some property common to both of them; for to influence or affect another body is to give or communicate some property to it, that it had not before; but how can one body give that to another, which it does not possess itself?—The words imply, that they must agree in having the power or faculty of possessing some common property. Thus if one body removes another from the part of space, that it possesses, it must have the power of occupying that space itself: and if one body communicates heat or motion to another, it follows, that they have alike the property of possessing heat or motion.
Hence the spirit of animation at the time it communicates or receives motion from solid bodies, must itself possess some property of solidity. And in consequence at the time it receives other kinds of motion from light, it must possess that property, which light possesses, to communicate that kind of motion; and for which no language has a name, unless it may be termed Visibility. And at the time it is stimulated into other kinds of animal motion by the particles of sapid and odorous bodies affecting the senses of taste and smell, it must resemble these particles of flavour, and of odour, in possessing some similar or correspondent property; and for which language has no name, unless we may use the words Saporosity and Odorosity for those common properties, which are possessed by our organs of taste and smell, and by the particles of sapid and odorous bodies; as the words Tangibility and Audibility may express the common property possessed by our organs of touch, and of hearing, and by the solid bodies, or their vibrations, which affect those organs.
[5]. Finally, though the figures of bodies are in truth resembled by the figure of the part of the organ of touch, which is stimulated into motion; and that organ resembles the solid body, which stimulates it, in its property of solidity; and though the sense of hearing resembles the vibrations of external bodies in its capability of being stimulated into motion by those vibrations; and though our other organs of sense resemble the bodies, that stimulate them, in their capability of being stimulated by them; and we hence become acquainted with these properties of the external world; yet as we can repeat all these motions of our organs of sense by the efforts of volition, or in consequence of the sensation of pleasure or pain, or by their association with other fibrous motions, as happens in our reveries or in sleep, there would still appear to be some difficulty in demonstrating the existence of any thing external to us.
In our dreams we cannot determine this circumstance, because our power of volition is suspended, and the stimuli of external objects are excluded; but in our waking hours we can compare our ideas belonging to one sense with those belonging to another, and can thus distinguish the ideas occasioned by irritation from those excited by sensation, volition, or association. Thus if the idea of the sweetness of sugar should be excited in our dreams, the whiteness and hardness of it occur at the same time by association; and we believe a material lump of sugar present before us. But if, in our waking hours, the idea of the sweetness of sugar occurs to us, the stimuli of surrounding objects, as the edge of the table, on which we press, or green colour of the grass, on which we tread, prevent the other ideas of the hardness and whiteness of the sugar from being exerted by association. Or if they should occur, we voluntarily compare them with the irritative ideas of the table or grass above mentioned, and detect their fallacy. We can thus distinguish the ideas caused by the stimuli of external objects from those, which are introduced by association, sensation, or volition; and during our waking hours can thus acquire a knowledge of the external world. Which nevertheless we cannot do in our dreams, because we have neither perceptions of external bodies, nor the power of volition to enable us to compare them with the ideas of imagination.
[III]. Of Vision.
Our eyes observe a difference of colour, or of shade, in the prominences and depressions of objects, and that those shades uniformly vary, when the sense of touch observes any variation. Hence when the retina becomes stimulated by colours or shades of light in a certain form, as in a circular spot; we know by experience, that this is a sign, that a tangible body is before us; and that its figure is resembled by the miniature figure of the part of the organ of vision, that is thus stimulated.
Here whilst the stimulated part of the retina resembles exactly the visible figure of the whole in miniature, the various kinds of stimuli from different colours mark the visible figures of the minuter parts; and by habit we instantly recall the tangible figures.
Thus when a tree is the object of sight, a part of the retina resembling a flat branching figure is stimulated by various shades of colours; but it is by suggestion, that the gibbosity of the tree, and the moss, that fringes its trunk, appear before us. These are ideas of suggestion, which we feel or attend to, associated with the motions of the retina, or irritative ideas, which we do not attend to.
So that though our visible ideas resemble in miniature the outline of the figure of coloured bodies, in other respects they serve only as a language, which by acquired associations introduce the tangible ideas of bodies. Hence it is, that this sense is so readily deceived by the art of the painter to our amusement and instruction. The reader will find much very curious knowledge on this subject in Bishop Berkley's Essay on Vision, a work of great ingenuity.
The immediate object however of the sense of vision is light; this fluid, though its velocity is so great, appears to have no perceptible mechanical impulse, as was mentioned in the third Section, but seems to stimulate the retina into animal motion by its transmission through this part of the sensorium: for though the eyes of cats or other animals appear luminous in obscure places; yet it is probable, that none of the light, which falls on the retina, is reflected from it, but adheres to or enters into combination with the choroide coat behind it.
The combination of the particles of light with opake bodies, and therefore with the choroide coat of the eye, is evinced from the heat, which is given out, as in other chemical combinations. For the sunbeams communicate no heat in their passage through transparent bodies, with which they do not combine, as the air continues cool even in the focus of the largest burning-glasses, which in a moment vitrifies a particle of opaque matter.
[IV]. Of the Organ of Hearing.
It is generally believed, that the tympanum of the ear vibrates mechanically, when exposed to audible sounds, like the strings of one musical instrument, when the same notes are struck upon another. Nor is this opinion improbable, as the muscles and cartilages of the larynx are employed in producing variety of tones by mechanical vibration: so the muscles and bones of the ear seem adapted to increase or diminish the tension of the tympanum for the purposes of similar mechanical vibrations.
But it appears from dissection, that the tympanum is not the immediate organ of hearing, but that like the humours and cornea of the eye, it is only of use to prepare the object for the immediate organ. For the portio mollis of the auditory nerve is not spread upon the tympanum, but upon the vestibulum, and cochlea, and semicircular canals of the ear; while between the tympanum and the expansion of the auditory nerve the cavity is said by Dr. Cotunnus and Dr. Meckel to be filled with water; as they had frequently observed by freezing the heads of dead animals before they dissected them; and water being a more dense fluid than air is much better adapted to the propagation of vibrations. We may add, that even the external opening of the ear is not absolutely necessary for the perception of sound: for some people, who from these defects would have been completely deaf, have distinguished acute or grave sounds by the tremours of a stick held between their teeth propagated along the bones of the head, (Haller. Phys. T. V. p. 295).
Hence it appears, that the immediate organ of hearing is not affected by the particles of the air themselves, but is stimulated into animal motion by the vibrations of them. And it is probable from the loose bones, which are found in the heads of some fishes, that the vibrations of water are sensible to the inhabitants of that element by a similar organ.
The motions of the atmosphere, which we become acquainted with by the sense of touch, are combined with its solidity, weight, or vis intertiæ; whereas those, that are perceived by this organ, depend alone on its elasticity. But though the vibration of the air is the immediate object of the sense of hearing, yet the ideas, we receive by this sense, like those received from light, are only as a language, which by acquired associations acquaints us with those motions of tangible bodies, which depend on their elasticity; and which we had before learned by our sense of touch.
[V]. Of Smell and of Taste.
The objects of smell are dissolved in the fluid atmosphere, and those of taste in the saliva, or other aqueous fluid, for the better diffusing them on their respective organs, which seem to be stimulated into animal motion perhaps by the chemical affinities of these particles, which constitute the sapidity and odorosity of bodies with the nerves of sense, which perceive them.
Mr. Volta has lately observed a curious circumstance relative to our sense of taste. If a bit of clean lead and a bit of clean silver be separately applied to the tongue and palate no taste is perceived; but by applying them in contact in respect to the parts out of the mouth, and nearly so in respect to the parts, which are immediately applied to the tongue and palate, a saline or acidulous taste is perceived, as of a fluid like a stream of electricity passing from one of them to the other. This new application of the sense of taste deserves further investigation, as it may acquaint us with new properties of matter.
From the experiments above mentioned of Galvani, Volta, Fowler, and others, it appears, that a plate of zinc and a plate of silver have greater effect than lead and silver. If one edge of a plate of silver about the size of half a crown-piece be placed upon the tongue, and one edge of a plate of zinc about the same size beneath the tongue, and if their opposite edges are then brought into contact before the point of the tongue, a taste is perceived at the moment of their coming into contact; secondly, if one of the above plates be put between the upper lip and the gum of the fore-teeth, and the other be placed under the tongue, and their exterior edges be then brought into contact in a darkish room, a flash of light is perceived in the eyes.
These effects I imagine only shew the sensibility of our nerves of sense to very small quantities of the electric fluid, as it passes through them; for I suppose these sensations are occasioned by slight electric shocks produced in the following manner. By the experiments published by Mr. Bennet, with his ingenious doubler of electricity, which is the greatest discovery made in that science since the coated jar, and the eduction of lightning from the skies, it appears that zinc was always found minus, and silver was always found plus, when both of them were in their separate state. Hence, when they are placed in the manner above described, as soon as their exterior edges come nearly into contact, so near as to have an extremely thin plate of air between them, that plate of air becomes charged in the same manner as a plate of coated glass; and is at the same instant discharged through the nerves of taste or of sight, and gives the sensations, as above described, of light or of saporocity; and only shews the great sensibility of these organs of sense to the stimulus of the electric fluid in suddenly passing through them.
[VI]. Of the Sense of Heat.
There are many experiments in chemical writers, that evince the existence of heat as a fluid element, which covers and pervades all bodies, and is attracted by the solutions of some of them, and is detruded from the combination of others. Thus from the combinations of metals with acids, and from those combinations of animal fluids, which are termed secretions, this fluid matter of heat is given out amongst the neighbouring bodies; and in the solutions of salts in water, or of water in air, it is absorbed from the bodies, that surround them; whilst in its facility in passing through metallic bodies, and its difficulty in pervading resins and glass, it resembles the properties of the electric aura; and is like that excited by friction, and seems like that to gravitate amongst other bodies in its uncombined state, and to find its equilibrium.
There is no circumstance of more consequence in the animal economy than a due proportion of this fluid of heat; for the digestion of our nutriment in the stomach and bowels, and the proper qualities of all our secreted fluids, as they are produced or prepared partly by animal and partly by chemical processes, depend much on the quantity of heat; the excess of which, or its deficiency, alike gives us pain, and induces us to avoid the circumstances that occasion them. And in this the perception of heat essentially differs from the perceptions of the sense of touch, as we receive pain from too great pressure of solid bodies, but none from the absence of it. It is hence probable, that nature has provided us with a set of nerves for the perception of this fluid, which anatomists have not yet attended to.
There may be some difficulty in the proof of this assertion; if we look at a hot fire, we experience no pain of the optic nerve, though the heat along with the light must be concentrated upon it. Nor does warm water or warm oil poured into the ear give pain to the organ of hearing; and hence as these organs of sense do not perceive small excesses or deficiences of heat; and as heat has no greater analogy to the solidity or to the figures of bodies, than it has to their colours or vibrations; there seems no sufficient reason for our ascribing the perception of heat and cold to the sense of touch; to which it has generally been attributed, either because it is diffused beneath the whole skin like the sense of touch, or owing to the inaccuracy of our observations, or the defect of our languages.
There is another circumstance would induce us to believe, that the perceptions of heat and cold do not belong to the organ of touch; since the teeth, which are the least adapted for the perceptions of solidity or figure, are the most sensible to heat or cold; whence we are forewarned from swallowing those materials, whose degree of coldness or of heat would injure our stomachs.
The following is an extract from a letter of Dr. R.W. Darwin, of Shrewsbury, when he was a student at Edinburgh. "I made an experiment yesterday in our hospital, which much favours your opinion, that the sensation of heat and of touch depend on different sets of nerves. A man who had lately recovered from a fever, and was still weak, was seized with violent cramps in his legs and feet; which were removed by opiates, except that one of his feet remained insensible. Mr. Ewart pricked him with a pin in five or six places, and the patient declared he did not feel it in the least, nor was he sensible of a very smart pinch. I then held a red-hot poker at some distance, and brought it gradually nearer till it came within three inches, when he asserted that he felt it quite distinctly. I suppose some violent irritation on the nerves of touch had caused the cramps, and had left them paralytic; while the nerves of heat, having suffered no increased stimulus, retained their irritability."
Add to this, that the lungs, though easily stimulated into inflammation, are not sensible to heat. See Class. III. 1. 1. 10.
[VII]. Of the Sense of Extension.
The organ of touch is properly the sense of pressure, but the muscular fibres themselves constitute the organ of sense, that feels extension. The sense of pressure is always attended with the ideas of the figure and solidity of the object, neither of which accompany our perception of extension. The whole set of muscles, whether they are hollow ones, as the heart, arteries, and intestines, or longitudinal ones attached to bones, contract themselves, whenever they are stimulated by forcible elongation; and it is observable, that the white muscles, which constitute the arterial system, seem to be excited into contraction from no other kinds of stimulus, according to the experiments of Haller. And hence the violent pain in some inflammations, as in the paronychia, obtains immediate relief by cutting the membrane, that was stretched by the tumour of the subjacent parts.
Hence the whole muscular system may be considered as one organ of sense, and the various attitudes of the body, as ideas belonging to this organ, of many of which we are hourly conscious, while many others, like the irritative ideas of the other senses, are performed without our attention.
When the muscles of the heart cease to act, the refluent blood again distends or elongates them; and thus irritated they contract as before. The same happens to the arterial system, and I suppose to the capillaries, intestines, and various glands of the body.
When the quantity of urine, or of excrement, distends the bladder, or rectum, those parts contract, and exclude their contents, and many other muscles by association act along with them; but if these evacuations are not soon complied with, pain is produced by a little further extension of the muscular fibres: a similar pain is caused in the muscles, when a limb is much extended for the reduction of dislocated bones; and in the punishment of the rack: and in the painful cramps of the calf of the leg, or of other muscles, for a greater degree of contraction of a muscle, than the movement of the two bones, to which its ends are affixed, will admit of, must give similar pain to that, which is produced by extending it beyond its due length. And the pain from punctures or incisions arises from the distention of the fibres, as the knife passes through them; for it nearly ceases as soon as the division is completed.
All these motions of the muscles, that are thus naturally excited by the stimulus of distending bodies, are also liable to be called into strong action by their catenation, with the irritations or sensations produced by the momentum of the progressive particles of blood in the arteries, as in inflammatory fevers, or by acrid substances on other sensible organs, as in the strangury, or tenesmus, or cholera.
We shall conclude this account of the sense of extension by observing, that the want of its object is attended with a disagreeable sensation, as well as the excess of it. In those hollow muscles, which have been accustomed to it, this disagreeable sensation is called faintness, emptiness, and sinking; and, when it arises to a certain degree, is attended with syncope, or a total quiescence of all motions, but the internal irritative ones, as happens from sudden loss of blood, or in the operation of tapping in the dropsy.
[VIII]. Of the Appetites of Hunger, Thirst, Heat, Extension, the want of fresh Air, animal Love, and the Suckling of Children.
Hunger is most probably perceived by those numerous ramifications of nerves that are seen about the upper opening of the stomach; and thirst by the nerves about the fauces, and the top of the gula. The ideas of these senses are few in the generality of mankind, but are more numerous in those, who by disease, or indulgence, desire particular kinds of foods or liquids.
A sense of heat has already been spoken of, which may with propriety be called an appetite, as we painfully desire it, when it is deficient in quantity.
The sense of extension may be ranked amongst these appetites, since the deficiency of its object gives disagreeable sensation; when this happens in the arterial system, it is called faintness, and seems to bear some analogy to hunger and to cold; which like it are attended with emptiness of a part of the vascular system.
The sense of want of fresh air has not been attended to, but is as distinct as the others, and the first perhaps that we experience after our nativity; from the want of the object of this sense many diseases are produced, as the jail-fever, plague, and other epidemic maladies. Animal love is another appetite, which occurs later in life, and the females of lactiferous animals have another natural inlet of pleasure or pain from the suckling their offspring. The want of which either owing to the death of their progeny, or to the fashion of their country, has been fatal to many of the sex. The males have also pectoral glands, which are frequently turgid with a thin milk at their nativity, and are furnished with nipples, which erect on titillation like those of the female; but which seem now to be of no further use, owing perhaps to some change which these animals have undergone in the gradual progression of the formation of the earth, and of all that it inhabit.
These seven last mentioned senses may properly be termed appetites, as they differ from those of touch, sight, hearing, taste, and smell, in this respect; that they are affected with pain as well by the defect of their objects as by the excess of them, which is not so in the latter. Thus cold and hunger give us pain, as well as an excess of heat or satiety; but it is not so with darkness and silence.
[IX]. Before we conclude this Section on the organs of sense, we must observe, that, as far as we know, there are many more senses, than have been here mentioned, as every gland seems to be influenced to separate from the blood, or to absorb from the cavities of the body, or from the atmosphere, its appropriated fluid, by the stimulus of that fluid on the living gland; and not by mechanical capillary absorption, nor by chemical affinity. Hence it appears, that each of these glands must have a peculiar organ to perceive these irritations, but as these irritations are not succeeded by sensation, they have not acquired the names of senses.
However when these glands are excited into motions stronger than usual, either by the acrimony of their fluids, or by their own irritability being much increased, then the sensation of pain is produced in them as in all the other senses of the body; and these pains are all of different kinds, and hence the glands at this time really become each a different organ of sense, though these different kinds of pain have acquired no names.
Thus a great excess of light does not give the idea of light but of pain; as in forcibly opening the eye when it is much inflamed. The great excess of pressure or distention, as when the point of a pin is pressed upon our skin, produces pain, (and when this pain of the sense of distention is slighter, it is termed itching, or tickling), without any idea of solidity or of figure: an excess of heat produces smarting, of cold another kind of pain; it is probable by this sense of heat the pain produced by caustic bodies is perceived, and of electricity, as all these are fluids, that permeate, distend, or decompose the parts that feel them.
SECT. [XV].
OF THE CLASSES OF IDEAS.
[I]. [1]. Ideas received in tribes. [2]. We combine them further, or abstract from these tribes. [3]. Complex ideas. [4]. Compounded ideas. [5]. Simple ideas, modes, substances, relations, general ideas. [6]. Ideas of reflexion. [7]. Memory and imagination imperfectly defined. Ideal presence. Memorandum-rings. [II]. [1]. Irritative ideas. Perception. [2]. Sensitive ideas, imagination. [3]. Voluntary ideas, recollection. [4]. Associated ideas, suggestion. [III]. [1]. Definitions of perception, memory. [2]. Reasoning, judgment, doubting, distinguishing, comparing. [3]. Invention. [4]. Consciousness. [5]. Identity. [6]. Lapse of time. [7]. Free-will.
[I]. [1]. As the constituent elements of the material world are only perceptible to our organs of sense in a state of combination; it follows, that the ideas or sensual motions excited by them, are never received singly, but ever with a greater or less degree of combination. So the colours of bodies or their hardnesses occur with their figures: every smell and taste has its degree of pungency as well as its peculiar flavour: and each note in music is combined with the tone of some instrument. It appears from hence, that we can be sensible of a number of ideas at the same time, such as the whiteness, hardness, and coldness, of a snow-ball, and can experience at the same time many irritative ideas of surrounding bodies, which we do not attend to, as mentioned in Section [VII. 3. 2]. But those ideas which belong to the same sense, seem to be more easily combined into synchronous tribes, than those which were not received by the same sense, as we can more easily think of the whiteness and figure of a lump of sugar at the same time, than the whiteness and sweetness of it.
[2]. As these ideas, or sensual motions, are thus excited with greater or less degrees of combination; so we have a power, when we repeat them either by our volition or sensation, to increase or diminish this degree of combination, that is, to form compounded ideas from those, which were more simple; and abstract ones from those, which were more complex, when they were first excited; that is, we can repeat a part or the whole of those sensual motions, which did constitute our ideas of perception; and the repetition of which now constitutes our ideas of recollection, or of imagination.
[3]. Those ideas, which we repeat without change of the quantity of that combination, with which we first received them, are called complex ideas, as when you recollect Westminster Abbey, or the planet Saturn: but it must be observed, that these complex ideas, thus re-excited by volition, sensation, or association, are seldom perfect copies of their correspondent perceptions, except in our dreams, where other external objects do not detract our attention.
[4]. Those ideas, which are more complex than the natural objects that first excited them, have been called compounded ideas, as when we think of a sphinx, or griffin.
[5]. And those that are less complex than the correspondent natural objects, have been termed abstracted ideas: thus sweetness, and whiteness, and solidity, are received at the same time from a lump of sugar, yet I can recollect any of these qualities without thinking of the others, that were excited along with them.
When ideas are so far abstracted as in the above example, they have been termed simple by the writers of metaphysics, and seem indeed to be more complete repetitions of the ideas or sensual motions, originally excited by external objects.
Other classes of these ideas, where the abstraction has not been so great, have been termed, by Mr. Locke, modes, substances, and relations, but they seem only to differ in their degree of abstraction from the complex ideas that were at first excited; for as these complex or natural ideas are themselves imperfect copies of their correspondent perceptions, so these abstract or general ideas are only still more imperfect copies of the same perceptions. Thus when I have seen an object but once, as a rhinoceros, my abstract idea of this animal is the same as my complex one. I may think more or less distinctly of a rhinoceros, but it is the very rhinoceros that I saw, or some part or property of him, which recurs to my mind.
But when any class of complex objects becomes the subject of conversation, of which I have seen many individuals, as a castle or an army, some property or circumstance belonging to it is peculiarly alluded to; and then I feel in my own mind, that my abstract idea of this complex object is only an idea of that part, property, or attitude of it, that employs the present conversation, and varies with every sentence that is spoken concerning it. So if any one should say, "one may sit upon a horse safer than on a camel," my abstract idea of the two animals includes only an outline of the level back of the one, and the gibbosity on the back of the other. What noise is that in the street?—Some horses trotting over the pavement. Here my idea of the horses includes principally the shape and motion of their legs. So also the abstract ideas of goodness and courage are still more imperfect representations of the objects they were received from; for here we abstract the material parts, and recollect only the qualities.
Thus we abstract so much from some of our complex ideas, that at length it becomes difficult to determine of what perception they partake; and in many instances our idea seems to be no other than of the sound or letters of the word, that stands for the collective tribe, of which we are said to have an abstracted idea, as noun, verb, chimæra, apparition.
[6]. Ideas have been divided into those of perception and those of reflection, but as whatever is perceived must be external to the organ that perceives it, all our ideas must originally be ideas of perception.
[7]. Others have divided our ideas into those of memory, and those of imagination; they have said that a recollection of ideas in the order they were received constitutes memory, and without that order imagination; but all the ideas of imagination, excepting the few that are termed simple ideas, are parts of trains or tribes in the order they were received; as if I think of a sphinx, or a griffin, the fair face, bosom, wings, claws, tail, are all complex ideas in the order they were received: and it behoves the writers, who adhere to this definition, to determine, how small the trains must be, that shall be called imagination; and how great those, that shall be called memory.
Others have thought that the ideas of memory have a greater vivacity than those of imagination: but the ideas of a person in sleep, or in a waking reverie, where the trains connected with sensation are uninterrupted, are more vivid and distinct than those of memory, so that they cannot be distinguished by this criterion.
The very ingenious author of the Elements of Criticism has described what he conceives to be a species of memory, and calls it ideal presence; but the instances he produces are the reveries of sensation, and are therefore in truth connections of the imagination, though they are recalled in the order they were received.
The ideas connected by association are in common discourse attributed to memory, as we talk of memorandum-rings, and tie a knot on our handkerchiefs to bring something into our minds at a distance of time. And a school-boy, who can repeat a thousand unmeaning lines in Lilly's Grammar, is said to have a good memory. But these have been already shewn to belong to the class of association; and are termed ideas of suggestion.
[II]. Lastly, the method already explained of classing ideas into those excited by irritation, sensation, volition, or association, we hope will be found more convenient both for explaining the operations of the mind, and for comparing them with those of the body; and for the illustration and the cure of the diseases of both, and which we shall here recapitulate.
[1]. Irritative ideas are those, which are preceded by irritation, which is excited by objects external to the organs of sense: as the idea of that tree, which either I attend to, or which I shun in walking near it without attention. In the former case it is termed perception, in the latter it is termed simply an irritative idea.
[2]. Sensitive ideas are those, which are preceded by the sensation of pleasure or pain; as the ideas, which constitute our dreams or reveries, this is called imagination.
[3]. Voluntary ideas are those, which are preceded by voluntary exertion, as when I repeat the alphabet backwards: this is called recollection.
[4]. Associate ideas are those, which are preceded by other ideas or muscular motions, as when we think over or repeat the alphabet by rote in its usual order; or sing a tune we are accustomed to; this is called suggestion.
[III]. [1]. Perceptions signify those ideas, which are preceded by irritation and succeeded by the sensation of pleasure or pain, for whatever excites our attention interests us; that is, it is accompanied with, pleasure or pain; however slight may be the degree or quantity of either of them.
The word memory includes two classes of ideas, either those which, are preceded by voluntary exertion, or those which are suggested by their associations with other ideas.
[2]. Reasoning is that operation of the sensorium, by which we excite two or many tribes of ideas; and then re-excite the ideas, in which they differ, or correspond. If we determine this difference, it is called judgment; if we in vain endeavour to determine it, it is called doubting.
If we re-excited the ideas, in which they differ, it is called distinguishing. If we re-excite those in which they correspond, it is called comparing.
[3]. Invention is an operation of the sensorium, by which we voluntarily continue to excite one train of ideas, suppose the design of raising water by a machine; and at the same time attend to all other ideas, which are connected with this by every kind of catenation; and combine or separate them voluntarily for the purpose of obtaining some end.
For we can create nothing new, we can only combine or separate the ideas, which we have already received by our perceptions: thus if I wish to represent a monster, I call to my mind the ideas of every thing disagreeable and horrible, and combine the nastiness and gluttony of a hog, the stupidity and obstinacy of an ass, with the fur and awkwardness of a bear, and call the new combination Caliban. Yet such a monster may exist in nature, as all his attributes are parts of nature. So when I wish to represent every thing, that is excellent, and amiable; when I combine benevolence with cheerfulness, wisdom, knowledge, taste, wit, beauty of person, and elegance of manners, and associate them in one lady as a pattern to the world, it is called invention; yet such a person may exist,—such a person does exist!—It is —— ——, who is as much a monster as Caliban.
[4]. In respect to consciousness, we are only conscious of our existence, when we think about it; as we only perceive the lapse of time, when we attend to it; when we are busied about other objects, neither the lapse of time nor the consciousness of our own existence can occupy our attention. Hence, when we think of our own existence, we only excite abstracted or reflex ideas (as they are termed), of our principal pleasures or pains, of our desires or aversions, or of the figure, solidity, colour, or other properties of our bodies, and call that act of the sensorium a consciousness of our existence. Some philosopher, I believe it is Des Cartes, has said, "I think, therefore I exist." But this is not right reasoning, because thinking is a mode of existence; and it is thence only saying, "I exist, therefore I exist." For there are three modes of existence, or in the language of grammarians three kinds of verbs. First, simply I am, or exist. Secondly, I am acting, or exist in a state of activity, as I move. Thirdly, I am suffering, or exist in a state of being acted upon, as I am moved. The when, and the where, as applicable to this existence, depends on the successive motions of our own or of other bodies; and on their respective situations, as spoken of Sect. [XIV. 2. 5].
[5]. Our identity is known by our acquired habits or catenated trains of ideas and muscular motions; and perhaps, when we compare infancy with old age, in those alone can our identity be supposed to exist. For what else is there of similitude between the first speck of living entity and the mature man?—every deduction of reasoning, every sentiment or passion, with every fibre of the corporeal part of our system, has been subject almost to annual mutation; while some catenations alone of our ideas and muscular actions have continued in part unchanged.
By the facility, with which we can in our waking hours voluntarily produce certain successive trains of ideas, we know by experience, that we have before reproduced them; that is, we are conscious of a time of our existence previous to the present time; that is, of our identity now and heretofore. It is these habits of action, these catenations of ideas and muscular motions, which begin with life, and only terminate with it; and which we can in some measure deliver to our posterity; as explained in Sect. [XXXIX].
[6]. When the progressive motions of external bodies make a part of our present catenation of ideas, we attend to the lapse of time; which appears the longer, the more frequently we thus attend to it; as when we expect something at a certain hour, which much interests us, whether it be an agreeable or disagreeable event; or when we count the passing seconds on a stop-watch.
When an idea of our own person, or a reflex idea of our pleasures and pains, desires and aversions, makes a part of this catenation, it is termed consciousness; and if this idea of consciousness makes a part of a catenation, which we excite by recollection, and know by the facility with which we excite it, that we have before experienced it, it is called identity, as explained above.
[7]. In respect to freewill, it is certain, that we cannot will to think of a new train of ideas, without previously thinking of the first link of it; as I cannot will to think of a black swan, without previously thinking of a black swan. But if I now think of a tail, I can voluntarily recollect all animals, which have tails; my will is so far free, that I can pursue the ideas linked to this idea of tail, as far as my knowledge of the subject extends; but to will without motive is to will without desire or aversion; which is as absurd as to feel without pleasure or pain; they are both solecisms in the terms. So far are we governed by the catenations of motions, which affect both the body and the mind of man, and which begin with our irritability, and end with it.
SECT. [XVI].
OF INSTINCT.
Haud equidem credo, quia sit divinitus illis
Ingenium, aut rerum fato prudentia major.—Virg. Georg. L. I. 415.
[I]. Instinctive actions defined. Of connate passions. [II]. Of the sensations and motions of the fœtus in the womb. [III]. Some animals are more perfectly formed than others before nativity. Of learning to walk. [IV]. Of the swallowing, breathing, sucking, pecking, and lapping of young animals. [V]. Of the sense of smell, and its uses to animals. Why cats do not eat their kittens. [VI]. Of the accuracy of sight in mankind, and their sense of beauty. Of the sense of touch in elephants, monkies, beavers, men. [VII]. Of natural language. [VIII]. The origin of natural language; [1]. the language of fear; [2]. of grief; [3]. of tender pleasure; [4]. of serene pleasure; [5]. of anger; [6]. of attention. [IX]. Artificial language of turkies, hens, ducklings, wagtails, cuckoos, rabbits, dogs, and nightingales. [X]. Of music; of tooth-edge; of a good ear; of architecture. [XI]. Of acquired knowledge; of foxes, rooks, fieldfares, lapwings, dogs, cats, horses, crows, and pelicans. [XII]. Of birds of passage, dormice, snakes, bats, swallows, quails, ringdoves, stare, chaffinch, hoopoe, chatterer, hawfinch, crossbill, rails and cranes. [XIII]. Of birds nests; of the cuckoo; of swallows nests; of the taylor bird. [XIV]. Of the old soldier; of haddocks, cods, and dog fish; of the remora; of crabs, herrings, and salmon. [XV]. Of spiders, caterpillars, ants, and the ichneumon. [XVI]. [1]. Of locusts, gnats; [2]. bees; [3]. dormice, flies, worms, ants, and wasps. [XVII]. Of the faculty that distinguishes man from the brutes.
[I]. All those internal motions of animal bodies, which contribute to digest their aliment, produce their secretions, repair their injuries, or increase their growth, are performed without our attention or consciousness. They exist as well in our sleep, as in our waking hours, as well in the fœtus during the time of gestation, as in the infant after nativity, and proceed with equal regularity in the vegetable as in the animal system. These motions have been shewn in a former part of this work to depend on the irritations of peculiar fluids, and as they have never been classed amongst the instinctive actions of animals, are precluded from our present disquisition.
But all those actions of men or animals, that are attended with consciousness, and seem neither to have been directed by their appetites, taught by their experience, nor deduced from observation or tradition, have been referred to the power of instinct. And this power has been explained to be a divine something, a kind of inspiration; whilst the poor animal, that possesses it, has been thought little better than a machine!
The irksomeness, that attends a continued attitude of the body, or the pains, that we receive from heat, cold, hunger, or other injurious circumstances, excite us to general locomotion: and our senses are so formed and constituted by the hand of nature, that certain objects present us with pleasure, others with pain, and we are induced to approach and embrace these, to avoid and abhor those, as such sensations direct us.
Thus the palates of some animals are gratefully affected by the mastication of fruits, others of grains, and others of flesh; and they are thence instigated to attain, and to consume those materials; and are furnished with powers of muscular motion, and of digestion proper for such purposes.
These sensations and desires constitute a part of our system, as our muscles and bones constitute another part: and hence they may alike be termed natural or connate; but neither of them can properly be termed instinctive: as the word instinct in its usual acceptation refers only to the actions of animals, as above explained: the origin of these actions is the subject of our present enquiry.
The reader is intreated carefully to attend to this definition of instinctive actions, lest by using the word instinct without adjoining any accurate idea to it, he may not only include the natural desires of love and hunger, and the natural sensations of pain or pleasure, but the figure and contexture of the body, and the faculty of reason itself under this general term.
[II]. We experience some sensations, and perform some actions before our nativity; the sensations of cold and warmth, agitation and rest, fulness and inanition, are instances of the former; and the repeated struggles of the limbs of the fœtus, which begin about the middle of gestation, and those motions by which it frequently wraps the umbilical chord around its neck or body, and even sometimes ties it on a knot; are instances of the latter. Smellie's Midwifery, (Vol. I. p. 182.)
By a due attention to these circumstances many of the actions of young animals, which at first sight seemed only referable to an inexplicable instinct, will appear to have been acquired like all other animal actions, that are attended with consciousness, by the repeated efforts of our muscles under the conduct of our sensations or desires.
The chick in the shell begins to move its feet and legs on the sixth day of incubation (Mattreican, p. 138); or on the seventh day, (Langley); afterwards they are seen to move themselves gently in the liquid that surrounds them, and to open and shut their mouths, (Harvei, de Generat. p. 62, and 197. Form de Poulet. ii. p. 129). Puppies before the membranes are broken, that involve them, are seen to move themselves, to put out their tongues, and to open and shut their mouths, (Harvey, Gipson, Riolan, Haller). And calves lick themselves and swallow many of their hairs before their nativity: which however puppies do not, (Swammerden, p. 319. Flemyng Phil. Trans. Ann. 1755. 42). And towards the end of gestation, the fœtus of all animals are proved to drink part of the liquid in which they swim, (Haller. Physiol. T. 8. 204). The white of egg is found in the mouth and gizzard of the chick, and is nearly or quite consumed before it is hatched, (Harvie de Generat. 58). And the liquor amnii is found in the mouth and stomach of the human fœtus, and of calves; and how else should that excrement be produced in the intestines of all animals, which is voided in great quantity soon after their birth; (Gipson, Med. Essays, Edinb. V. i. 13. Halleri Physiolog. T. 3. p. 318. and T. 8). In the stomach of a calf the quantity of this liquid amounted to about three pints, and the hairs amongst it were of the same colour with those on its skin, (Blasii Anat. Animal, p.m. 122). These facts are attested by many other writers of credit, besides those above mentioned.
[III]. It has been deemed a surprising instance of instinct, that calves and chickens should be able to walk by a few efforts almost immediately after their nativity: whilst the human infant in those countries where he is not incumbered with clothes, as in India, is five or six months, and in our climate almost a twelvemonth, before he can safely stand upon his feet.
The struggles of all animals in the womb must resemble their mode of swimming, as by this kind of motion they can best change their attitude in water. But the swimming of the calf and chicken resembles their manner of walking, which they have thus in part acquired before their nativity, and hence accomplish it afterwards with very few efforts, whilst the swimming of the human creature resembles that of the frog, and totally differs from his mode of walking.
There is another circumstance to be attended to in this affair, that not only the growth of those peculiar parts of animals, which are first wanted to secure their subsistence, are in general furthest advanced before their nativity: but some animals come into the world more completely formed throughout their whole system than others: and are thence much forwarder in all their habits of motion. Thus the colt, and the lamb, are much more perfect animals than the blind puppy, and the naked rabbit; and the chick of the pheasant, and the partridge, has more perfect plumage, and more perfect eyes, as well as greater aptitude to locomotion, than the callow nestlings of the dove, and of the wren. The parents of the former only find it necessary to shew them their food, and to teach them to take it up; whilst those of the latter are obliged for many days to obtrude it into their gaping mouths.
[IV]. From the facts mentioned in No. [2]. of this Section, it is evinced that the fœtus learns to swallow before its nativity; for it is seen to open its mouth, and its stomach is found filled with the liquid that surrounds it. It opens its mouth, either instigated by hunger, or by the irksomeness of a continued attitude of the muscles of its face; the liquor amnii, in which it swims, is agreeable to its palate, as it consists of a nourishing material, (Haller Phys. T. 8. p. 204). It is tempted to experience its taste further in the mouth, and by a few efforts learns to swallow, in the same manner as we learn all other animal actions, which are attended with consciousness, by the repeated efforts of our muscles under the conduct of our sensations or volitions.
The inspiration of air into the lungs is so totally different from that of swallowing a fluid in which we are immersed, that it cannot be acquired before our nativity. But at this time, when the circulation of the blood is no longer continued through the placenta, that suffocating sensation, which we feel about the precordia, when we are in want of fresh air, disagreeably affects the infant: and all the muscles of the body are excited into action to relieve this oppression; those of the breast, ribs, and diaphragm are found to answer this purpose, and thus respiration is discovered, and is continued throughout our lives, as often as the oppression begins to recur. Many infants, both of the human creature, and of quadrupeds, struggle for a minute after they are born before they begin to breathe, (Haller Phys. T. 8. p. 400. ib pt. 2. p. 1). Mr. Buffon thinks the action of the dry air upon the nerves of smell of new-born animals, by producing an endeavour to sneeze, may contribute to induce this first inspiration, and that the rarefaction of the air by the warmth of the lungs contributes to induce expiration, (Hist. Nat. Tom. 4. p. 174). Which latter it may effect by producing a disagreeable sensation by its delay, and a consequent effort to relieve it. Many children sneeze before they respire, but not all, as far as I have observed, or can learn from others.
At length, by the direction of its sense of smell, or by the officious care of its mother, the young animal approaches the odoriferous rill of its future nourishment, already experienced to swallow. But in the act of swallowing, it is necessary nearly to close the mouth, whether the creature be immersed in the fluid it is about to drink, or not: hence, when the child first attempts to suck, it does not slightly compress the nipple between its lips, and suck as an adult person would do, by absorbing the milk; but it takes the whole nipple into its mouth for this purpose, compresses it between its gums, and thus repeatedly chewing (as it were) the nipple, presses out the milk, exactly in the same manner as it is drawn from the teats of cows by the hands of the milkmaid. The celebrated Harvey observes, that the fœtus in the womb must have sucked in a part of its nourishment, because it knows how to suck the minute it is born, as any one may experience by putting a finger between its lips, and because in a few days it forgets this art of sucking, and cannot without some difficulty again acquire it, (Exercit. de Gener. Anim. 48). The same observation is made by Hippocrates.
A little further experience teaches the young animal to suck by absorption, as well as by compression; that is, to open the chest as in the beginning of respiration, and thus to rarefy the air in the mouth, that the pressure of the denser external atmosphere may contribute to force out the milk.
The chick yet in the shell has learnt to drink by swallowing a part of the white of the egg for its food; but not having experienced how to take up and swallow solid seeds, or grains, is either taught by the felicitous industry of its mother; or by many repeated attempts is enabled at length to distinguish and to swallow this kind of nutriment.
And puppies, though they know how to suck like other animals from their previous experience in swallowing, and in respiration; yet are they long in acquiring the art of lapping with their tongues, which from the flaccidity of their cheeks, and length of their mouths, is afterwards a more convenient way for them to take in water.
[V]. The senses of smell and taste in many other animals greatly excel those of mankind, for in civilized society, as our victuals are generally prepared by others, and are adulterated with salt, spice, oil, and empyreuma, we do not hesitate about eating whatever is set before us, and neglect to cultivate these senses: whereas other animals try every morsel by the smell, before they take it into their mouths, and by the taste before they swallow it: and are led not only each to his proper nourishment by this organ of sense, but it also at a maturer age directs them in the gratification of their appetite of love. Which may be further understood by considering the sympathies of these parts described in Class IV. 2. 1. 7. While the human animal is directed to the object of his love by his sense of beauty, as mentioned in No. [VI]. of this Section. Thus Virgil. Georg. III. 250.
Nonne vides, ut tota tremor pertentat equorum
Corpora, si tantum notas odor attulit auras?
Nonne canis nidum veneris nasutus odore
Quærit, et erranti trahitur sublambere linguâ?
Respuit at gustum cupidus, labiisque retractis
Elevat os, trepidansque novis impellitur æstris
Inserit et vivum felici vomere semen.—
Quam tenui filo cæcos adnectit amores
Docta Venus, vitæque monet renovare favillam!—ANON.
The following curious experiment is related by Galen. "On dissecting a goat great with young I found a brisk embryon, and having detached it from the matrix, and snatching it away before it saw its dam, I brought it into a certain room, where there were many vessels, some filled with wine, others with oil, some with honey, others with milk, or some other liquor; and in others were grains and fruits; we first observed the young animal get upon its feet, and walk; then it shook itself, and afterwards scratched its side with one of its feet: then we saw it smelling to every one of these things, that were set in the room; and when it had smelt to them all, it drank up the milk." L. 6. de locis. cap. 6.
Parturient quadrupeds, as cats, and bitches, and sows, are led by their sense of smell to eat the placenta as other common food; why then do they not devour their whole progeny, as is represented in an antient emblem of TIME? This is said sometimes to happen in the unnatural state in which we confine sows; and indeed nature would seem to have endangered her offspring in this nice circumstance! But at this time the stimulus of the milk in the tumid teats of the mother excites her to look out for, and to desire some unknown circumstance to relieve her. At the same time the smell of the milk attracts the exertions of the young animals towards its source, and thus the delighted mother discovers a new appetite, as mentioned in Sect. [XIV. 8]. and her little progeny are led to receive and to communicate pleasure by this most beautiful contrivance.
[VI]. But though the human species in some of their sensations are much inferior to other animals, yet the accuracy of the sense of touch, which they possess in so eminent a degree, gives them a great superiority of understanding; as is well observed by the ingenious Mr. Buffon. The extremities of other animals terminate in horns, and hoofs, and claws, very unfit for the sensation of touch; whilst the human hand is finely adapted to encompass its object with this organ of sense.
The elephant is indeed endued with a fine sense of feeling at the extremity of his proboscis, and hence has acquired much more accurate ideas of touch and of sight than most other creatures. The two following instances of the sagacity of these animals may entertain the reader, as they were told me by some gentlemen of distinct observation, and undoubted veracity, who had been much conversant with our eastern settlements. First, the elephants that are used to carry the baggage of our armies, are put each under the care of one of the natives of Indostan, and whilst himself and his wife go into the woods to collect leaves and branches of trees for his food, they fix him to the ground by a length of chain, and frequently leave a child yet unable to walk, under his protection: and the intelligent animal not only defends it, but as it creeps about, when it arrives near the extremity of his chain, he wraps his trunk gently round its body, and brings it again into the centre of his circle. Secondly, the traitor elephants are taught to walk on a narrow path between two pit-falls, which are covered with turf, and then to go into the woods, and to seduce the wild elephants to come that way, who fall into these wells, whilst he passes safe between them: and it is universally observed, that those wild elephants that escape the snare, pursue the traitor with the utmost vehemence, and if they can overtake him, which sometimes happens, they always beat him to death.
The monkey has a hand well enough adapted for the sense of touch, which contributes to his great facility of imitation; but in taking objects with his hands, as a stick or an apple, he puts his thumb on the same side of them with his fingers, instead of counteracting the pressure of his fingers with it: from this neglect he is much slower in acquiring the figures of objects, as he is less able to determine the distances or diameters of their parts, or to distinguish their vis inertiæ from their hardness. Helvetius adds, that the shortness of his life, his being fugitive before mankind, and his not inhabiting all climates, combine to prevent his improvement. (De l'Esprit. T. 1. p.) There is however at this time an old monkey shewn in Exeter Change, London, who having lost his teeth, when nuts are given him, takes a stone into his hand, and cracks them with it one by one; thus using tools to effect his purpose like mankind.
The beaver is another animal that makes much use of his hands, and if we may credit the reports of travellers, is possessed of amazing ingenuity. This however, M. Buffon affirms, is only where they exist in large numbers, and in countries thinly peopled with men; while in France in their solitary state they shew no uncommon ingenuity.
Indeed all the quadrupeds, that have collar-bones, (claviculæ) use their fore-limbs in some measure as we use our hands, as the cat, squirrel, tyger, bear and lion; and as they exercise the sense of touch more universally than other animals, so are they more sagacious in watching and surprising their prey. All those birds, that use their claws for hands, as the hawk, parrot, and cuckoo, appear to be more docile and intelligent; though the gregarious tribes of birds have more acquired knowledge.
Now as the images, that are painted on the retina of the eye, are no other than signs, which recall to our imaginations the objects we had before examined by the organ of touch, as is fully demonstrated by Dr. Berkley in his treatise on vision; it follows that the human creature has greatly more accurate and distinct sense of vision than that of any other animal. Whence as he advances to maturity he gradually acquires a sense of female beauty, which at this time directs him to the object of his new passion.
Sentimental love, as distinguished from the animal passion of that name, with which it is frequently accompanied, consists in the desire or sensation of beholding, embracing, and saluting a beautiful object.
The characteristic of beauty therefore is that it is the object of love; and though many other objects are in common language called beautiful, yet they are only called so metaphorically, and ought to be termed agreeable. A Grecian temple may give us the pleasurable idea of sublimity, a Gothic temple may give us the pleasurable idea of variety, and a modern house the pleasurable idea of utility; music and poetry may inspire our love by association of ideas; but none of these, except metaphorically, can be termed beautiful; as we have no wish to embrace or salute them.
Our perception of beauty consists in our recognition by the sense of vision of those objects, first, which have before inspired our love by the pleasure, which they have afforded to many of our senses: as to our sense of warmth, of touch, of smell, of taste, hunger and thirst; and, secondly, which bear any analogy of form to such objects.
When the babe, soon after it is born into this cold world, is applied to its mother's bosom; its sense of perceiving warmth is first agreeably affected; next its sense of smell is delighted with the odour of her milk; then its taste is gratified by the flavour of it: afterwards the appetites of hunger and of thirst afford pleasure by the possession of their objects, and by the subsequent digestion of the aliment; and, lastly, the sense of touch is delighted by the softness and smoothness of the milky fountain, the source of such variety of happiness.
All these various kinds of pleasure at length become associated with the form of the mother's breast; which the infant embraces with its hands, presses with its lips, and watches with its eyes; and thus acquires more accurate ideas of the form of its mother's bosom, than of the odour and flavour or warmth, which it perceives by its other senses. And hence at our maturer years, when any object of vision is presented to us, which by its waving or spiral lines bears any similitude to the form of the female bosom, whether it be found in a landscape with soft gradations of rising and descending surface, or in the forms of some antique vases, or in other works of the pencil or the chissel, we feel a general glow of delight, which seems to influence all our senses; and, if the object be not too large, we experience an attraction to embrace it with our arms, and to salute it with our lips, as we did in our early infancy the bosom of our mother. And thus we find, according to the ingenious idea of Hogarth, that the waving lines of beauty were originally taken from the temple of Venus.
This animal attraction is love; which is a sensation, when the object is present; and a desire, when it is absent. Which constitutes the purest source of human felicity, the cordial drop in the otherwise vapid cup of life, and which overpays mankind for the care and labour, which are attached to the pre-eminence of his situation above other animals.
It should have been observed, that colour as well as form sometimes enters into our idea of a beautiful object, as a good complexion for instance, because a fine or fair colour is in general a sign of health, and conveys to us an idea of the warmth of the object; and a pale countenance on the contrary gives an idea of its being cold to the touch.
It was before remarked, that young animals use their lips to distinguish the forms of things, as well as their fingers, and hence we learn the origin of our inclination to salute beautiful objects with our lips. For a definition of Grace, see Class III. 1. 2. 4.
[VII]. There are two ways by which we become acquainted with the passions of others: first, by having observed the effects of them, as of fear or anger, on our own bodies, we know at sight when others are under the influence of these affections. So when two cocks are preparing to fight, each feels the feathers rise round his own neck, and knows from the same sign the disposition of his adversary: and children long before they can speak, or understand the language of their parents, may be frightened by an angry countenance, or soothed by smiles and blandishments.
Secondly, when we put ourselves into the attitude that any passion naturally occasions, we soon in some degree acquire that passion; hence when those that scold indulge themselves in loud oaths, and violent actions of the arms, they increase their anger by the mode of expressing themselves: and on the contrary the counterfeited smile of pleasure in disagreeable company soon brings along with it a portion of the reality, as is well illustrated by Mr. Burke. (Essay on the Sublime and Beautiful.)
This latter method of entering into the passions of others is rendered of very extensive use by the pleasure we take in imitation, which is every day presented before our eyes, in the actions of children, and indeed in all the customs and fashions of the world. From this our aptitude to imitation, arises what is generally understood by the word sympathy so well explained by Dr. Smith of Glasgow. Thus the appearance of a cheerful countenance gives us pleasure, and of a melancholy one makes us sorrowful. Yawning and sometimes vomiting are thus propagated by sympathy, and some people of delicate fibres, at the presence of a spectacle of misery, have felt pain in the same parts of their own bodies, that were diseased or mangled in the other. Amongst the writers of antiquity Aristotle thought this aptitude to imitation an essential property of the human species, and calls man an imitative animal. Το ζωον μιμωμενον.
These then are the natural signs by which we understand each other, and on this slender basis is built all human language. For without some natural signs, no artificial ones could have been invented or understood, as is very ingeniously observed by Dr. Reid. (Inquiry into the Human Mind.)
[VIII]. The origin of this universal language is a subject of the highest curiosity, the knowledge of which has always been thought utterly inaccessible. A part of which we shall however here attempt.
Light, sound, and odours, are unknown to the fœtus in the womb, which, except the few sensations and motions already mentioned, sleeps away its time insensible of the busy world. But the moment he arrives into day, he begins to experience many vivid pains and pleasures; these are at the same time attended with certain muscular motions, and from this their early, and individual association, they acquire habits of occurring together, that are afterwards indissoluble.
[1]. Of Fear.
As soon as the young animal is born, the first important sensations, that occur to him, are occasioned by the oppression about his precordia for want of respiration, and by his sudden transition from ninety-eight degrees of heat into so cold a climate.—He trembles, that is, he exerts alternately all the muscles of his body, to enfranchise himself from the oppression about his bosom, and begins to breathe with frequent and short respirations; at the same time the cold contracts his red skin, gradually turning it pale; the contents of the bladder and of the bowels are evacuated: and from the experience of these first disagreeable sensations the passion of fear is excited, which is no other than the expectation of disagreeable sensations. This early association of motions and sensations persists throughout life; the passion of fear produces a cold and pale skin, with tremblings, quick respiration, and an evacuation of the bladder and bowels, and thus constitutes the natural or universal language of this passion.
On observing a Canary bird this morning, January 28, 1772, at the house of Mr. Harvey, near Tutbury, in Derbyshire, I was told it always fainted away, when its cage was cleaned, and desired to see the experiment. The cage being taken from the ceiling, and its bottom drawn out, the bird began to tremble, and turned quite white about the root of his bill: he then opened his mouth as if for breath, and respired quick, stood straighter up on his perch, hung his wings, spread his tail, closed his eyes, and appeared quite stiff and cataleptic for near half an hour, and at length with much trembling and deep respirations came gradually to himself.
[2]. Of Grief.
That the internal membrane of the nostrils may be kept always moist, for the better perception of odours, there are two canals, that conduct the tears after they have done their office in moistening and cleaning the ball of the eye into a sack, which is called the lacrymal sack; and from which there is a duct, that opens into the nostrils: the aperture of this duct is formed of exquisite sensibility, and when it is stimulated by odorous particles, or by the dryness or coldness of the air, the sack contracts itself, and pours more of its contained moisture on the organ of smell. By this contrivance the organ is rendered more fit for perceiving such odours, and is preserved from being injured by those that are more strong or corrosive. Many other receptacles of peculiar fluids disgorge their contents, when the ends of their ducts are stimulated; as the gall bladder, when the contents of the duodenum stimulate the extremity of the common bile duct: and the salivary glands, when the termination of their ducts in the mouth are excited by the stimulus of the food we masticate. Atque vesiculæ seminales suum exprimunt fluidum glande penis fricatâ.
The coldness and dryness of the atmosphere, compared with the warmth and moisture, which the new-born infant had just before experienced, disagreeably affects the aperture of this lacrymal sack: the tears, that are contained in this sack, are poured into the nostrils, and a further supply is secreted by the lacrymal glands, and diffused upon the eye-balls; as is very visible in the eyes and nostrils of children soon after their nativity. The same happens to us at our maturer age, for in severe frosty weather, snivelling and tears are produced by the coldness and dryness of the air.
But the lacrymal glands, which separate the tears from the blood, are situated on the upper external part of the globes of each eye; and, when a greater quantity of tears are wanted, we contract the forehead, and bring down the eye-brows, and use many other distortions of the face, to compress these glands.
Now as the suffocating sensation, that produces respiration, is removed almost as soon as perceived, and does not recur again: this disagreeable irritation of the lacrymal ducts, as it must frequently recur, till the tender organ becomes used to variety of odours, is one of the first pains that is repeatedly attended to: and hence throughout our infancy, and in many people throughout their lives, all disagreeable sensations are attended with snivelling at the nose, a profusion of tears, and some peculiar distortions of countenance: according to the laws of early association before mentioned, which constitutes the natural or universal language of grief.
You may assure yourself of the truth of this observation, if you will attend to what passes, when you read a distressful tale alone; before the tears overflow your eyes, you will invariably feel a titillation at that extremity of the lacrymal duct, which terminates in the nostril, then the compression of the eyes succeeds, and the profusion of tears.
Linnæus asserts, that the female bear sheds tears in grief; the same has been said of the hind, and some other animals.
[3]. Of Tender Pleasure.
The first most lively impression of pleasure, that the infant enjoys after its nativity, is excited by the odour of its mother's milk. The organ of smell is irritated by this perfume, and the lacrymal sack empties itself into the nostrils, as before explained, and an increase of tears is poured into the eyes. Any one may observe this, when very young infants are about to suck; for at those early periods of life, the sensation affects the organ of smell, much more powerfully, than after the repeated habits of smelling has inured it to odours of common strength: and in our adult years, the stronger smells, though they are at the same time agreeable to us, as of volatile spirits, continue to produce an increased secretion of tears.
This pleasing sensation of smell is followed by the early affection of the infant to the mother that suckles it, and hence the tender feelings of gratitude and love, as well as of hopeless grief, are ever after joined with the titillation of the extremity of the lacrymal ducts, and a profusion of tears.
Nor is it singular, that the lacrymal sack should be influenced by pleasing ideas, as the sight of agreeable food produces the same effect on the salivary glands. Ac dum vidimus insomniis lascivæ puellæ simulacrum tenditur penis.
Lambs shake or wriggle their tails, at the time when they first suck, to get free of the hard excrement, which had been long lodged in their bowels. Hence this becomes afterwards a mark of pleasure in them, and in dogs, and other tailed animals. But cats gently extend and contract their paws when they are pleased, and purr by drawing in their breath, both which resemble their manner of sucking, and thus become their language of pleasure, for these animals having collar-bones use their paws like hands when they suck, which dogs and sheep do not.
[4]. Of Serene Pleasure.
In the action of sucking, the lips of the infant are closed around the nipple of its mother, till he has filled his stomach, and the pleasure occasioned by the stimulus of this grateful food succeeds. Then the sphincter of the mouth, fatigued by the continued action of sucking, is relaxed; and the antagonist muscles of the face gently acting, produce the smile of pleasure: as cannot but be seen by all who are conversant with children.
Hence this smile during our lives is associated with gentle pleasure; it is visible in kittens, and puppies, when they are played with, and tickled; but more particularly marks the human features. For in children this expression of pleasure is much encouraged, by their imitation of their parents, or friends; who generally address them with a smiling countenance: and hence some nations are more remarkable for the gaiety, and others for the gravity of their looks.
[5]. Of Anger.
The actions that constitute the mode of fighting, are the immediate language of anger in all animals; and a preparation for these actions is the natural language of threatening. Hence the human creature clenches his fist, and sternly surveys his adversary, as if meditating where to make the attack; the ram, and the bull, draws himself some steps backwards, and levels his horns; and the horse, as he most frequently fights by striking with his hinder feet, turns his heels to his foe, and bends back his ears, to listen out the place of his adversary, that the threatened blow may not be ineffectual.
[6]. Of Attention.
The eye takes in at once but half our horizon, and that only in the day, and our smell informs us of no very distant objects, hence we confide principally in the organ of hearing to apprize us of danger: when we hear any the smallest sound, that we cannot immediately account for, our fears are alarmed, we suspend our steps, hold every muscle still, open our mouths a little, erect our ears, and listen to gain further information: and this by habit becomes the general language of attention to objects of sight, as well as of hearing; and even to the successive trains of our ideas.
The natural language of violent pain, which is expressed by writhing the body, grinning, and screaming; and that of tumultuous pleasure, expressed in loud laughter; belong to Section [XXXIV]. on Diseases from Volition.
[IX]. It must have already appeared to the reader, that all other animals, as well as man, are possessed of this natural language of the passions, expressed in signs or tones; and we shall endeavour to evince, that those animals, which have preserved themselves from being enslaved by mankind, and are associated in flocks, are also possessed of some artificial language, and of some traditional knowledge.
The mother-turkey, when she eyes a kite hovering high in air, has either seen her own parents thrown into fear at his presence, or has by observation been acquainted with his dangerous designs upon her young. She becomes agitated with fear, and uses the natural language of that passion, her young ones catch the fear by imitation, and in an instant conceal themselves in the grass.
At the same time that she shews her fears by her gesture and deportment, she uses a certain exclamation, Koe-ut, Koe-ut, and the young ones afterwards know, when they hear this note, though they do not see their dam, that the presence of their adversary is denounced, and hide themselves as before.
The wild tribes of birds have very frequent opportunities of knowing their enemies, by observing the destruction they make among their progeny, of which every year but a small part escapes to maturity: but to our domestic birds these opportunities so rarely occur, that their knowledge of their distant enemies must frequently be delivered by tradition in the manner above explained, through many generations.
This note of danger, as well as the other notes of the mother-turkey, when she calls her flock to their food, or to sleep under her wings, appears to be an artificial language, both as expressed by the mother, and as understood by the progeny. For a hen teaches this language with equal ease to the ducklings, she has hatched from suppositious eggs, and educates as her own offspring: and the wagtails, or hedge-sparrows, learn it from the young cuckoo their softer nursling, and supply him with food long after he can fly about, whenever they hear his cuckooing, which Linnæus tells us, is his call of hunger, (Syst. Nat.) And all our domestic animals are readily taught to come to us for food, when we use one tone of voice, and to fly from our anger, when we use another.
Rabbits, as they cannot easily articulate sounds, and are formed into societies, that live under ground, have a very different method of giving alarm. When danger is threatened, they thump on the ground with one of their hinder feet, and produce a sound, that can be heard a great way by animals near the surface of the earth, which would seem to be an artificial sign both from its singularity and its aptness to the situation of the animal.
The rabbits on the island of Sor, near Senegal, have white flesh, and are well tasted, but do not burrow in the earth, so that we may suspect their digging themselves houses in this cold climate is an acquired art, as well as their note of alarm, (Adanson's Voyage to Senegal).
The barking of dogs is another curious note of alarm, and would seem to be an acquired language, rather than a natural sign: for "in the island of Juan Fernandes, the dogs did not attempt to bark, till some European dogs were put among them, and then they gradually begun to imitate them, but in a strange manner at first, as if they were learning a thing that was not natural to them," (Voyage to South America by Don G. Juan, and Don Ant. de Ulloa. B. 2. c. 4).
Linnæus also observes, that the dogs of South America do not bark at strangers, (Syst. Nat.) And the European dogs, that have been carried to Guinea, are said in three or four generations to cease to bark, and only howl, like the dogs that are natives of that coast, (World Displayed, Vol. XVII. p. 26.)
A circumstance not dissimilar to this, and equally curious, is mentioned by Kircherus, de Musurgia, in his Chapter de Lusciniis, "That the young nightingales, that are hatched under other birds, never sing till they are instructed by the company of other nightingales." And Jonston affirms, that the nightingales that visit Scotland, have not the same harmony as those of Italy, (Pennant's Zoology, octavo, p. 255); which would lead us to suspect that the singing of birds, like human music, is an artificial language rather than a natural expression of passion.
[X]. Our music like our language, is perhaps entirely constituted of artificial tones, which by habit suggest certain agreeable passions. For the same combination of notes and tones do not excite devotion, love, or poetic melancholy in a native of Indostan and of Europe. And "the Highlander has the same warlike ideas annexed to the sound of a bagpipe (an instrument which an Englishman derides), as the Englishman has to that of a trumpet or fife," (Dr. Brown's Union of Poetry and Music, p. 58.) So "the music of the Turks is very different from the Italian, and the people of Fez and Morocco have again a different kind, which to us appears very rough and horrid, but is highly pleasing to them," (L'Arte Armoniaca a Giorgio Antoniotto). Hence we see why the Italian opera does not delight an untutored Englishman; and why those, who are unaccustomed to music, are more pleased with a tune, the second or third time they hear it, than the first. For then the same melodious train of sounds excites the melancholy, they had learned from the song; or the same vivid combination of them recalls all the mirthful ideas of the dance and company.
Even the sounds, that were once disagreeable to us, may by habit be associated with other ideas, so as to become agreeable. Father Lasitau, in his account of the Iroquois, says "the music and dance of those Americans, have something in them extremely barbarous, which at first disgusts. We grow reconciled to them by degrees, and in the end partake of them with pleasure, the savages themselves are fond of them to distraction," (Mœurs des Savages, Tom. ii.)
There are indeed a few sounds, that we very generally associate with agreeable ideas, as the whistling of birds, or purring of animals, that are delighted; and some others, that we as generally associate with disagreeable ideas, as the cries of animals in pain, the hiss of some of them in anger, and the midnight howl of beasts of prey. Yet we receive no terrible or sublime ideas from the lowing of a cow, or the braying of an ass. Which evinces, that these emotions are owing to previous associations. So if the rumbling of a carriage in the street be for a moment mistaken for thunder, we receive a sublime sensation, which ceases as soon as we know it is the noise of a coach and six.
There are other disagreeable sounds, that are said to set the teeth on edge; which, as they have always been thought a necessary effect of certain discordant notes, become a proper subject of our enquiry. Every one in his childhood has repeatedly bit a part of the glass or earthen vessel, in which his food has been given him, and has thence had a very disagreeable sensation in the teeth, which sensation was designed by nature to prevent us from exerting them on objects harder than themselves. The jarring sound produced between the cup and the teeth is always attendant on this disagreeable sensation: and ever after when such a sound is accidentally produced by the conflict of two hard bodies, we feel by association of ideas the concomitant disagreeable sensation in our teeth.
Others have in their infancy frequently held the corner of a silk handkerchief in their mouth, or the end of the velvet cape of their coat, whilst their companions in play have plucked it from them, and have given another disagreeable sensation to their teeth, which has afterwards recurred on touching those materials. And the sight of a knife drawn along a china plate, though no sound is excited by it, and even the imagination of such a knife and plate so scraped together, I know by repeated experience will produce the same disagreeable sensation of the teeth.
These circumstances indisputably prove, that this sensation of the tooth-edge is owing to associated ideas; as it is equally excitable by sight, touch, hearing, or imagination.
In respect to the artificial proportions of sound excited by musical instruments, those, who have early in life associated them with agreeable ideas, and have nicely attended to distinguish them from each other, are said to have a good ear, in that country where such proportions are in fashion: and not from any superior perfection in the organ of hearing, or any intuitive sympathy between certain sounds and passions.
I have observed a child to be exquisitely delighted with music, and who could with great facility learn to sing any tune that he heard distinctly, and yet whole organ of hearing was so imperfect, that it was necessary to speak louder to him in common conversation than to others.
Our music, like our architecture, seems to have no foundation in nature, they are both arts purely of human creation, as they imitate nothing. And the professors of them have only classed those circumstances, that are most agreeable to the accidental taste of their age, or country; and have called it Proportion. But this proportion must always fluctuate, as it rests on the caprices, that are introduced into our minds by our various modes of education. And these fluctuations of taste must become more frequent in the present age, where mankind have enfranchised themselves from the blind obedience to the rules of antiquity in perhaps every science, but that of architecture. See Sect. [XII. 7. 3].
[XI]. There are many articles of knowledge, which the animals in cultivated countries seem to learn very early in their lives, either from each other, or from experience, or observation: one of the most general of these is to avoid mankind. There is so great a resemblance in the natural language of the passions of all animals, that we generally know, when they are in a pacific, or in a malevolent humour, they have the same knowledge of us; and hence we can scold them from us by some tones and gestures, and could possibly attract them to us by others, if they were not already apprized of our general malevolence towards them. Mr. Gmelin, Professor at Petersburg, assures us, that in his journey into Siberia, undertaken by order of the Empress of Russia, he saw foxes, that expressed no fear of himself or companions, but permitted him to come quite near them, having never seen the human creature before. And Mr. Bongainville relates, that at his arrival at the Malouine, or Falkland's Islands, which were not inhabited by men, all the animals came about himself and his people; the fowls settling upon their heads and shoulders, and the quadrupeds running about their feet. From the difficulty of acquiring the confidence of old animals, and the ease of taming young ones, it appears that the fear, they all conceive at the sight of mankind, is an acquired article of knowledge.
This knowledge is more nicely understood by rooks, who are formed into societies, and build, as it were, cities over our heads; they evidently distinguish, that the danger is greater when a man is armed with a gun. Every one has seen this, who in the spring of the year has walked under a rookery with a gun in his hand: the inhabitants of the trees rise on their wings, and scream to the unfledged young to shrink into their nests from the sight of the enemy. The vulgar observing this circumstance so uniformly to occur, assert that rooks can smell gun-powder.
The fieldfares, (turdus pilarus) which breed in Norway, and come hither in the cold season for our winter berries; as they are associated in flocks, and are in a foreign country, have evident marks of keeping a kind of watch, to remark and announce the appearance of danger. On approaching a tree, that is covered with them, they continue fearless till one at the extremity of the bush rising on his wings gives a loud and peculiar note of alarm, when they all immediately fly, except one other, who continues till you approach still nearer, to certify as it were the reality of the danger, and then he also flies off repeating the note of alarm.
And in the woods about Senegal there is a bird called uett-uett by the negroes, and squallers by the French, which, as soon as they see a man, set up a loud scream, and keep flying round him, as if their intent was to warn other birds, which upon hearing the cry immediately take wing. These birds are the bane of sportsmen, and frequently put me into a passion, and obliged me to shoot them, (Adanson's Voyage to Senegal, 78). For the same intent the lesser birds of our climate seem to fly after a hawk, cuckoo, or owl, and scream to prevent their companions from being surprised by the general enemies of themselves, or of their eggs and progeny.
But the lapwing, (charadrius pluvialis Lin.) when her unfledged offspring run about the marshes, where they were hatched, not only gives the note of alarm at the approach of men or dogs, that her young may conceal themselves; but flying and screaming near the adversary, she appears more felicitous and impatient, as he recedes from her family, and thus endeavours to mislead him, and frequently succeeds in her design. These last instances are so apposite to the situation, rather than to the natures of the creatures, that use them; and are so similar to the actions of men in the same circumstances, that we cannot but believe, that they proceed from a similar principle.
Miss M.E. Jacson acquainted me, that she witnessed this autumn an agreeable instance of sagacity in a little bird, which seemed to use the means to obtain an end; the bird repeatedly hopped upon a poppy-stem, and shook the head with its bill, till many seeds were scattered, then it settled on the ground, and eat the seeds, and again repeated the same management. Sept. 1, 1794.
On the northern coast of Ireland a friend of mine saw above a hundred crows at once preying upon muscles; each crow took a muscle up into the air twenty or forty yards high, and let it fall on the stones, and thus by breaking the shell, got possession of the animal.—A certain philosopher (I think it was Anaxagoras) walking along the sea-shore to gather shells, one of these unlucky birds mistaking his bald head for a stone, dropped a shell-fish upon it, and killed at once a philosopher and an oyster.
Our domestic animals, that have some liberty, are also possessed of some peculiar traditional knowledge: dogs and cats have been forced into each other's society, though naturally animals of a very different kind, and have hence learned from each other to eat dog's grass (agrostis canina) when they are sick, to promote vomiting. I have seen a cat mistake the blade of barley for this grass, which evinces it is an acquired knowledge. They have also learnt of each other to cover their excrement and urine;—about a spoonful of water was spilt upon my hearth from the tea-kettle, and I observed a kitten cover it with ashes. Hence this must also be an acquired art, as the creature mistook the application of it.
To preserve their fur clean, and especially their whiskers, cats wash their faces, and generally quite behind their ears, every time they eat. As they cannot lick those places with their tongues, they first wet the inside of the leg with saliva, and then repeatedly wash their faces with it, which must originally be an effect of reasoning, because a means is used to produce an effect; and seems afterwards to be taught or acquired by imitation, like the greatest part of human arts.
These animals seem to possess something like an additional sense by means of their whiskers; which have perhaps some analogy to the antennæ of moths and butterflies. The whiskers of cats consist not only of the long hairs on their upper lips, but they have also four or five long hairs standing up from each eyebrow, and also two or three on each cheek; all which, when the animal erects them, make with their points so many parts of the periphery of a circle, of an extent at least equal to the circumference of any part of their own bodies. With this instrument, I conceive, by a little experience, they can at once determine, whether any aperture amongst hedges or shrubs, in which animals of this genus live in their wild state, is large enough to admit their bodies; which to them is a matter of the greatest consequence, whether pursuing or pursued. They have likewise a power of erecting and bringing forward the whiskers on their lips; which probably is for the purpose of feeling, whether a dark hole be further permeable.
The antennæ, or horns, of butterflies and moths, who have awkward wings, the minute feathers of which are very liable to injury, serve, I suppose, a similar purpose of measuring, as they fly or creep amongst the leaves of plants and trees, whither their wings can pass without touching them.
Mr. Leonard, a very intelligent friend of mine, saw a cat catch a trout by darting upon it in a deep clear water at the mill at Weaford, near Lichfield. The cat belonged to Mr. Stanley, who had often seen her catch fish in the same manner in summer, when the mill-pool was drawn so low, that the fish could be seen. I have heard of other cats taking fish in shallow water, as they stood on the bank. This seems a natural art of taking their prey in cats, which their acquired delicacy by domestication has in general prevented them from using, though their desire of eating fish continues in its original strength.
Mr. White, in his ingenious History of Selbourn, was witness to a cat's suckling a young hare, which followed her about the garden, and came jumping to her call of affection. At Elford, near Lichfield, the Rev. Mr. Sawley had taken the young ones out of a hare, which was shot; they were alive, and the cat, who had just lost her own kittens, carried them away, as it was supposed, to eat them; but it presently appeared, that it was affection not hunger which incited her, as she suckled them, and brought them up as their mother.
Other instances of the mistaken application of what has been termed instinct may be observed in flies in the night, who mistaking a candle for day-light, approach and perish in the flame. So the putrid smell of the stapelia, or carrion-flower, allures the large flesh-fly to deposit its young worms on its beautiful petals, which perish there for want of nourishment. This therefore cannot be a necessary instinct, because the creature mistakes the application of it.
Though in this country horses shew little vestiges of policy, yet in the deserts of Tartary, and Siberia, when hunted by the Tartars they are seen to form a kind of community, set watches to prevent their being surprised, and have commanders, who direct, and hasten their flight, Origin of Language, Vol. I. p. 212. In this country, where four or five horses travel in a line, the first always points his ears forward, and the last points his backward, while the intermediate ones seem quite careless in this respect; which seems a part of policy to prevent surprise. As all animals depend most on the ear to apprize them of the approach of danger, the eye taking in only half the horizon at once, and horses possess a great nicety of this sense; as appears from their mode of fighting mentioned No. [8. 5]. of this Section, as well as by common observation.
There are some parts of a horse, which he cannot conveniently rub, when they itch, as about the shoulder, which he can neither bite with his teeth, nor scratch with his hind foot; when this part itches, he goes to another horse, and gently bites him in the part which he wishes to be bitten, which is immediately done by his intelligent friend. I once observed a young foal thus bite its large mother, who did not choose to drop the grass she had in her mouth, and rubbed her nose against the foal's neck instead of biting it; which evinces that she knew the design of her progeny, and was not governed by a necessary instinct to bite where she was bitten.
Many of our shrubs, which would otherwise afford an agreeable food to horses, are armed with thorns or prickles, which secure them from those animals; as the holly, hawthorn, gooseberry, gorse. In the extensive moorlands of Staffordshire, the horses have learnt to stamp upon a gorse-bush with one of their fore-feet for a minute together, and when the points are broken, they eat it without injury. The horses in the new forest in Hampshire are affirmed to do the same by Mr. Gilpin. Forest Scenery, II. 251, and 112. Which is an art other horses in the fertile parts of the country do not possess, and prick their mouths till they bleed, if they are induced by hunger or caprice to attempt eating gorse.
Swine have a sense of touch as well as of smell at the end of their nose, which they use as a hand, both to root up the soil, and to turn over and examine objects of food, somewhat like the proboscis of an elephant. As they require shelter from the cold in this climate, they have learnt to collect straw in their mouths to make their nest, when the wind blows cold; and to call their companions by repeated cries to assist in the work, and add to their warmth by their numerous bedfellows. Hence these animals, which are esteemed so unclean, have also learned never to befoul their dens, where they have liberty, with their own excrement; an art, which cows and horses, which have open hovels to run into, have never acquired. I have observed great sagacity in swine; but the short lives we allow them, and their general confinement, prevents their improvement, which might probably be otherwise greater than that of dogs.
Instances of the sagacity and knowledge of animals are very numerous to every observer, and their docility in learning various arts from mankind, evinces that they may learn similar arts from their own species, and thus be possessed of much acquired and traditional knowledge.
A dog whose natural prey is sheep, is taught by mankind, not only to leave them unmolested, but to guard them; and to hunt, to set, or to destroy other kinds of animals, as birds, or vermin; and in some countries to catch fish, in others to find truffles, and to practise a great variety of tricks; is it more surprising that the crows should teach each other, that the hawk can catch less birds, by the superior swiftness of his wing, and if two of them follow him, till he succeeds in his design, that they can by force share a part of the capture? This I have formerly observed with attention and astonishment.
There is one kind of pelican mentioned by Mr. Osbeck, one of Linnæus's travelling pupils (the pelicanus aquilus), whose food is fish; and which it takes from other birds, because it is not formed to catch them itself; hence it is called by the English a Man-of-war-bird, Voyage to China, p. 88. There are many other interesting anecdotes of the pelican and cormorant, collected from authors of the best authority, in a well-managed Natural History for Children, published by Mr. Galton. Johnson. London.
And the following narration from the very accurate Mons. Adanson, in his Voyage to Senegal, may gain credit with the reader: as his employment in this country was solely to make observations in natural history. On the river Niger, in his road to the island Griel, he saw a great number of pelicans, or wide throats. "They moved with great state like swans upon the water, and are the largest bird next to the ostrich; the bill of the one I killed was upwards of a foot and half long, and the bag fastened underneath it held two and twenty pints of water. They swim in flocks, and form a large circle, which they contract afterwards, driving the fish before them with their legs: when they see the fish in sufficient number confined in this space, they plunge their bill wide open into the water, and shut it again with great quickness. They thus get fish into their throat-bag, which they eat afterwards on shore at their leisure." P. 247.
[XII]. The knowledge and language of those birds, that frequently change their climate with the seasons, is still more extensive: as they perform these migrations in large societies, and are less subject to the power of man, than the resident tribes of birds. They are said to follow a leader during the day, who is occasionally changed, and to keep a continual cry during the night to keep themselves together. It is probable that these emigrations were at first undertaken as accident directed, by the more adventurous of their species, and learned from one another like the discoveries of mankind in navigation. The following circumstances strongly support this opinion.
[1]. Nature has provided these animals, in the climates where they are produced, with another resource: when the season becomes too cold for their constitutions, or the food they were supported with ceases to be supplied, I mean that of sleeping. Dormice, snakes, and bats, have not the means of changing their country; the two former from the want of wings, and the latter from his being not able to bear the light of the day. Hence these animals are obliged to make use of this resource, and sleep during the winter. And those swallows that have been hatched too late in the year to acquire their full strength of pinion, or that have been maimed by accident or disease, have been frequently found in the hollows of rocks on the sea coasts, and even under water in this torpid state, from which they have been revived by the warmth of a fire. This torpid state of swallows is testified by innumerable evidences both of antient and modern names. Aristotle speaking of the swallows says, "They pass into warmer climates in winter, if such places are at no great distance; if they are, they bury themselves in the climates where they dwell," (8. Hist. c. 16. See also Derham's Phys. Theol. v. ii. p. 177.)
Hence their emigrations cannot depend on a necessary instinct, as the emigrations themselves are not necessary.
[2]. When the weather becomes cold, the swallows in the neighbourhood assemble in large flocks; that is, the unexperienced attend those that have before experienced the journey they are about to undertake: they are then seen some time to hover on the coast, till there is calm whether, or a wind, that suits the direction of their flight. Other birds of passage have been drowned by thousands in the sea, or have settled on ships quite exhausted with fatigue. And others, either by mistaking their course, or by distress of weather, have arrived in countries where they were never seen before: and thus are evidently subject to the same hazards that the human species undergo, in the execution of their artificial purposes.
[3]. The same birds are emigrant from some countries and not so from others: the swallows were seen at Goree in January by an ingenious philosopher of my acquaintance, and he was told that they continued there all the year; as the warmth of the climate was at all seasons sufficient for their own constitutions, and for the production of the flies that supply them with nourishment. Herodotus says, that in Libya, about the springs of the Nile, the swallows continue all the year. (L. 2.)
Quails (tetrao corturnix, Lin.) are birds of passage from the coast of Barbary to Italy, and have frequently settled in large shoals on ships fatigued with their flight. (Ray, Wisdom of God, p. 129. Derham. Physic. Theol. v. ii. p. 178,) Dr. Ruffel, in his History of Aleppo, observes that the swallows visit that country about the end of February, and having hatched their young disappear about the end of July; and returning again about the beginning of October, continue about a fortnight, and then again disappear. (P. 70.)
When my late friend Dr. Chambres, of Derby, was on the island of Caprea in the bay of Naples, he was informed that great flights of quails annually settle on that island about the beginning of May, in their passage from Africa to Europe. And that they always come when the south-east wind blows, are fatigued when they rest on this island, and are taken in such amazing quantities and sold to the Continent, that the inhabitants pay the bishop his stipend out of the profits arising from the sale of them.
The flights of these birds across the Mediterranean are recorded near three thousand years ago. "There went forth a wind from the Lord and brought quails from the sea, and let them fall upon the camp, a day's journey round about it, and they were two cubits above the earth," (Numbers, chap. ii. ver. 31.)
In our country, Mr. Pennant informs us, that some quails migrate, and others only remove from the internal parts of the island to the coasts, (Zoology, octavo, 210.) Some of the ringdoves and stares breed here, others migrate, (ibid. 510, ii.) And the slender billed small birds do not all quit these kingdoms in the winter, though the difficulty of procuring the worms and insects, that they feed on, supplies the same reason for migration to them all, (ibid. 511.)
Linnæus has observed, that in Sweden the female chaffinches quit that country in September, migrating into Holland, and leave their mates behind till their return in spring. Hence he has called them Fringilla cælebs, (Amæn. Acad. ii. 42. iv. 595.) Now in our climate both sexes of them are perennial birds. And Mr. Pennant observes that the hoopoe, chatterer, hawfinch, and crossbill, migrate into England so rarely, and at such uncertain times, as not to deserve to be ranked among our birds of passage, (ibid. 511.)
The water fowl, as geese and ducks, are better adapted for long migrations, than the other tribes of birds, as, when the weather is calm, they can not only rest themselves, or sleep upon the ocean, but possibly procure some kind of food from it.
Hence in Siberia, as soon as the lakes are frozen, the water fowl, which are very numerous, all disappear, and are supposed to fly to warmer climates, except the rail, which, from its inability for long flights, probably sleeps, like our bat, in their winter. The following account from the Journey of Professor Gmelin, may entertain the reader. "In the neighbourhood of Krasnoiark, amongst many other emigrant water fowls, we observed a great number of rails, which when pursued never took flight, but endeavoured to escape by running. We enquired how these birds, that could not fly, could retire into other countries in the winter, and were told, both by the Tartars and Assanians, that they well knew those birds could not alone pass into other countries: but when the cranes (les grues) retire in autumn, each one takes a rail (un rale) upon his back, and carries him to a warmer climate."
Recapitulation.
1. All birds of passage can exist in the climates, where they are produced.
2. They are subject in their migrations to the same accidents and difficulties, that mankind are subject to in navigation.
3. The same species of birds migrate from some countries, and are resident in others.
From all these circumstances it appears that the migrations of birds are not produced by a necessary instinct, but are accidental improvements, like the arts among mankind, taught by their cotemporaries, or delivered by tradition from one generation of them to another.
[XIII]. In that season of the year which supplies the nourishment proper for the expected brood, the birds enter into a contract of marriage, and with joint labour construct a bed for the reception of their offspring. Their choice of the proper season, their contracts of marriage, and the regularity with which they construct their nests, have in all ages excited the admiration of naturalists; and have always been attributed to the power of instinct, which, like the occult qualities of the antient philosophers, prevented all further enquiry. We shall consider them in their order.
Their Choice of the Season.
Our domestic birds, that are plentifully supplied throughout the year with their adapted food, and are covered with houses from the inclemency of the weather, lay their eggs at any season: which evinces that the spring of the year is not pointed out to them by a necessary instinct.
Whilst the wild tribes of birds choose this time of the year from their acquired knowledge, that the mild temperature of the air is more convenient for hatching their eggs, and is soon likely to supply that kind of nourishment, that is wanted for their young.
If the genial warmth of the spring produced the passion of love, as it expands the foliage of trees, all other animals should feel its influence as well as birds: but, the viviparous creatures, as they suckle their young, that is, as they previously digest the natural food, that it may better suit the tender stomachs of their offspring, experience the influence of this passion at all seasons of the year, as cats and bitches. The graminivorous animals indeed generally produce their young about the time when grass is supplied in the greatest plenty, but this is without any degree of exactness, as appears from our cows, sheep, and hares, and may be a part of the traditional knowledge, which they learn from the example of their parents.
Their Contracts of Marriage.
Their mutual passion, and the acquired knowledge, that their joint labour is necessary to procure sustenance for their numerous family, induces the wild birds to enter into a contract of marriage, which does not however take place among the ducks, geese, and fowls, that are provided with their daily food from our barns.
An ingenious philosopher has lately denied, that animals can enter into contracts, and thinks this an essential difference between them and the human creature:—but does not daily observation convince us, that they form contracts of friendship with each other, and with mankind? When puppies and kittens play together, is there not a tacit contract, that they will not hurt each other? And does not your favorite dog expect you should give him his daily food, for his services and attention to you? And thus barters his love for your protection? In the same manner that all contracts are made amongst men, that do not understand each others arbitrary language.
Construction of their Nests.
[1]. They seem to be instructed how to build their nests from their observation of that, in which they were educated, and from their knowledge of those things, that are most agreeable to their touch in respect: to warmth, cleanliness, and stability. They choose their situations from their ideas of safety from their enemies, and of shelter from the weather. Nor is the colour of their nests a circumstance unthought of; the finches, that build in green hedges, cover their habitations with green moss; the swallow or martin, that builds against rocks and houses, covers her's with clay, whilst the lark chooses vegetable straw nearly of the colour of the ground she inhabits: by this contrivance, they are all less liable to be discovered by their adversaries.
[2]. Nor are the nests of the same species of birds constructed always of the same materials, nor in the same form; which is another circumstance that ascertains, that they are led by observation.
In the trees before Mr. Levet's house in Lichfield, there are annually nests built by sparrows, a bird which usually builds under the tiles of houses, or the thatch of barns. Not finding such convenient situations for their nests, they build a covered nest bigger than a man's head, with an opening like a mouth at the side, resembling that of a magpie, except that it is built with straw and hay, and lined with feathers, and so nicely managed as to be a defence against both wind and rain.
The following extract from a Letter of the Rev. Mr. J. Darwin, of Carleton Scroop in Lincolnshire, authenticates a curious fact of this kind. "When I mentioned to you the circumstance of crows or rooks building in the spire of Welbourn church, you expressed a desire of being well informed of the certainty of the fact. Welbourn is situated in the road from Grantham to Lincoln on the Cliff row; I yesterday took a ride thither, and enquired of the rector, Mr. Ridgehill, whether the report was true, that rooks built in the spire of his church. He assured me it was true, and that they had done so time immemorial, as his parishioners affirmed. There was a common tradition, he said, that formerly a rookery in some high trees adjoined the church yard, which being cut down (probably in the spring, the building season), the rooks removed to the church, and built their nests on the outside of the spire on the tops of windows, which by their projection a little from the spire made them convenient room, but that they built also on the inside. I saw two nests made with sticks on the outside, and in the spires, and Mr. Ridgehill said there were always a great many.
"I spent the day with Mr. Wright, a clergyman, at Fulbeck, near Welbourn, and in the afternoon Dr. Ellis of Headenham, about two miles from Welbourn, drank tea at Mr. Wright's, who said he remembered, when Mr. Welby lived at Welbourn, that he received a letter from an acquaintance in the west of England, desiring an answer, whether the report of rooks building in Welbourn church was true, as a wager was depending on that subject; to which he returned an answer ascertaining the fact, and decided the wager." Aug. 30, 1794.
So the jackdaw (corvus monedula) generally builds in church-steeples, or under the roofs of high houses; but at Selbourn, in Southamptonshire, where towers and steeples are not sufficiently numerous, these birds build in forsaken rabbit burrows. See a curious account of these subterranean nests in White's History of Selbourn, p. 59. Can the skilful change of architecture in these birds and the sparrows above mentioned be governed by instinct? Then they must have two instincts, one for common, and the other for extraordinary occasions.
I have seen green worsted in a nest, which no where exists in nature: and the down of thistles in those nests, that were by some accident constructed later in the summer, which material could not be procured for the earlier nests: in many different climates they cannot procure the same materials, that they use in ours. And it is well known, that the canary birds, that are propagated in this country, and the finches, that are kept tame, will build their nests of any flexile materials, that are given them. Plutarch, in his Book on Rivers, speaking of the Nile, says, "that the swallows collect a material, when the waters recede, with which they form nests, that are impervious to water." And in India there is a swallow that collects a glutinous substance for this purpose, whose nest is esculent, and esteemed a principal rarity amongst epicures, (Lin. Syst. Nat.) Both these must be constructed of very different materials from those used by the swallows of our country.
In India the birds exert more artifice in building their nests on account of the monkeys and snakes: some form their pensile nests in the shape of a purse, deep and open at top; others with a hole in the side; and others, still more cautious, with an entrance at the very bottom, forming their lodge near the summit. But the taylor-bird will not ever trust its nest to the extremity of a tender twig, but makes one more advance to safety by fixing it to the leaf itself. It picks up a dead leaf, and sews it to the side of a living one, its slender bill being its needle, and its thread some fine fibres; the lining consists of feathers, gossamer, and down; its eggs are white, the colour of the bird light yellow, its length three inches, its weight three sixteenths of an ounce; so that the materials of the nest, and the weight of the bird, are not likely to draw down an habitation so slightly suspended. A nest of this bird is preserved in the British Museum, (Pennant's Indian Zoology). This calls to one's mind the Mosaic account of the origin of mankind, the first dawning of art there ascribed to them, is that of sewing leaves together. For many other curious kinds of nests see Natural History for Children, by Mr. Galton. Johnson. London. Part I. p. 47. Gen. Oriolus.
[3]. Those birds that are brought up by our care, and have had little communication with others of their own species, are very defective in this acquired knowledge; they are not only very awkward in the construction of their nests, but generally scatter their eggs in various parts of the room or cage, where they are confined, and seldom produce young ones, till, by failing in their first attempt, they have learnt something from their own observation.
[4]. During the time of incubation birds are said in general to turn their eggs every day; some cover them, when they leave the nest, as ducks and geese; in some the male is said to bring food to the female, that she may have less occasion of absence, in others he is said to take her place, when she goes in quest of food; and all of them are said to leave their eggs a shorter time in cold weather than in warm. In Senegal the ostrich sits on her eggs only during the night, leaving them in the day to the heat of the sun; but at the Cape of Good Hope, where the heat is less, she sits on them day and night.
If it should be asked, what induces a bird to sit weeks on its first eggs unconscious that a brood of young ones will be the product? The answer must be, that it is the same passion that induces the human mother to hold her offspring whole nights and days in her fond arms, and press it to her bosom, unconscious of its future growth to sense and manhood, till observation or tradition have informed her.
[5]. And as many ladies are too refined to nurse their own children, and deliver them to the care and provision of others; so is there one instance of this vice in the feathered world. The cuckoo in some parts of England, as I am well informed by a very distinct and ingenious gentleman, hatches and educates her own young; whilst in other parts she builds no nest, but uses that of some lesser bird, generally either of the wagtail, or hedge sparrow, and depositing one egg in it, takes no further care of her progeny.
As the Rev. Mr. Stafford was walking in Glosop Dale, in the Peak of Derbyshire, he saw a cuckoo rise from its nest. The nest was on the stump of a tree, that had been some time felled, among some chips that were in part turned grey, so as much to resemble the colour of the bird, in this nest were two young cuckoos: tying a string about the leg of one of them, he pegged the other end of it to the ground, and very frequently for many days beheld the old cuckoo feed these her young, as he stood very near them.
The following extract of a Letter from the Rev. Mr. Wilmot, of Morley, near Derby, strengthens the truth of the fact above mentioned, of the cuckoo sometimes making a nest, and hatching her own young.
"In the beginning of July 1792, I was attending some labourers on my farm, when one of them said to me, "There is a bird's nest upon one of the Coal-slack Hills; the bird is now sitting, and is exactly like a cuckoo. They say that cuckoo's never hatch their own eggs, otherwise I should have sworn it was one." He took me to the spot, it was in an open fallow ground; the bird was upon the nest, I stood and observed her some time, and was perfectly satisfied it was a cuckoo; I then put my hand towards her, and she almost let me touch her before she rose from the nest, which she appeared to quit with great uneasiness, skimming over the ground in the manner that a hen partridge does when disturbed from a new hatched brood, and went only to a thicket about forty or fifty yards from the nest; and continued there as long as I staid to observe her, which was not many minutes. In the nest, which was barely a hole scratched out of the coal-slack in the manner of a plover's nest, I observed three eggs, but did not touch them. As I had labourers constantly at work in that field, I went thither every day, and always looked to see if the bird was there, but did not disturb her for seven or eight days, when I was tempted to drive her from the nest, and found two young ones, that appeared to have been hatched some days, but there was no appearance of the third egg. I then mentioned this extraordinary circumstance (for such I thought it) to Mr. and Mrs. Holyoak of Bidford Grange, Warwickshire, and to Miss M. Willes, who were on a visit at my house, and who all went to see it. Very lately I reminded Mr. Holyoak of it, who told me he had a perfect recollection of the whole, and that, considering it a curiosity, he walked to look at it several times, was perfectly satisfied as to its being a cuckoo, and thought her more attentive to her young, than any other bird he ever observed, having always found her brooding her young. In about a week after I first saw the young ones, one of them was missing, and I rather suspected my plough-boys having taken it; though it might possibly have been taken by a hawk, some time when the old one was seeking food. I never found her off her nest but once, and that was the last time I saw the remaining young one, when it was almost full feathered. I then went from home for two or three days, and, when I returned, the young one was gone, which I take for granted had flown. Though during this time I frequently saw cuckoos in the thicket I mention, I never observed any one, that I supposed to be the cock-bird, paired with this hen."
Nor is this a new observation, though it is entirely overlooked by the modern naturalists, for Aristotle speaking of the cuckoo, asserts that she sometimes builds her nest among broken rocks, and on high mountains, (L. 6. H. c. 1.) but adds in another place that she generally possesses the nest of another bird, (L. 6. H. c. 7.) And Niphus says that cuckoos rarely build for themselves, most frequently laying their eggs in the nests of other birds, (Gesner, L. 3. de Cuculo.)
The Philosopher who is acquainted with these facts concerning the cuckoo, would seem to have very little reason himself, if he could imagine this neglect of her young to be a necessary instinct!
[XIV]. The deep recesses of the ocean are inaccessible to mankind, which prevents us from having much knowledge of the arts and government of its inhabitants.
[1]. One of the baits used by the fisherman is an animal called an Old Soldier, his size and form are somewhat like the craw-fish, with this difference, that his tail is covered with a tough membrane instead of a shell; and to obviate this defect, he seeks out the uninhabited shell of some dead fish, that is large enough to receive his tail, and carries it about with him as part of his clothing or armour.
[2]. On the coasts about Scarborough, where the haddocks, cods, and dog-fish, are in great abundance, the fishermen universally believe that the dog-fish make a line, or semicircle, to encompass a shoal of haddocks and cod, confining them within certain limits near the shore, and eating them as occasion requires. For the haddocks and cod are always found near the shore without any dog-fish among them, and the dog-fish further off without any haddocks or cod; and yet the former are known to prey upon the latter, and in some years devour such immense quantities as to render this fishery more expensive than profitable.
[3]. The remora, when he wishes to remove his situation, as he is a very slow swimmer, is content to take an outside place on whatever conveyance is going his way; nor can the cunning animal be tempted to quit his hold of a ship when she is sailing, not even for the lucre of a piece of pork, lest it should endanger the loss of his passage: at other times he is easily caught with the hook.
[4]. The crab-fish, like many other testaceous animals, annually changes its shell; it is then in a soft state, covered only with a mucous membrane, and conceals itself in holes in the sand or under weeds; at this place a hard shelled crab always stands centinel, to prevent the sea insects from injuring the other in its defenceless state; and the fishermen from his appearance know where to find the soft ones, which they use for baits in catching other fish.
And though the hard shelled crab, when he is on this duty, advances boldly to meet the foe, and will with difficulty quit the field; yet at other times he shews great timidity, and has a wonderful speed in attempting his escape; and, if often interrupted, will pretend death like the spider, and watch an opportunity to sink himself into the sand, keeping only his eyes above. My ingenious friend Mr. Burdett, who favoured me with these accounts at the time he was surveying the coasts, thinks the commerce between the sexes takes place at this time, and inspires the courage of the creature.
[5]. The shoals of herrings, cods, haddocks, and other fish, which approach our shores at certain seasons, and quit them at other seasons without leaving one behind; and the salmon, that periodically frequent our rivers, evince, that there are vagrant tribes of fish, that perform as regular migrations as the birds of passage already mentioned.
[6]. There is a cataract on the river Liffey in Ireland about nineteen feet high: here in the salmon season many of the inhabitants amuse themselves in observing these fish leap up the torrent. They dart themselves quite out of the water as they ascend, and frequently fall back many times before they surmount it, and baskets made of twigs are placed near the edge of the stream to catch them in their fall.
I have observed, as I have sat by a spout of water, which descends from a stone trough about two feet into a stream below, at particular seasons of the year, a great number of little fish called minums, or pinks, throw themselves about twenty times their own length out of the water, expecting to get into the trough above.
This evinces that the storgee, or attention of the dam to provide for the offspring, is strongly exerted amongst the nations of fish, where it would seem to be the most neglected; as these salmon cannot be supposed to attempt so difficult and dangerous a task without being conscious of the purpose or end of their endeavours.
It is further remarkable, that most of the old salmon return to the sea before it is proper for the young shoals to attend them, yet that a few old ones continue in the rivers so late, that they become perfectly emaciated by the inconvenience of their situation, and this apparently to guide or to protect the unexperienced brood.
Of the smaller water animals we have still less knowledge, who nevertheless probably possess many superior arts; some of these are mentioned in Botanic Garden, P. I. Add. Note XXVII. and XXVIII. The nympha of the water-moths of our rivers, which cover themselves with cases of straw, gravel, and shell, contrive to make their habitations, nearly in equilibrium with the water; when too heavy, they add a bit of wood or straw; when too light, a bit of gravel. Edinb. Trans.
All these circumstances bear a near resemblance to the deliberate actions of human reason.
[XV]. We have a very imperfect acquaintance with the various tribes of insects: their occupations, manner of life, and even the number of their senses, differ from our own, and from each other; but there is reason to imagine, that those which possess the sense of touch in the most exquisite degree, and whole occupations require the most constant exertion of their powers, are induced with a greater proportion or knowledge and ingenuity.
The spiders of this country manufacture nets of various forms, adapted to various situations, to arrest the flies that are their food; and some of them have a house or lodging-place in the middle of the net, well contrived for warmth, security, or concealment. There is a large spider in South America, who constructs nets of so strong a texture as to entangle small birds, particularly the humming bird. And in Jamaica there is another spider, who digs a hole in the earth obliquely downwards, about three inches in length, and one inch in diameter, this cavity she lines with a tough thick web, which when taken out resembles a leathern purse: but what is most curious, this house has a door with hinges, like the operculum of some sea shells; and herself and family, who tenant this nest, open and shut the door, whenever they pass or repass. This history was told me, and the nest with its operculum shewn me by the late Dr. Butt of Bath, who was some years physician in Jamaica.
The production of these nets is indeed a part of the nature or conformation of the animal, and their natural use is to supply the place of wings, when she wishes to remove to another situation. But when she employs them to entangle her prey, there are marks of evident design, for she adapts the form of each net to its situation, and strengthens those lines, that require it, by joining others to the middle of them, and attaching those others to distant objects, with the same individual art, that is used by mankind in supporting the masts and extending the sails of ships. This work is executed with more mathematical exactness and ingenuity by the field spiders, than by those in our houses, as their constructions are more subjected to the injuries of dews and tempests.
Besides the ingenuity shewn by these little creatures in taking their prey, the circumstance of their counterfeiting death, when they are put into terror, is truly wonderful; and as soon as the object of terror is removed, they recover and run away. Some beetles are also said to possess this piece of hypocrisy.
The curious webs, or chords, constructed by some young caterpillars to defend themselves from cold, or from insects of prey; and by silk-worms and some other caterpillars, when they transmigrate into aureliæ or larvæ, have deservedly excited the admiration of the inquisitive. But our ignorance of their manner of life, and even of the number of their senses, totally precludes us from understanding the means by which they acquire this knowledge.
The care of the salmon in choosing a proper situation for her spawn, the structure of the nests of birds, their patient incubation, and the art of the cuckoo in depositing her egg in her neighbour's nursery, are instances of great sagacity in those creatures: and yet they are much inferior to the arts exerted by many of the insect tribes on similar occasions. The hairy excrescences on briars, the oak apples, the blasted leaves of trees, and the lumps on the backs of cows, are situations that are rather produced than chosen by the mother insect for the convenience of her offspring. The cells of bees, wasps, spiders, and of the various coralline insects, equally astonish us, whether we attend to the materials or to the architecture.
But the conduct of the ant, and of some species of the ichneumon fly in the incubation of their eggs, is equal to any exertion of human science. The ants many times in a day move their eggs nearer the surface of their habitation, or deeper below it, as the heat of the weather varies; and in colder days lie upon them in heaps for the purpose of incubation: if their mansion is too dry, they carry them to places where there is moisture, and you may distinctly see the little worms move and suck up the water. When too much moisture approaches their nest, they convey their eggs deeper in the earth, or to some other place of safety. (Swammerd. Epil. ad Hist. Insects, p. 153. Phil. Trans. No. 23. Lowthrop. V. 2. p. 7.)
There is one species of ichneumon-fly, that digs a hole in the earth, and carrying into it two or three living caterpillars, deposits her eggs, and nicely closing up the nest leaves them there; partly doubtless to assist the incubation, and partly to supply food to her future young, (Derham. B. 4, c. 13. Aristotle Hist. Animal, L. 5. c. 20.)
A friend of mine put about fifty large caterpillars collected from cabbages on some bran and a few leaves into a box, and covered it with gauze to prevent their escape. After a few days we saw, from more than three fourths of them, about eight or ten little caterpillars of the ichneumon-fly come out of their backs, and spin each a small cocoon of silk, and in a few days the large caterpillars died. This small fly it seems lays its egg in the back of the cabbage caterpillar, which when hatched preys upon the material, which is produced there for the purpose of making silk for the future nest of the cabbage caterpillar; of which being deprived, the creature wanders about till it dies, and thus our gardens are preserved by the ingenuity of this cruel fly. This curious property of producing a silk thread, which is common to some sea animals, see Botanic Garden, Part I. Note XXVII. and is designed for the purpose of their transformation as in the silk-worm, is used for conveying themselves from higher branches to lower ones of trees by some caterpillars, and to make themselves temporary nests or tents, and by the spider for entangling his prey. Nor is it strange that so much knowledge should be acquired by such small animals; since there is reason to imagine, that these insects have the sense of touch, either in their proboscis, or their antennæ, to a great degree of perfection; and thence may possess, as far as their sphere extends, as accurate knowledge, and as subtle invention, as the discoverers of human arts.
[XVI]. [1]. If we were better acquainted with the histories of those insects that are formed into societies, as the bees, wasps, and ants, I make no doubt but we should find, that their arts and improvements are not so similar and uniform as they now appear to us, but that they arose in the same manner from experience and tradition, as the arts of our own species; though their reasoning is from fewer ideas, is busied about fewer objects, and is exerted with less energy.
There are some kinds of insects that migrate like the birds before mentioned. The locust of warmer climates has sometimes come over to England; it is shaped like a grasshopper, with very large wings, and a body above an inch in length. It is mentioned as coming into Egypt with an east wind, "The lord brought an east wind upon the land all that day and night, and in the morning the east wind brought the locusts, and covered the face of the earth, so that the land was dark," Exod. x. 13. The migrations of these insects are mentioned in another part of the scripture, "The locusts have no king, yet go they forth all of them in bands," Prov. xxx. 27.
The accurate Mr. Adanson, near the river Gambia in Africa, was witness to the migration of these insects. "About eight in the morning, in the month of February, there suddenly arose over our heads a thick cloud, which darkened the air, and deprived us of the rays of the sun. We found it was a cloud of locusts raised about twenty or thirty fathoms from the ground, and covering an extent of several leagues; at length a shower of these insects descended, and after devouring every green herb, while they rested, again resumed their flight. This cloud was brought by a strong east-wind, and was all the morning in passing over the adjacent country." (Voyage to Senegal, 158.)
In this country the gnats are sometimes seen to migrate in clouds, like the musketoes of warmer climates, and our swarms of bees frequently travel many miles, and are said in North America always to fly towards the south. The prophet Isaiah has a beautiful allusion to these migrations, "The Lord shall call the fly from the rivers of Egypt, and shall hiss for the bee that is in the land of Assyria," Isa. vii. 18. which has been lately explained by Mr. Bruce, in his travels to discover the source of the Nile.
[2]. I am well informed that the bees that were carried into Barbadoes, and other western islands, ceased to lay up any honey after the first year, as they found it not useful to them: and are now become very troublesome to the inhabitants of those islands by infesting their sugar houses; but those in Jamaica continue to make honey, as the cold north winds, or rainy seasons of that island, confine them at home for several weeks together. And the bees of Senegal, which differ from those of Europe only in size, make their honey not only superior to ours in delicacy of flavour, but it has this singularity, that it never concretes, but remains liquid as syrup, (Adanson). From some observations of Mr. Wildman, and of other people of veracity, it appears, that during the severe part of the winter season for weeks together the bees are quite benumbed and torpid from the cold, and do not consume any of their provision. This state of sleep, like that of swallows and bats, seems to be the natural resource of those creatures in cold climates, and the making of honey to be an artificial improvement.
As the death of our hives of bees appears to be owning to their being kept so warm, as to require food when their stock is exhausted; a very observing gentleman at my request put two hives for many weeks into a dry cellar, and observed, during all that time, they did not consume any of their provision, for their weight did not decrease as it had done when they were kept in the open air. The same observation is made in the Annual Register for 1768, p. 113. And the Rev. Mr. White, in his Method of preserving Bees, adds, that those on the north side of his house consumed less honey in the winter than those on the south side.
There is another observation on bees well ascertained, that they at various times, when the season begins to be cold, by a general motion of their legs as they hang in clusters produce a degree of warmth, which is easily perceptible by the hand. Hence by this ingenious exertion, they for a long time prevent the torpid state they would naturally fall into.
According to the late observations of Mr. Hunter, it appears that the bee's-wax is not made from the dust of the anthers of flowers, which they bring home on their thighs, but that this makes what is termed bee-bread, and is used for the purpose of feeding the bee-maggots; in the same manner butterflies live on honey, but the previous caterpillar lives on vegetable leaves, while the maggots of large flies require flesh for their food, and those of the ichneumon fly require insects for their food. What induces the bee who lives on honey to lay up vegetable powder for its young? What induces the butterfly to lay its eggs on leaves, when itself feeds on honey? What induces the other flies to seek a food for their progeny different from what they consume themselves? If these are not deductions from their own previous experience or observation, all the actions of mankind must be resolved into instinct.
[3]. The dormouse consumes but little of its food during the rigour of the season, for they roll themselves up, or sleep, or lie torpid the greatest part of the time; but on warm sunny days experience a short revival, and take a little food, and then relapse into their former state." (Pennant Zoolog. p. 67.) Other animals, that sleep in winter without laying up any provender, are observed to go into their winter beds fat and strong, but return to day-light in the spring season very lean and feeble. The common flies sleep during the winter without any provision for their nourishment, and are daily revived by the warmth of the sun, or of our fires. These whenever they see light endeavour to approach it, having observed, that by its greater vicinity they get free from the degree of torpor, that the cold produces; and are hence induced perpetually to burn themselves in our candles: deceived, like mankind, by the misapplication of their knowledge. Whilst many of the subterraneous insects, as the common worms, seem to retreat so deep into the earth as not to be enlivened or awakened by the difference of our winter days; and stop up their holes with leaves or straws, to prevent the frosts from injuring them, or the centipes from devouring them. The habits of peace, or the stratagems of war, of these subterranean nations are covered from our view; but a friend of mine prevailed on a distressed worm to enter the hole of another worm on a bowling-green, and he presently returned much wounded about his head. And I once saw a worm rise hastily out of the earth into the sunshine, and observed a centipes hanging at its tail: the centipes nimbly quitted the tail, and seizing the worm about its middle cut it in half with its forceps, and preyed upon one part, while the other escaped. Which evinces they have design in stopping the mouths of their habitations.
[4]. The wasp of this country fixes his habitation under ground, that he may not be affected with the various changes of our climate; but in Jamaica he hangs it on the bough of a tree, where the seasons are less severe. He weaves a very curious paper of vegetable fibres to cover his nest, which is constructed on the same principle with that of the bee, but with a different material; but as his prey consists of flesh, fruits, and insects, which are perishable commodities, he can lay up no provender for the winter.
M. de la Loubiere, in his relation of Siam, says, "That in a part of that kingdom, which lies open to great inundations, all the ants make their settlements upon trees; no ants' nests are to be seen any where else." Whereas in our country the ground is their only situation. From the scriptual account of these insects, one might be led to suspect, that in some climates they lay up a provision for the winter. Origen affirms the same, (Cont. Cels. L. 4.) But it is generally believed that in this country they do not, (Prov. vi. 6. xxx. 25.) The white ants of the coast of Africa make themselves pyramids eight or ten feet high, on a base of about the same width, with a smooth surface of rich clay, excessively hard and well built, which appear at a distance like an assemblage of the huts of the negroes, (Adanson). The history of these has been lately well described in the Philosoph. Transactions, under the name of termes, or termites. These differ very much from the nest of our large ant; but the real history of this creature, as well as of the wasp, is yet very imperfectly known.
Wasps are said to catch large spiders, and to cut off their legs, and carry their mutilated bodies to their young, Dict. Raison. Tom. I. p. 152.
One circumstance I shall relate which fell under my own eye, and shewed the power or reason in a wasp, as it is exercised among men. A wasp, on a gravel walk, had caught a fly nearly as large as himself; kneeling on the ground I observed him separate the tail and the head from the body part, to which the wings were attached. He then took the body part in his paws, and rose about two feet from the ground with it; but a gentle breeze wafting the wings of the fly turned him round in the air, and he settled again with his prey upon the gravel. I then distinctly observed him cut off with his mouth, first one of the wings, and then the other, after which he flew away with it unmolested by the wind.
Go, thou sluggard, learn arts and industry from the bee, and from the ant!
Go, proud reasoner, and call the worm thy sister!
[XVII]. Conclusion.
It was before observed how much the superior accuracy of our sense of touch contributes to increase our knowledge; but it is the greater energy and activity of the power of volition (as explained in the former Sections of this work) that marks mankind, and has given him the empire of the world.
There is a criterion by which we may distinguish our voluntary acts or thoughts from those that are excited by our sensations: "The former are always employed about the means to acquire pleasureable objects, or to avoid painful ones: while the latter are employed about the possession of those that are already in our power."
If we turn our eyes upon the fabric of our fellow animals, we find they are supported with bones, covered with skins, moved by muscles; that they possess the same senses, acknowledge the same appetites, and are nourished by the same aliment with ourselves; and we should hence conclude from the strongest analogy, that their internal faculties were also in some measure similar to our own.
Mr. Locke indeed published an opinion, that other animals possessed no abstract or general ideas, and thought this circumstance was the barrier between the brute and the human world. But these abstracted ideas have been since demonstrated by Bishop Berkley, and allowed by Mr. Hume, to have no existence in nature, not even in the mind of their inventor, and we are hence necessitated to look for some other mark of distinction.
The ideas and actions of brutes, like those of children, are almost perpetually produced by their present pleasures, or their present pains; and, except in the few instances that have been mentioned in this Section, they seldom busy themselves about the means of procuring future bliss, or of avoiding future misery.
Whilst the acquiring of languages, the making of tools, and the labouring for money; which are all only the means of procuring pleasure; and the praying to the Deity, as another means to procure happiness, are characteristic of human nature.
SECT. [XVII].
THE CATENATION OF MOTIONS.
[I]. [1]. Catenations of animal motion. [2]. Are produced by irritations, by sensations, by volitions. [3]. They continue some time after they have been excited. Cause of catenation. [4]. We can then exert our attention on other objects. [5]. Many catenations of motions go on together. [6]. Some links of the catenations of motions may be left out without disuniting the chain. [7]. Interrupted circles of motion continue confusedly till they come to the part of the circle, where they were disturbed. [8]. Weaker catenations are dissevered by stronger. [9]. Then new catenations take place. [10]. Much effort prevents their reuniting. Impediment of speech. [11]. Trains more easily dissevered than circles. [12]. Sleep destroys volition and external stimulus. [II]. Instances of various catenations in a young lady playing on the harpsichord. [III]. [1]. What catenations are the strongest. [2]. Irritations joined with associations from strongest connexions. Vital motions. [3]. New links with increased force, cold fits of fever produced. [4]. New links with decreased force. Cold bath. [5]. Irritation joined with sensation. Inflammatory fever. Why children cannot tickle themselves. [6]. Volition joined with sensation. Irritative ideas of sound become sensible. [7]. Ideas of imagination, dissevered by irritations, by volition, production of surprise.
[I]. [1]. To investigate with precision the catenations of animal motions, it would be well to attend to the manner of their production; but we cannot begin this disquisition early enough for this purpose, as the catenations of motion seem to begin with life, and are only extinguishable with it; We have spoken of the power of irritation, of sensation, of volition, and of association, as preceding the fibrous motions; we now step forwards, and consider, that conversely they are in their turn preceded by those motions; and that all the successive trains or circles of our actions are composed of this twofold concatenation. Those we shall call trains of action, which continue to proceed without any stated repetitions; and those circles of action, when the parts of them return at certain periods, though the trains, of which they consist, are not exactly similar. The reading an epic poem is a train of actions; the reading a song with a chorus at equal distances in the measure constitutes so many circles of action.
[2]. Some catenations of animal motion are produced by reiterated successive irritations, as when we learn to repeat the alphabet in its order by frequently reading the letters of it. Thus the vermicular motions of the bowels were originally produced by the successive irritations of the passing aliment; and the succession of actions of the auricles and ventricles of the heart was originally formed by successive stimulus of the blood, these afterwards become part of the diurnal circles of animal actions, as appears by the periodical returns of hunger, and the quickened pulse of weak people in the evening.
Other catenations of animal motion are gradually acquired by successive agreeable sensations, as in learning a favourite song or dance; others by disagreeable sensations, as in coughing or nictitation; these become associated by frequent repetition, and afterwards compose parts of greater circles of action like those above mentioned.
Other catenations of motions are gradually acquired by frequent voluntary repetitions; as when we deliberately learn to march, read, fence, or any mechanic art, the motions of many of our muscles become gradually linked together in trains, tribes, or circles of action. Thus when any one at first begins to use the tools in turning wood or metals in a lathe, he wills the motions of his hand or fingers, till at length these actions become so connected with the effect, that he seems only to will the point of the chisel. These are caused by volition, connected by association like those above described, and afterwards become parts of our diurnal trains or circles of action.
[3]. All these catenations of animal motions, are liable to proceed some time after they are excited, unless they are disturbed or impeded by other irritations, sensations, or volitions; and in many instances in spite of our endeavours to stop them; and this property of animal motions is probably the cause of their catenation. Thus when a child revolves some minute on one foot, the spectra of the ambient objects appear to circulate round him some time after he falls upon the ground. Thus the palpitation of the heart continues some time after the object of fear, which occasioned it, is removed. The blush of shame, which is an excess of sensation, and the glow of anger, which is an excess of volition, continue some time, though the affected person finds, that those emotions were caused by mistaken facts, and endeavours to extinguish their appearance. See Sect. [XII. 1. 5].
[4]. When a circle of motions becomes connected, by frequent repetitions as above, we can exert our attention strongly on other objects, and the concatenated circle of motions will nevertheless proceed in due order; as whilst you are thinking on this subject, you use variety of muscles in walking about your parlour, or in sitting at your writing-table.
[5]. Innumerable catenations of motions may proceed at the same time, without incommoding each other. Of these are the motions of the heart and arteries; those of digestion and glandular secretion; of the ideas, or sensual motions; those of progression, and of speaking; the great annual circle of actions so apparent in birds in their times of breeding and moulting; the monthly circles of many female animals; and the diurnal circles of sleeping and waking, of fulness and inanition.
[6]. Some links of successive trains or of synchronous tribes of action may be left out without disjoining the whole. Such are our usual trains of recollection; after having travelled through an entertaining country, and viewed many delightful lawns, rolling rivers, and echoing rocks; in the recollection of our journey we leave out the many districts, that we crossed, which were marked with no peculiar pleasure. Such also are our complex ideas, they are catenated tribes of ideas, which do not perfectly resemble their correspondent perceptions, because some of the parts are omitted.
[7]. If an interrupted circle of actions is not entirely dissevered, it will continue to proceed confusedly, till it comes to the part of the circle, where it was interrupted.
The vital motions in a fever from drunkenness, and in other periodical diseases, are instances of this circumstance. The accidental inebriate does not recover himself perfectly till about the same hour on the succeeding day. The accustomed drunkard is disordered, if he has not his usual potation of fermented liquor. So if a considerable part of a connected tribe of action be disturbed, that whole tribe goes on with confusion, till the part of the tribe affected regains its accustomed catenations. So vertigo produces vomiting, and a great secretion of bile, as in sea-sickness, all these being parts of the tribe of irritative catenations.
[8]. Weaker catenated trains may be dissevered by the sudden exertion of the stronger. When a child first attempts to walk across a room, call to him, and he instantly falls upon the ground. So while I am thinking over the virtues of my friends, if the tea-kettle spurt out some hot water on my stocking; the sudden pain breaks the weaker chain of ideas, and introduces a new group of figures of its own. This circumstance is extended to some unnatural trains of action, which have not been confirmed by long habit; as the hiccough, or an ague-fit, which are frequently curable by surprise. A young lady about eleven years old had for five days had a contraction of one muscle in her fore arm, and another in her arm, which occurred four or five times every minute; the muscles were seen to leap, but without bending the arm. To counteract this new morbid habit, an issue was placed over the convulsed muscle of her arm, and an adhesive plaster wrapped tight like a bandage over the whole fore arm, by which the new motions were immediately destroyed, but the means were continued some weeks to prevent a return.
[9]. If any circle of actions is dissevered, either by omission of some of the links, as in sleep, or by insertion of other links, as in surprise, new catenations take place in a greater or less degree. The last link of the broken chain of actions becomes connected with the new motion which has broken it, or with that which was nearest the link omitted; and these new catenations proceed instead of the old ones. Hence the periodic returns of ague-fits, and the chimeras of our dreams.
[10]. If a train of actions is dissevered, much effort of volition or sensation will prevent its being restored. Thus in the common impediment of speech, when the association of the motions of the muscles of enunciation with the idea of the word to be spoken is disordered, the great voluntary efforts, which distort the countenance, prevent the rejoining of the broken associations. See No. [II. 10]. of this Section. It is thus likewise observable in some inflammations of the bowels, the too strong efforts made by the muscles to carry forwards the offending material fixes it more firmly in its place, and prevents the cure. So in endeavouring to recal to our memory some particular word of a sentence, if we exert ourselves too strongly about it, we are less likely to regain it.
[11]. Catenated trains or tribes of action are easier dissevered than catenated circles of action. Hence in epileptic fits the synchronous connected tribes of action, which keep the body erect, are dissevered, but the circle of vital motions continues undisturbed.
[12]. Sleep destroys the power of volition, and precludes the stimuli of external objects, and thence dissevers the trains, of which these are a part; which confirms the other catenations, as those of the vital motions, secretions, and absorptions; and produces the new trains of ideas, which constitute our dreams.
[II]. [1]. All the preceding circumstances of the catenations of animal motions will be more clearly understood by the following example of a person learning music; and when we recollect the variety of mechanic arts, which are performed by associated trains of muscular actions catenated with the effects they produce, as in knitting, netting, weaving; and the greater variety of associated trains of ideas caused or catenated by volitions or sensations, as in our hourly modes of reasoning, or imagining, or recollecting, we shall gain some idea of the innumerable catenated trains and circles of action, which form the tenor of our lives, and which began, and will only cease entirely with them.
[2]. When a young lady begins to learn music, she voluntarily applies herself to the characters of her music-book, and by many repetitions endeavours to catenate them with the proportions of sound, of which they are symbols. The ideas excited by the musical characters are slowly connected with the keys of the harpsichord, and much effort is necessary to produce every note with the proper finger, and in its due place and time; till at length a train of voluntary exertions becomes catenated with certain irritations. As the various notes by frequent repetitions become connected in the order, in which they are produced, a new catenation of sensitive exertions becomes mixed with the voluntary ones above described; and not only the musical symbols of crotchets and quavers, but the auditory notes and tones at the same time, become so many successive or synchronous links in this circle of catenated actions.
At length the motions of her fingers become catenated with the musical characters; and these no sooner strike the eye, than the finger presses down the key without any voluntary attention between them; the activity of the hand being connected with the irritation of the figure or place of the musical symbol on the retina; till at length by frequent repetitions of the same tune the movements of her fingers in playing, and the muscles of the larynx in singing, become associated with each other, and form part of those intricate trains and circles of catenated motions, according with the second article of the preceding propositions in No. [1]. of this Section.
[3]. Besides the facility, which by habit attends the execution of this musical performance, a curious circumstance occurs, which is, that when our young musician has began a tune, she finds herself inclined to continue it; and that even when she is carelessly singing alone without attending to her own song; according with the third preceding article.
[4]. At the same time that our young performer continues to play with great exactness this accustomed tune, she can bend her mind, and that intensely, on some other object, according with the fourth article of the preceding proportions.
The manuscript copy of this work was lent to many of my friends at different times for the purpose of gaining their opinions and criticisms on many parts of it, and I found the following anecdote written with a pencil opposite to this page, but am not certain by whom. "I remember seeing the pretty young actress, who succeeded Mrs. Arne in the performance of the celebrated Padlock, rehearse the musical parts at her harpsichord under the eye of her master with great taste and accuracy; though I observed her countenance full of emotion, which I could not account for; at last she suddenly burst into tears; for she had all this time been eyeing a beloved canary bird, suffering great agonies, which at that instant fell dead from its perch."
[5]. At the same time many other catenated circles of action are going on in the person of our fair musician, as well as the motions of her fingers, such as the vital motions, respiration, the movements of her eyes and eyelids, and of the intricate muscles of vocality, according with the fifth preceding article.
[6]. If by any strong impression on the mind of our fair musician she should be interrupted for a very inconsiderable time, she can still continue her performance, according to the sixth article.
[7]. If however this interruption be greater, though the chain of actions be not dissevered, it proceeds confusedly, and our young performer continues indeed to play, but in a hurry without accuracy and elegance, till she begins the tune again, according to the seventh of the preceding articles.
[8]. But if this interruption be still greater, the circle of actions becomes entirely dissevered, and she finds herself immediately under the necessity to begin over again to recover the lost catenation, according to the eighth preceding article.
[9]. Or in trying to recover it she will sing some dissonant notes, or strike some improper keys, according to the ninth preceding article.
[10]. A very remarkable thing attends this breach of catenation, if the performer has forgotten some word of her song, the more energy of mind she uses about it, the more distant is she from regaining it; and artfully employs her mind in part on some other object, or endeavours to dull its perceptions, continuing to repeat, as it were inconsciously, the former part of the song, that she remembers, in hopes to regain the lost connexion.
For if the activity of the mind itself be more energetic, or takes its attention more, than the connecting word, which is wanted; it will not perceive the slighter link of this lost word; as who listens to a feeble sound, must be very silent and motionless; so that in this case the very vigour of the mind itself seems to prevent it from regaining the lost catenation, as well as the too great exertion in endeavouring to regain it, according to the tenth preceding article.
We frequently experience, when we are doubtful about the spelling of a word, that the greater voluntary exertion we use, that is the more intensely we think about it, the further are we from regaining the lost association between the letters of it, but which readily recurs when we have become careless about it. In the same manner, after having for an hour laboured to recollect the name of some absent person, it shall seem, particularly after sleep, to come into the mind as it were spontaneously; that is the word we are in search of, was joined to the preceding one by association; this association being dissevered, we endeavour to recover it by volition; this very action of the mind strikes our attention more, than the faint link of association, and we find it impossible by this means to retrieve the lost word. After sleep, when volition is entirely suspended, the mind becomes capable of perceiving the fainter link of association, and the word is regained.
On this circumstance depends the impediment of speech before mentioned; the first syllable of a word is causable by volition, but the remainder of it is in common conversation introduced by its associations with this first syllable acquired by long habit. Hence when the mind of the stammerer is vehemently employed on some idea of ambition of shining, or fear of not succeeding, the associations of the motions of the muscles of articulation with each other become dissevered by this greater exertion, and he endeavours in vain by voluntary efforts to rejoin the broken association. For this purpose he continues to repeat the first syllable, which is causable by volition, and strives in vain, by various distortions of countenance, to produce the next links, which are subject to association. See Class IV. 3. 1. 1.
[11]. After our accomplished musician has acquired great variety of tunes and songs, so that some of them begin to cease to be easily recollected, she finds progressive trains of musical notes more frequently forgotten, than those which are composed of reiterated circles, according with the eleventh preceding article.
[12]. To finish our example with the preceding articles we must at length suppose, that our fair performer falls asleep over her harpsichord; and thus by the suspension of volition, and the exclusion of external stimuli, she dissevers the trains and circles of her musical exertions.
[III]. [1]. Many of these circumstances of catenations of motions receive an easy explanation from the four following consequences to the seventh law of animal causation in Sect. [IV]. These are, first, that those successions or combinations of animal motions, whether they were united by causation, association, or catenation, which have been most frequently repeated, acquire the strongest connection. Secondly, that of these, those, which have been less frequently mixed with other trains or tribes of motion, have the strongest connection. Thirdly, that of these, those, which were first formed, have the strongest connection. Fourthly, that if an animal motion be excited by more than one causation, association, or catenation, at the same time, it will be performed with greater energy.
[2]. Hence also we understand, why the catenations of irritative motions are more strongly connected than those of the other classes, where the quantity of unmixed repetition has been equal; because they were first formed. Such are those of the secerning and absorbent systems of vessels, where the action of the gland produces a fluid, which stimulates the mouths of its correspondent absorbents. The associated motions seem to be the next most strongly united, from their frequent repetition; and where both these circumstances unite, as in the vital motions, their catenations are indissoluble but by the destruction of the animal.
[3]. Where a new link has been introduced into a circle of actions by some accidental defect of stimulus; if that defect of stimulus be repeated at the same part of the circle a second or a third time, the defective motions thus produced, both by the repeated defect of stimulus and by their catenation with the parts of the circle of actions, will be performed with less and less energy. Thus if any person is exposed to cold at a certain hour to-day, so long as to render some part of the system for a time torpid; and is again exposed to it at the same hour to-morrow, and the next day; he will be more and more affected by it, till at length a cold fit of fever is completely formed, as happens at the beginning of many of those fevers, which are called nervous or low fevers. Where the patient has slight periodical shiverings and paleness for many days before the febrile paroxysm is completely formed.
[4]. On the contrary, if the exposure to cold be for so short a time, as not to induce any considerable degree of torpor or quiescence, and is repeated daily as above mentioned, it loses its effect more and more at every repetition, till the constitution can bear it without inconvenience, or indeed without being conscious of it. As in walking into the cold air in frosty weather. The same rule is applicable to increased stimulus, as of heat, or of vinous spirit, within certain limits, as is applied in the two last paragraphs to Deficient Stimulus; as is further explained in Sect. [XXXVI]. on the Periods of Diseases.
[5]. Where irritation coincides with sensation to produce the same catenations of motion, as in inflammatory fevers, they are excited with still greater energy than by the irritation alone. So when children expect to be tickled in play, by a feather lightly passed over the lips, or by gently vellicating the soles of their feet, laughter is most vehemently excited; though they can stimulate these parts with their own fingers unmoved. Here the pleasureable idea of playfulness coincides with the vellication; and there is no voluntary exertion used to diminish the sensation, as there would be, if a child should endeavour to tickle himself. See Sect. [XXXIV. 1. 4].
[6]. And lastly, the motions excited by the junction of voluntary exertion with irritation are performed with more energy, than those by irritation singly; as when we listen to small noises, as to the ticking of a watch in the night, we perceive the most weak sounds, that are at other times unheeded. So when we attend to the irritative ideas of sound in our ears, which are generally not attended to, we can hear them; and can see the spectra of objects, which remain in the eye, whenever we please to exert our voluntary power in aid of those weak actions of the retina, or of the auditory nerve.
[7]. The temporary catenations of ideas, which are caused by the sensations of pleasure or pain, are easily dissevered either by irritations, as when a sudden noise disturbs a day-dream; or by the power of volition, as when we awake from sleep. Hence in our waking hours, whenever an idea occurs, which is incongruous to our former experience, we instantly dissever the train of imagination by the power of volition, and compare the incongruous idea with our previous knowledge of nature, and reject it. This operation of the mind has not yet acquired a specific name, though it is exerted every minute of our waking hours; unless it may be termed INTUITIVE ANALOGY. It is an act of reasoning of which we are unconscious except from its effects in preserving the congruity of our ideas, and bears the same relation to the sensorial power of volition, that irritative ideas, of which we are inconscious except by their effects, do to the sensorial power of irritation; as the former is produced by volition without our attention to it, and the latter by irritation without our attention to them.
If on the other hand a train of imagination or of voluntary ideas are excited with great energy, and passing on with great vivacity, and become dissevered by some violent stimulus, as the discharge of a pistol near one's ear, another circumstance takes place, which is termed SURPRISE; which by exciting violent irritation, and violent sensation, employs for a time the whole sensorial energy, and thus dissevers the passing trains of ideas, before the power of volition has time to compare them with the usual phenomena of nature. In this case fear is generally the companion of surprise, and adds to our embarrassment, as every one experiences in some degree when he hears a noise in the dark, which he cannot instantly account for. This catenation of fear with surprise is owing to our perpetual experience of injuries from external bodies in motion, unless we are upon our guard against them. See Sect. [XVIII. 17]. [XIX. 2].
Many other examples of the catenations of animal motions are explained in Sect. [XXXVI]. on the Periods of Diseases.
SECT. [XVIII].
OF SLEEP.
[1]. Volition is suspended in sleep. [2]. Sensation continues. Dreams prevent delirium and inflammation. [3]. Nightmare. [4]. Ceaseless flow of ideas in dreams. [5]. We seem to receive them by the senses. Optic nerve perfectly sensible in sleep. Eyes less dazzled after dreaming of visible objects. [6]. Reverie, belief. [7]. How we distinguish ideas from perceptions. [8]. Variety of scenery in dreams, excellence of the sense of vision. [9]. Novelty of combination in dreams. [10]. Distinctness of imagery in dreams. [11]. Rapidity of transaction in dreams. [12]. Of measuring time. Of dramatic time and place. Why a dull play induces sleep, and an interesting one reverie. [13]. Consciousness of our existence and identity in dreams. [14]. How we awake sometimes suddenly, sometimes frequently. [15]. Irritative motions continue in sleep, internal irritations are succeeded by sensation. Sensibility increases during sleep, and irritability. Morning dreams. Why epilepsies occur in sleep. Ecstacy of children. Case of convulsions in sleep. Cramp, why painful. Asthma. Morning sweats. Increase of heat. Increase of urine in sleep. Why more liable to take cold in sleep. Catarrh from thin night-caps. Why we feel chilly at the approach of sleep, and at waking in the open air. [16]. Why the gout commences in sleep. Secretions are more copious in sleep, young animals and plants grow more in sleep. [17]. Inconsistency of dreams. Absence of surprise in dreams. [18]. Why we forget some dreams and not others. [19]. Sleep-talkers awake with surprise. [20]. Remote causes of sleep. Atmosphere with less oxygene. Compression of the brain in spina bifida. By whirling on an horizontal wheel. By cold. [21]. Definition of sleep.
[1]. There are four situations of our system, which in their moderate degrees are not usually termed diseases, and yet abound with many very curious and instructive phenomena; these are sleep, reverie, vertigo, drunkenness. These we shall previously consider, before we step forwards to develop the causes and cures of diseases with the modes of the operation of medicines.
As all those trains and tribes of animal motion, which are subjected to volition, were the last that were caused, their connection is weaker than that of the other classes; and there is a peculiar circumstance attending this causation, which is, that it is entirely suspended during sleep; whilst the other classes of motion, which are more immediately necessary to life, as those caused by internal stimuli, for instance the pulsations of the heart and arteries, or those catenated with pleasurable sensation, as the powers of digestion, continue to strengthen their habits without interruption. Thus though man in his sleeping state is a much less perfect animal, than in his waking hours; and though he consumes more than one third of his life in this his irrational situation; yet is the wisdom of the Author of nature manifest even in this seeming imperfection of his work!
The truth of this assertion with respect to the large muscles of the body, which are concerned in locomotion, is evident; as no one in perfect sanity walks about in his sleep, or performs any domestic offices: and in respect to the mind, we never exercise our reason or recollection in dreams; we may sometimes seem distracted between contending passions, but we never compare their objects, or deliberate about the acquisition of those objects, if our sleep is perfect. And though many synchronous tribes or successive trains of ideas may represent the houses or walks, which have real existence, yet are they here introduced by their connection with our sensations, and are in truth ideas of imagination, not of recollection.
[2]. For our sensations of pleasure and pain are experienced with great vivacity in our dreams; and hence all that motley group of ideas, which are caused by them, called the ideas of imagination, with their various associated trains, are in a very vivid manner acted over in the sensorium; and these sometimes call into action the larger muscles, which have been much associated with them; as appears from the muttering sentences, which some people utter in their dreams, and from the obscure barking of sleeping dogs, and the motions of their feet and nostrils.
This perpetual flow of the trains of ideas, which constitute our dreams, and which are caused by painful or pleasurable sensation, might at first view be conceived to be an useless expenditure of sensorial power. But it has been shewn, that those motions, which are perpetually excited, as those of the arterial system by the stimulus of the blood, are attended by a great accumulation of sensorial power, after they have been for a time suspended; as the hot-fit of fever is the consequence of the cold one. Now as these trains of ideas caused by sensation are perpetually excited during our waking hours, if they were to be suspended in sleep like the voluntary motions, (which are exerted only by intervals during our waking hours,) an accumulation of sensorial power would follow; and on our awaking a delirium would supervene, since these ideas caused by sensation would be produced with such energy, that we should mistake the trains of imagination for ideas excited by irritation; as perpetually happens to people debilitated by fevers on their first awaking; for in these fevers with debility the general quantity of irritation being diminished, that of sensation is increased. In like manner if the actions of the stomach, intestines, and various glands, which are perhaps in part at least caused by or catenated with agreeable sensation, and which perpetually exist during our waking hours, were like the voluntary motions suspended in our sleep; the great accumulation of sensorial power, which would necessarily follow, would be liable to excite inflammation in them.
[3]. When by our continued posture in sleep, some uneasy sensations are produced, we either gradually awake by the exertion of volition, or the muscles connected by habit with such sensations alter the position of the body; but where the sleep is uncommonly profound, and those uneasy sensations great, the disease called the incubus, or nightmare, is produced. Here the desire of moving the body is painfully exerted, by the power of moving it, or volition, is incapable of action, till we awake. Many less disagreeable struggles in our dreams, as when we wish in vain to fly from terrifying objects, constitute a slighter degree of this disease. In awaking from the nightmare I have more than once observed, that there was no disorder in my pulse; nor do I believe the respiration is laborious, as some have affirmed. It occurs to people whose sleep is too profound, and some disagreeable sensation exists, which at other times would have awakened them, and have thence prevented the disease of nightmare; as after great fatigue or hunger with too large a supper and wine, which occasion our sleep to be uncommonly profound. See No. [14], of this Section.
[4]. As the larger muscles of the body are much more frequently excited by volition than by sensation, they are but seldom brought into action in our sleep: but the ideas of the mind are by habit much more frequently connected with sensation than with volition; and hence the ceaseless flow of our ideas in dreams. Every one's experience will teach him this truth, for we all daily exert much voluntary muscular motion: but few of mankind can bear the fatigue of much voluntary thinking.
[5]. A very curious circumstance attending these our sleeping imaginations is, that we seem to receive them by the senses. The muscles, which are subservient to the external organs of sense, are connected with volition, and cease to act in sleep; hence the eyelids are closed, and the tympanum of the ear relaxed; and it is probable a similarity of voluntary exertion may be necessary for the perceptions of the other nerves of sense; for it is observed that the papillæ of the tongue can be seen to become erected, when we attempt to taste any thing extremely grateful. Hewson Exper. Enquir. V. 2. 186. Albini Annot. Acad. L. i. c. 15. Add to this, that the immediate organs of sense have no objects to excite them in the darkness and silence of the night, but their nerves of sense nevertheless continue to possess their perfect activity subservient to all their numerous sensitive connections. This vivacity of our nerves of sense during the time of sleep is evinced by a circumstance, which almost every one must at some time or other have experienced; that is, if we sleep in the daylight, and endeavour to see some object in our dream, the light is exceedingly painful to our eyes; and after repeated struggles we lament in our sleep, that we cannot see it. In this case I apprehend the eyelid is in some degree opened by the vehemence of our sensations; and, the iris being dilated, the optic nerve shews as great or greater sensibility than in our waking hours. See No. [15]. of this Section.
When we are forcibly waked at midnight from profound sleep, our eyes are much dazzled with the light of the candle for a minute or two, after there has been sufficient time allowed for the contraction of the iris; which is owing to the accumulation of sensorial power in the organ of vision during its state of less activity. But when we have dreamt much of visible objects, this accumulation of sensorial power in the organ of vision is lessened or prevented, and we awake in the morning without being dazzled with the light, after the iris has had time to contract itself. This is a matter of great curiosity, and may be thus tried by any one in the day-light. Close your eyes, and cover them with your hat; think for a minute on a tune, which you are accustomed to, and endeavour to sing it with as little activity of mind as possible. Suddenly uncover and open your eyes, and in one second of time the iris will contract itself, but you will perceive the day more luminous for several seconds, owing to the accumulation of sensorial power in the optic nerve.
Then again close and cover your eyes, and think intensely on a cube of ivory two inches diameter, attending first to the north and south sides of it, and then to the other four sides of it; then get a clear image in your mind's eye of all the sides of the same cube coloured red; and then of it coloured green; and then of it coloured blue; lastly, open your eyes as in the former experiment, and after the first second of time allowed for the contraction of the iris, you will not perceive any increase of the light of the day, or dazzling; because now there is no accumulation of sensorial power in the optic nerve; that having been expended by its action in thinking over visible objects.
This experiment is not easy to be made at first, but by a few patient trials the fact appears very certain; and shews clearly, that our ideas of imagination are repetitions of the motions of the nerve, which were originally occasioned by the stimulus of external bodies; because they equally expend the sensorial power in the organ of sense. See Sect. [III. 4]. which is analogous to our being as much fatigued by thinking as by labour.
[6]. Nor is it in our dreams alone, but even in our waking reveries, and in great efforts of invention, so great is the vivacity of our ideas, that we do not for a time distinguish them from the real presence of substantial objects; though the external organs of sense are open, and surrounded with their usual stimuli. Thus whilst I am thinking over the beautiful valley, through which I yesterday travelled, I do not perceive the furniture of my room: and there are some, whose waking imaginations are so apt to run into perfect reverie, that in their common attention to a favourite idea they do not hear the voice of the companion, who accosts them, unless it is repeated with unusual energy.
This perpetual mistake in dreams and reveries, where our ideas of imagination are attended with a belief of the presence of external objects, evinces beyond a doubt, that all our ideas are repetitions of the motions of the nerves of sense, by which they were acquired; and that this belief is not, as some late philosophers contend, an instinct necessarily connected only with our perceptions.
[7]. A curious question demands our attention in this place; as we do not distinguish in our dreams and reveries between our perceptions of external objects, and our ideas of them in their absence, how do we distinguish them at any time? In a dream, if the sweetness of sugar occurs to my imagination, the whiteness and hardness of it, which were ideas usually connected with the sweetness, immediately follow in the train; and I believe a material lump of sugar present before my senses: but in my waking hours, if the sweetness occurs to my imagination, the stimulus of the table to my hand, or of the window to my eye, prevents the other ideas of the hardness and whiteness of the sugar from succeeding; and hence I perceive the fallacy, and disbelieve the existence of objects correspondent to those ideas, whose tribes or trains are broken by the stimulus of other objects. And further in our waking hours, we frequently exert our volition in comparing present appearances with such, as we have usually observed; and thus correct the errors of one sense by our general knowledge of nature by intuitive analogy. See Sect. [XVII. 3. 7]. Whereas in dreams the power of volition is suspended, we can recollect and compare our present ideas with none of our acquired knowledge, and are hence incapable of observing any absurdities in them.
By this criterion we distinguish our waking from our sleeping hours, we can voluntarily recollect our sleeping ideas, when we are awake, and compare them with our waking ones; but we cannot in our sleep voluntarily recollect our waking ideas at all.
[8]. The vast variety of scenery, novelty of combination, and distinctness of imagery, are other curious circumstances of our sleeping imaginations. The variety of scenery seems to arise from the superior activity and excellence of our sense of vision; which in an instant unfolds to the mind extensive fields of pleasurable ideas; while the other senses collect their objects slowly, and with little combination; add to this, that the ideas, which this organ presents us with, are more frequently connected with our sensation than those of any other.
[9]. The great novelty of combination is owing to another circumstance; the trains of ideas, which are carried on in our waking thoughts, are in our dreams dissevered in a thousand places by the suspension of volition, and the absence of irritative ideas, and are hence perpetually falling into new catenations. As explained in Sect. [XVII. 1. 9]. For the power of volition is perpetually exerted during our waking hours in comparing our passing trains of ideas with our acquired knowledge of nature, and thus forms many intermediate links in their catenation. And the irritative ideas excited by the stimulus of the objects, with which we are surrounded, are every moment intruded upon us, and form other links of our unceasing catenations of ideas.
[10]. The absence of the stimuli of external bodies, and of volition, in our dreams renders the organs of sense liable to be more strongly affected by the powers of sensation, and of association. For our desires or aversions, or the obtrusions of surrounding bodies, dissever the sensitive and associate tribes of ideas in our waking hours by introducing those of irritation and volition amongst them. Hence proceeds the superior distinctness of pleasurable or painful imagery in our sleep; for we recal the figure and the features of a long lost friend, whom we loved, in our dreams with much more accuracy and vivacity than in our waking thoughts. This circumstance contributes to prove, that our ideas of imagination are reiterations of those motions of our organs of sense, which were excited by external objects; because while we are exposed to the stimuli of present objects, our ideas of absent objects cannot be so distinctly formed.
[11]. The rapidity of the succession of transactions in our dreams is almost inconceivable; insomuch that, when we are accidentally awakened by the jarring of a door, which is opened into our bed-chamber, we sometimes dream a whole history of thieves or fire in the very instant of awaking.
During the suspension of volition we cannot compare our other ideas with those of the parts of time in which they exist; that is, we cannot compare the imaginary scene, which is before us, with those changes of it, which precede or follow it: because this act of comparing requires recollection or voluntary exertion. Whereas in our waking hours, we are perpetually making this comparison, and by that means our waking ideas are kept confident with each other by intuitive analogy; but this companion retards the succession of them, by occasioning their repetition. Add to this, that the transactions of our dreams consist chiefly of visible ideas, and that a whole history of thieves and fire may be beheld in an instant of time like the figures in a picture.
[12]. From this incapacity of attending to the parts of time in our dreams, arises our ignorance of the length of the night; which, but from our constant experience to the contrary, we should conclude was but a few minutes, when our sleep is perfect. The same happens in our reveries; thus when we are possessed with vehement joy, grief, or anger, time appears short, for we exert no volition to compare the present scenery with the past or future; but when we are compelled to perform those exercises of mind or body, which, are unmixed with passion, as in travelling over a dreary country, time appears long; for our desire to finish our journey occasions us more frequently to compare our present situation with the parts of time or place, which are before and behind us.
So when we are enveloped in deep contemplation of any kind, or in reverie, as in reading a very interesting play or romance, we measure time very inaccurately; and hence, if a play greatly affects our passions, the absurdities of passing over many days or years, and or perpetual changes of place, are not perceived by the audience; as is experienced by every one, who reads or sees some plays of the immortal Shakespear; but it is necessary for inferior authors to observe those rules of the πιθανον and πρεπον inculcated by Aristotle, because their works do not interest the passions sufficiently to produce complete reverie.
Those works, however, whether a romance or a sermon, which do not interest us so much as to induce reverie, may nevertheless incline us to sleep. For those pleasurable ideas, which are presented to us, and are too gentle to excite laughter, (which is attended with interrupted voluntary exertions, as explained Sect. [XXXIV. 1. 4].) and which are not accompanied with any other emotion, which usually excites some voluntary exertion, as anger, or fear, are liable to produce sleep; which consists in a suspension of all voluntary power. But if the ideas thus presented to us, and interest our attention, are accompanied with so much pleasurable or painful sensation as to excite our voluntary exertion at the same time, reverie is the consequence. Hence an interesting play produces reverie, a tedious one produces sleep: in the latter we become exhausted by attention, and are not excited to any voluntary exertion, and therefore sleep; in the former we are excited by some emotion, which prevents by its pain the suspension of volition, and in as much as it interests us, induces reverie, as explained in the next Section.
But when our sleep is imperfect, as when we have determined to rise in half an hour, time appears longer to us than in most other situations. Here our solicitude not to oversleep the determined time induces us in this imperfect sleep to compare the quick changes of imagined scenery with the parts of time or place, they would have taken up, had they real exigence; and that more frequently than in our waking hours; and hence the time appears longer to us: and I make no doubt, but the permitted time appears long to a man going to the gallows, as the fear of its quick lapse will make him think frequently about it.
[13]. As we gain our knowledge of time by comparing the present scenery with the past and future, and of place by comparing the situations of objects with each other; so we gain our idea of consciousness by comparing ourselves with the scenery around us; and of identity by comparing our present consciousness with our past consciousness: as we never think of time or place, but when we make the companions above mentioned, so we never think of consciousness, but when we compare our own existence with that of other objects; nor of identity, but when we compare our present and our past consciousness. Hence the consciousness of our own existence, and of our identity, is owing to a voluntary exertion of our minds: and on that account in our complete dreams we neither measure time, are surprised at the sudden changes of place, nor attend to our own existence, or identity; because our power of volition is suspended. But all these circumstances are more or less observable in our incomplete ones; for then we attend a little to the lapse of time, and the changes of place, and to our own existence; and even to our identity of person; for a lady seldom dreams, that she is a soldier; nor a man, that he is brought to bed.
[14]. As long as our sensations only excite their sensual motions, or ideas, our sleep continues sound; but as soon as they excite desires or aversions, our sleep becomes imperfect; and when that desire or aversion is so strong, as to produce voluntary motions, we begin to awake; the larger muscles of the body are brought into action to remove that irritation or sensation, which a continued posture has caused; we stretch our limbs, and yawn, and our sleep is thus broken by the accumulation of voluntary power.
Sometimes it happens, that the act of waking is suddenly produced, and this soon after the commencement of sleep; which is occasioned by some sensation so disagreeable, as instantaneously to excite the power of volition; and a temporary action of all the voluntary motions suddenly succeeds, and we start awake. This is sometimes accompanied with loud noise in the ears, and with some degree of fear; and when it is in great excess, so as to produce continued convulsive motions of those muscles, which are generally subservient to volition, it becomes epilepsy: the fits of which in some patients generally commence during sleep. This differs from the night-mare described in No. [3]. of this Section, because in that the disagreeable sensation is not so great as to excite the power of volition into action; for as soon as that happens, the disease ceases.
Another circumstance, which sometimes awakes people soon after the commencement of their sleep, is where the voluntary power is already so great in quantity as almost to prevent them from falling asleep, and then a little accumulation of it soon again awakens them; this happens in cases of insanity, or where the mind has been lately much agitated by fear or anger. There is another circumstance in which sleep is likewise of short duration, which arises from great debility, as after great over-fatigue, and in some fevers, where the strength of the patient is greatly diminished, as in these cases the pulse intermits or flutters, and the respiration is previously affected, it seems to originate from the want of some voluntary efforts to facilitate respiration, as when we are awake. And is further treated of in Vol. II. Class I. 2. 1. 2. on the Diseases of the Voluntary Power. Art. Somnus interruptus.
[15]. We come now to those motions which depend on irritation. The motions of the arterial and glandular systems continue in our sleep, proceeding slower indeed, but stronger and more uniformly, than in our waking hours, when they are incommoded by external stimuli, or by the movements of volition; the motions of the muscles subservient to respiration continue to be stimulated into action, and the other internal senses of hunger, thirst, and lust, are not only occasionally excited in our sleep, but their irritative motions are succeeded by their usual sensations, and make a part of the farrago of our dreams. These sensations of the want of air, of hunger, thirst, and lust, in our dreams, contribute to prove, that the nerves of the external senses are also alive and excitable in our sleep; but as the stimuli of external objects are either excluded from them by the darkness and silence of the night, or their access to them is prevented by the suspension of volition, these nerves of sense fall more readily into their connexions with sensation and with association; because much sensorial power, which during the day was expended in moving the external organs of sense in consequence of irritation from external stimuli, or in consequence of volition, becomes now in some degree accumulated, and renders the internal or immediate organs of sense more easily excitable by the other sensorial powers. Thus in respect to the eye, the irritation from external stimuli, and the power of volition during our waking hours, elevate the eye-lids, adapt the aperture of the iris to the quantity of light, the focus of the crystalline humour, and the angle of the optic axises to the distance of the object, all which perpetual activity during the day expends much sensorial power, which is saved during our sleep.
Hence it appears, that not only those parts of the system, which are always excited by internal stimuli, as the stomach, intestinal canal, bile-ducts, and the various glands, but the organs of sense also may be more violently excited into action by the irritation from internal stimuli, or by sensation, during our sleep than in our waking hours; because during the suspension of volition, there is a greater quantity of the spirit of animation to be expended by the other sensorial powers. On this account our irritability to internal stimuli, and our sensibility to pain or pleasure, is not only greater in sleep, but increases as our sleep is prolonged. Whence digestion and secretion are performed better in sleep, than in our waking hours, and our dreams in the morning have greater variety and vivacity, as our sensibility increases, than at night when we first lie down. And hence epileptic fits, which are always occasioned by some disagreeable sensation, so frequently attack those, who are subject to them, in their sleep; because at this time the system is more excitable by painful sensation in consequence of internal stimuli; and the power of volition is then suddenly exerted to relieve this pain, as explained Sect. [XXXIV. 1. 4].
There is a disease, which frequently affects children in the cradle, which is termed ecstasy, and seems to consist in certain exertions to relieve painful sensation, in which the voluntary power is not so far excited as totally to awaken them, and yet is sufficient to remove the disagreeable sensation, which excites it; in this case changing the posture of the child frequently relieves it.
I have at this time under my care an elegant young man about twenty-two years of age, who seldom sleeps more than an hour without experiencing a convulsion fit; which ceases in about half a minute without any subsequent stupor. Large doses of opium only prevented the paroxysms, so long as they prevented him from sleeping by the intoxication, which they induced. Other medicines had no effect on him. He was gently awakened every half hour for one night, but without good effect, as he soon slept again, and the fit returned at about the same periods of time, for the accumulated sensorial power, which occasioned the increased sensibility to pain, was not thus exhausted. This case evinces, that the sensibility of the system to internal excitation increases, as our sleep is prolonged; till the pain thus occasioned produces voluntary exertion; which, when it is in its usual degree, only awakens us; but when it is more violent, it occasions convulsions.
The cramp in the calf of the leg is another kind of convulsion, which generally commences in sleep, occasioned by the continual increase of irritability from internal stimuli, or of sensibility, during that state of our existence. The cramp is a violent exertion to relieve pain, generally either of the skin from cold, or of the bowels, as in some diarrhœas, or from the muscles having been previously overstretched, as in walking up or down steep hills. But in these convulsions of the muscles, which form the calf of the leg, the contraction is so violent as to occasion another pain in consequence of their own too violent contraction; as soon as the original pain, which caused the contraction, is removed. And hence the cramp, or spasm, of these muscles is continued without intermission by this new pain, unlike the alternate convulsions and remissions in epileptic fits. The reason, that the contraction of these muscles of the calf of the leg is more violent during their convulsion than that of others, depends on the weakness of their antagonist muscles; for after these have been contracted in their usual action, as at every step in walking, they are again extended, not, as most other muscles are, by their antagonists, but by the weight of the whole body on the balls of the toes; and that weight applied to great mechanical advantage on the heel, that is, on the other end of the bone of the foot, which thus acts as a lever.
Another disease, the periods of which generally commence during our sleep, is the asthma. Whatever may be the remote cause of paroxysms of asthma, the immediate cause of the convulsive respiration, whether in the common asthma, or in what is termed the convulsive asthma, which are perhaps only different degrees of the same disease, must be owing to violent voluntary exertions to relieve pain, as in other convulsions; and the increase of irritability to internal stimuli, or of sensibility, during sleep must occasion them to commence at this time.
Debilitated people, who have been unfortunately accustomed to great ingurgitation of spirituous potation, frequently part with a great quantity of water during the night, but with not more than usual in the day-time. This is owing to a beginning torpor of the absorbent system, and precedes anasarca, which commences in the day, but is cured in the night by the increase of the irritability of the absorbent system during sleep, which thus imbibes from the cellular membrane the fluids, which had been accumulated there during the day; though it is possible the horizontal position of the body may contribute something to this purpose, and also the greater irritability of some branches of the absorbent vessels, which open their mouths in the cells of the cellular membrane, than that of other branches.
As soon as a person begins to sleep, the irritability and sensibility of the system begins to increase, owing to the suspension of volition and the exclusion of external stimuli. Hence the actions of the vessels in obedience to internal stimulation become stronger and more energetic, though less frequent in respect to number. And as many of the secretions are increased, so the heat of the system is gradually increased, and the extremities of feeble people, which had been cold during the day, become warm. Till towards morning many people become so warm, as to find it necessary to throw off some of their bed-clothes, as soon as they awake; and in others sweats are so liable to occur towards morning during their sleep.
Thus those, who are not accustomed to sleep in the open air, are very liable to take cold, if they happen to fall asleep on a garden bench, or in a carriage with the window open. For as the system is warmer during sleep, as above explained, if a current of cold air affects any part of the body, a torpor of that part is more effectually produced, as when a cold blast of air through a key-hole or casement falls upon a person in a warm room. In those cases the affected part possesses less irritability in respect to heat, from its having previously been exposed to a greater stimulus of heat, as in the warm room, or during sleep; and hence, when the stimulus of heat is diminished, a torpor is liable to ensue; that is, we take cold. Hence people who sleep in the open air, generally feel chilly both at the approach of sleep, and on their awaking; and hence many people are perpetually subject to catarrhs if they sleep in a less warm head-dress, than that which they wear in the day.
[16]. Not only the sensorial powers of irritation and of sensation, but that of association also appear to act with greater vigour during the suspension of volition in sleep. It will be shewn in another place, that the gout generally first attacks the liver, and that afterwards an inflammation of the ball of the great toe commences by association, and that of the liver ceases. Now as this change or metastasis of the activity of the system generally commences in sleep, it follows, that these associations of motion exist with greater energy at that time; that is, that the sensorial faculty of association, like those of irritation and of sensation, becomes in some measure accumulated during the suspension of volition.
Other associate tribes and trains of motions, as well as the irritative and sensitive ones, appear to be increased in their activity during the suspension of volition in sleep. As those which contribute to circulate the blood, and to perform the various secretions; as well as the associate tribes and trains of ideas, which contribute to furnish the perpetual dreams of our dreaming imaginations.
In sleep the secretions have generally been supposed to be diminished, as the expectorated mucus in coughs, the fluids discharged in diarrhœas, and in salivation, except indeed the secretion of sweat, which is often visibly increased. This error seems to have arisen from attention to the excretions rather than to the secretions. For the secretions, except that of sweat, are generally received into reservoirs, as the urine into the bladder, and the mucus of the intestines and lungs into their respective cavities; but these reservoirs do not exclude these fluids immediately by their stimulus, but require at the same time some voluntary efforts, and therefore permit them to remain during sleep. And as they thus continue longer in those receptacles in our sleeping hours, a greater part is absorbed from them, and the remainder becomes thicker, and sometimes in less quantity, though at the time it was secreted the fluid was in greater quantity than in our waking hours. Thus the urine is higher coloured after long sleep; which shews that a greater quantity has been secreted, and that more of the aqueous and saline part has been reabsorbed, and the earthy part left in the bladder; hence thick urine in fevers shews only a greater action of the vessels which secrete it in the kidneys, and of those which absorb it from the bladder.
The same happens to the mucus expectorated in coughs, which is thus thickened by absorption of its aqueous and saline parts; and the same of the feces of the intestines. From hence it appears, and from what has been said in No. [15]. of this Section concerning the increase of irritability and of sensibility during sleep, that the secretions are in general rather increased than diminished during these hours of our existence; and it is probable that nutrition is almost entirely performed in sleep; and that young animals grow more at this time than in their waking hours, as young plants have long since been observed to grow more in the night, which is their time of sleep.
[17]. Two other remarkable circumstances of our dreaming ideas are their inconsistency, and the total absence of surprise. Thus we seem to be present at more extraordinary metamorphoses of animals or trees, than are to be met with in the fables of antiquity; and appear to be transported from place to place, which seas divide, as quickly as the changes of scenery are performed in a play-house; and yet are not sensible of their inconsistency, nor in the least degree affected with surprise.
We must consider this circumstance more minutely. In our waking trains of ideas, those that are inconsistent with the usual order of nature, so rarely have occurred to us, that their connexion is the slightest of all others: hence, when a consistent train of ideas is exhausted, we attend to the external stimuli, that usually surround us, rather than to any inconsistent idea, which might otherwise present itself; and if an inconsistent idea should intrude itself, we immediately compare it with the preceding one, and voluntarily reject the train it would introduce; this appears further in the Section on Reverie, in which state of the mind external stimuli are not attended to, and yet the streams of ideas are kept consistent by the efforts of volition. But as our faculty of volition is suspended, and all external stimuli are excluded in sleep, this slighter connexion of ideas takes place; and the train is said to be inconsistent; that is, dissimilar to the usual order of nature.
But, when any consistent train of sensitive or voluntary ideas is flowing along, if any external stimulus affects us so violently, as to intrude irritative ideas forcibly into the mind, it disunites the former train of ideas, and we are affected with surprise. These stimuli of unusual energy or novelty not only disunite our common trains of ideas, but the trains of muscular motions also, which have not been long established by habit, and disturb those that have. Some people become motionless by great surprise, the fits of hiccup and or ague have been often removed by it, and it even affects the movements of the heart, and arteries; but in our sleep, all external stimuli are excluded, and in consequence no surprise can exist. See Section [XVII. 3. 7].
[18]. We frequently awake with pleasure from a dream, which has delighted us, without being able to recollect the transactions of it; unless perhaps at a distance of time, some analogous idea may introduce afresh this forgotten train: and in our waking reveries we sometimes in a moment lose the train of thought, but continue to feel the glow of pleasure, or the depression of spirits, it occasioned: whilst at other times we can retrace with ease these histories of our reveries and dreams.
The above explanation of surprise throws light upon this subject. When we are suddenly awaked by any violent stimulus, the surprise totally disunites the trains of our sleeping ideas from these of our waking ones; but if we gradually awake, this does not happen; and we readily unravel the preceding trains of imagination.
[19]. There are various degrees of surprise; the more intent we are upon the train of ideas, which we are employed about, the more violent must be the stimulus that interrupts them, and the greater is the degree of surprise. I have observed dogs, who have slept by the fire, and by their obscure barking and struggling have appeared very intent on their prey, that shewed great surprise for a few seconds after their awaking by looking eagerly around them; which they did not do at other times of waking. And an intelligent friend of mine has remarked, that his lady, who frequently speaks much and articulately in her sleep, could never recollect her dreams in the morning, when this happened to her: but that when she did not speak in her sleep, she could always recollect them.
Hence, when our sensations act so strongly in sleep as to influence the larger muscles, as in those, who talk or struggle in their dreams; or in those, who are affected with complete reverie (as described in the next Section), great surprise is produced, when they awake; and these as well as those, who are completely drunk or delirious, totally forget afterwards their imaginations at those times.
[20]. As the immediate cause of sleep consists in the suspension of volition, it follows, that whatever diminishes the general quantity of sensorial power, or derives it from the faculty of volition, will constitute a remote cause of sleep; such as fatigue from muscular or mental exertion, which diminishes the general quantity of sensorial power; or an increase of the sensitive motions, as by attending to soft music, which diverts the sensorial power from the faculty of volition; or lastly, by increase of the irritative motions, as by wine, or food; or warmth; which not only by their expenditure of sensorial power diminish the quantity of volition; but also by their producing pleasureable sensations (which occasion other muscular or sensual motions in consequence), doubly decrease the voluntary power, and thus more forcibly produce sleep. See Sect. [XXXIV. 1. 4].
Another method of inducing sleep is delivered in a very ingenious work lately published by Dr. Beddoes. Who, after lamenting that opium frequently occasions restlessness, thinks, "that in most cases it would be better to induce sleep by the abstraction of stimuli, than by exhausting the excitability;" and adds, "upon this principle we could not have a better soporific than an atmosphere with a diminished proportion of oxygene air, and that common air might be admitted after the patient was asleep." (Observ. on Calculus, &c. by Dr. Beddoes, Murray.) If it should be found to be true, that the excitability of the system depends on the quantity of oxygene absorbed by the lungs in respiration according to the theory of Dr. Beddoes, and of M. Girtanner, this idea of sleeping in an atmosphere with less oxygene in its composition might be of great service in epileptic cases, and in cramp, and even in fits of the asthma, where their periods commence from the increase of irritability during sleep.
Sleep is likewise said to be induced by mechanic pressure on the brain in the cases of spina bifida. Where there has been a defect of one of the vertebræ of the back, a tumour is protruded in consequence; and, whenever this tumour has been compressed by the hand, sleep is said to be induced, because the whole of the brain both within the head and spine becomes compressed by the retrocession of the fluid within the tumour. But by what means a compression of the brain induces sleep has not been explained, but probably by diminishing the secretion of sensorial power, and then the voluntary motions become suspended previously to the irritative ones, as occurs in most dying persons.
Another way of procuring sleep mechanically was related to me by Mr. Brindley, the famous canal engineer, who was brought up to the business of a mill-wright; he told me, that he had more than once seen the experiment of a man extending himself across the large stone of a corn-mill, and that by gradually letting the stone whirl, the man fell asleep, before the stone had gained its full velocity, and he supposed would have died without pain by the continuance or increase of the motion. In this case the centrifugal motion of the head and feet must accumulate the blood in both those extremities of the body, and thus compress the brain.
Lastly, we should mention the application of cold; which, when in a less degree, produces watchfulness by the pain it occasions, and the tremulous convulsions of the subcutaneous muscles; but when it is applied in great degree, is said to produce sleep. To explain this effect it has been said, that as the vessels of the skin and extremities become first torpid by the want of the stimulus of heat, and as thence less blood is circulated through them, as appears from their paleness, a greater quantity of blood poured upon the brain produces sleep by its compression of that organ. But I should rather imagine, that the sensorial power becomes exhausted by the convulsive actions in consequence of the pain of cold, and of the voluntary exercise previously used to prevent it, and that the sleep is only the beginning to die, as the suspension of voluntary power in lingering deaths precedes for many hours the extinction of the irritative motions.
[21]. The following are the characteristic circumstances attending perfect sleep.
1. The power of volition is totally suspended.
2. The trains of ideas caused by sensation proceed with greater facility and vivacity; but become inconsistent with the usual order of nature. The muscular motions caused by sensation continue; as those concerned in our evacuations during infancy, and afterwards in digestion, and in priapismus.
3. The irritative muscular motions continue, as those concerned in the circulation, in secretion, in respiration. But the irritative sensual motions, or ideas, are not excited; as the immediate organs of sense are not stimulated into action by external objects, which are excluded by the external organs of sense; which are not in sleep adapted to their reception by the power of volition, as in our waking hours.
4. The associate motions continue; but their first link is not excited into action by volition, or by external stimuli. In all respects, except those above mentioned, the three last sensorial powers are somewhat increased in energy during the suspension of volition, owing to the consequent accumulation of the spirit of animation.
SECT. [XIX].
OF REVERIE.
[1]. Various degrees of reverie. [2]. Sleep-walkers. Case of a young lady. Great surprise at awaking. And total forgetfulness of what passed in reverie. [3]. No suspension of volition in reverie. [4]. Sensitive motions continue, and are consistent. [5]. Irritative motions continue, but are not succeeded by sensation. [6]. Volition necessary for the perception of feeble impressions. [7]. Associated motions continue. [8]. Nerves of sense are irritable in sleep, but not in reverie. [9]. Somnambuli are not asleep. Contagion received but once. [10]. Definition of reverie.
[1]. When we are employed with great sensation of pleasure, or with great efforts of volition, in the pursuit of some interesting train of ideas, we cease to be conscious of our existence, are inattentive to time and place, and do not distinguish this train of sensitive and voluntary ideas from the irritative ones excited by the presence of external objects, though our organs of sense are furnished with their accustomed stimuli, till at length this interesting train of ideas becomes exhausted, or the appulses of external objects are applied with unusual violence, and we return with surprise, or with regret, into the common track of life. This is termed reverie or studium.
In some constitutions these reveries continue a considerable time, and are not to be removed without greater difficulty, but are experienced in a less degree by us all; when we attend earnestly to the ideas excited by volition or sensation, with their associated connexions, but are at the same time conscious at intervals of the stimuli of surrounding bodies. Thus in being present at a play, or in reading a romance, some persons are so totally absorbed as to forget their usual time of sleep, and to neglect their meals; while others are said to have been so involved in voluntary study as not to have heard the discharge of artillery; and there is a story of an Italian politician, who could think so intensely on other subjects, as to be insensible to the torture of the rack.
From hence it appears, that these catenations of ideas and muscular motions, which form the trains of reverie, are composed both of voluntary and sensitive associations of them; and that these ideas differ from those of delirium or of sleep, as they are kept consistent by the power of volition; and they differ also from the trains of ideas belonging to insanity, as they are as frequently excited by sensation as by volition. But lastly, that the whole sensorial power is so employed on these trains of complete reverie, that like the violent efforts of volition, as in convulsions or insanity; or like the great activity of the irritative motions in drunkenness; or of the sensitive motions in delirium; they preclude all sensation consequent to external stimulus.
[2]. Those persons, who are said to walk in their sleep, are affected with reverie to so great a degree, that it becomes a formidable disease; the essence of which consists in the inaptitude of the mind to attend to external stimuli. Many histories of this disease have been published by medical writers; of which there is a very curious one in the Lausanne Transactions. I shall here subjoin an account of such a case, with its cure, for the better illustration of this subject.
A very ingenious and elegant young lady, with light eyes and hair, about the age of seventeen, in other respects well, was suddenly seized soon after her usual menstruation with this very wonderful malady. The disease began with vehement convulsions of almost every muscle of her body, with great but vain efforts to vomit, and the most violent hiccoughs, that can be conceived: these were succeeded in about an hour with a fixed spasm; in which one hand was applied to her head, and the other to support it: in about half an hour these ceased, and the reverie began suddenly, and was at first manifest by the look of her eyes and countenance, which seemed to express attention. Then she conversed aloud with imaginary persons with her eyes open, and could not for about an hour be brought to attend to the stimulus of external objects by any kind of violence, which it was proper to use; these symptoms returned in this order every day for five or six weeks.
These conversations were quite consistent, and we could understand, what she supposed her imaginary companions to answer, by the continuation of her part of the discourse. Sometimes she was angry, at other times shewed much wit and vivacity, but was most frequently inclined to melancholy. In these reveries she sometimes sung over some music with accuracy, and repeated whole pages from the English poets. In repeating some lines from Mr. Pope's works she had forgot one word, and began again, endeavouring to recollect it; when she came to the forgotten word, it was shouted aloud in her ear, and this repeatedly, to no purpose; but by many trials she at length regained it herself.
These paroxysms were terminated with the appearance of inexpressible surprise, and great fear, from which she was some minutes in recovering herself, calling on her sister with great agitation, and very frequently underwent a repetition of convulsions, apparently from the pain of fear. See Sect. [XVII. 3. 7].
After having thus returned for about an hour every day for two or three weeks, the reveries seemed to become less complete, and some of their circumstances varied; so that she could walk about the room in them without running against any of the furniture; though these motions were at first very unsteady and tottering. And afterwards she once drank a dish of tea, when the whole apparatus of the tea-table was set before her; and expressed some suspicion, that a medicine was put into it, and once seemed to smell of a tuberose, which was in flower in her chamber, and deliberated aloud about breaking it from the stem, saying, "it would make her sister so charmingly angry." At another time in her melancholy moments she heard the sound of a passing bell, "I wish I was dead," she cried, listening to the bell, and then taking off one of her shoes, as she sat upon the bed, "I love the colour black," says she, "a little wider, and a little longer, even this might make me a coffin!"—Yet it is evident, she was not sensible at this time, any more than formerly, of seeing or hearing any person about her; indeed when great light was thrown upon her by opening the shutters of the window, her trains of ideas seemed less melancholy; and when I have forcibly held her hands, or covered her eyes, she appeared to grow impatient, and would say, she could not tell what to do, for she could neither see nor move. In all these circumstances her pulse continued unaffected as in health. And when the paroxysm was over, she could never recollect a single idea of what had passed in it.
This astonishing disease, after the use of many other medicines and applications in vain, was cured by very large doses of opium given about an hour before the expected returns of the paroxysms; and after a few relapses, at the intervals of three or four months, entirely disappeared. But she continued at times to have other symptoms of epilepsy.
[3]. We shall only here consider, what happened during the time of her reveries, as that is our present subject; the fits of convulsion belong to another part of this treatise. Sect. [XXXIV. 1. 4].
There seems to have been no suspension of volition during the fits of reverie, because she endeavoured to regain the lost idea in repeating the lines of poetry, and deliberated about breaking the tuberose, and suspected the tea to have been medicated.
[4]. The ideas and muscular movements depending on sensation were exerted with their usual vivacity, and were kept from being inconsistent by the power of volition, as appeared from her whole conversation, and was explained in Sect. [XVII. 3. 7]. and [XVIII. 16].
[5]. The ideas and motions dependant on irritation during the first weeks of her disease, whilst the reverie was complete, were never succeeded by the sensation of pleasure or pain; as she neither saw, heard, nor felt any of the surrounding objects. Nor was it certain that any irritative motions succeeded the stimulus of external objects, till the reverie became less complete, and then she could walk about the room without running against the furniture of it. Afterwards, when the reverie became still less complete from the use of opium, some few irritations were at times succeeded by her attention to them. As when she smelt at a tuberose, and drank a dish of tea, but this only when she seemed voluntarily to attend to them.
[6]. In common life when we listen to distant sounds, or wish to distinguish objects in the night, we are obliged strongly to exert our volition to dispose the organs of sense to perceive them, and to suppress the other trains of ideas, which might interrupt these feeble sensations. Hence in the present history the strongest stimuli were not perceived, except when the faculty of volition was exerted on the organ of sense; and then even common stimuli were sometimes perceived: for her mind was so strenuously employed in pursuing its own trains of voluntary or sensitive ideas, that no common stimuli could so far excite her attention as to disunite them; that is, the quantity of volition or of sensation already existing was greater than any, which could be produced in consequence of common degrees of stimulation. But the few stimuli of the tuberose, and of the tea, which she did perceive, were such, as accidentally coincided with the trains of thought, which were passing in her mind; and hence did not disunite those trains, and create surprise. And their being perceived at all was owing to the power of volition preceding or coinciding with that of irritation.
This explication is countenanced by a fact mentioned concerning a somnambulist in the Lausanne Transactions, who sometimes opened his eyes for a short time to examine, where he was, or where his ink-pot stood, and then shut them again, dipping his pen into the pot every now and then, and writing on, but never opening his eyes afterwards, although he wrote on from line to line regularly, and corrected some errors of the pen, or in spelling: so much easier was it to him to refer to his ideas of the positions of things, than to his perceptions of them.
[7]. The associated motions persisted in their usual channel, as appeared by the combinations of her ideas, and the use of her muscles, and the equality of her pulse; for the natural motions of the arterial system, though originally excited like other motions by stimulus, seem in part to continue by their association with each other. As the heart of a viper pulsates long after it is cut out of the body, and removed from the stimulus of the blood.
[8]. In the section on sleep, it was observed that the nerves of sense are equally alive and susceptible to irritation in that state, as when we are awake; but that they are secluded from stimulating objects, or rendered unfit to receive them: but in complete reverie the reverse happens, the immediate organs of sense are exposed to their usual stimuli; but are either not excited into action at all, or not into so great action, as to produce attention or sensation.
The total forgetfulness of what passes in reveries; and the surprise on recovering from them, are explained in Section [XVIII. 19]. and in Section [XVII. 3. 7].
[9]. It appears from hence, that reverie is a disease of the epileptic or cataleptic kind, since the paroxysms of this young lady always began and frequently terminated with convulsions; and though in its greatest degree it has been called somnambulation, or sleep-walking, it is totally different from sleep; because the essential character of sleep consists in the total suspension of volition, which in reverie is not affected; and the essential character of reverie consists not in the absence of those irritative motions of our senses, which are occasioned by the stimulus of external objects, but in their never being productive of sensation. So that during a fit of reverie that strange event happens to the whole system of nerves, which occurs only to some particular branches of them in those, who are a second time exposed to the action of contagious matter. If the matter of the small-pox be inserted into the arm of one, who has previously had that disease, it will stimulate the wound, but the general sensation or inflammation of the system does not follow, which constitutes the disease. See Sect. [XII. 3. 6]. [XXXIII. 2. 8].
[10]. The following is the definition or character of complete reverie. 1. The irritative motions occasioned by internal stimuli continue, those from the stimuli of external objects are either not produced at all, or are never succeeded by sensation or attention, unless they are at the same time excited by volition. 2. The sensitive motions continue, and are kept consistent by the power of volition. 3. The voluntary motions continue undisturbed. 4. The associate motions continue undisturbed.
Two other cases of reverie are related in Section [XXXIV. 3]. which further evince, that reverie is an effort of the mind to relieve some painful sensation, and is hence allied to convulsion, and to insanity. Another case is related in Class III. 1. 2. 2.
SECT. [XX].
OF VERTIGO.
[1]. We determine our perpendicularity by the apparent motions of objects. A person hood-winked cannot walk in a straight line. Dizziness in looking from a tower, in a room stained with uniform lozenges, on riding over snow. [2]. Dizziness from moving objects. A whirling-wheel. Fluctuations of a river. Experiment with a child. [3]. Dizziness from our own motions and those of other objects. [4]. Riding over a broad stream. Sea-sickness. [5]. Of turning round on one foot. Dervises in Turkey. Attention of the mind prevents slight sea-sickness. After a voyage ideas of vibratory motions are still perceived on shore. [6]. Ideas continue some time after they are excited. Circumstances of turning on one foot, standing on a tower, and walking in the dark, explained. [7]. Irritative ideas of apparent motions. Irritative ideas of sounds. Battèment of the sound of bells and organ-pipes. Vertiginous noise in the head. Irritative motions of the stomach, intestines, and glands. [8]. Symptoms that accompany vertigo. Why vomiting comes on in strokes of the palsy. By the motion of a ship. By injuries on the head. Why motion makes sick people vomit. [9]. Why drunken people are vertiginous. Why a stone in the ureter, or bile-duct, produces vomiting. [10]. Why after a voyage ideas of vibratory motions are perceived on shore. [11]. Kinds of vertigo and their cure. [12]. Definition of vertigo.
[1]. In learning to walk we judge of the distances of the objects, which we approach, by the eye; and by observing their perpendicularity determine our own. This circumstance not having been attended to by the writers on vision, the disease called vertigo or dizziness has been little understood.
When any person loses the power of muscular action, whether he is erect or in a sitting posture, he sinks down upon the ground; as is seen in fainting fits, and other instances of great debility. Hence it follows, that some exertion of muscular power is necessary to preserve our perpendicular attitude. This is performed by proportionally exerting the antagonist muscles of the trunk, neck, and limbs; and if at any time in our locomotions we find ourselves inclining to one side, we either restore our equilibrium by the efforts of the muscles on the other side, or by moving one of our feet extend the base, which we rest upon, to the new center of gravity.
But the most easy and habitual manner of determining our want of perpendicularity, is by attending to the apparent motion of the objects within the sphere of distinct vision; for this apparent motion of objects, when we incline from our perpendicularity, or begin to fall, is as much greater than the real motion of the eye, as the diameter of the sphere of distinct vision is to our perpendicular height.
Hence no one, who is hood-winked, can walk in a straight line for a hundred steps together; for he inclines so greatly, before he is warned of his want of perpendicularity by the sense of touch, not having the apparent motions of ambient objects to measure this inclination by, that he is necessitated to move one of his feet outwards, to the right or to the left, to support the new centre of gravity, and thus errs from the line he endeavours to proceed in.
For the same reason many people become dizzy, when they look from the summit of a tower, which is raised much above all other objects, as these objects are out of the sphere of distinct vision, and they are obliged to balance their bodies by the less accurate feelings of their muscles.
There is another curious phenomenon belonging to this place, if the circumjacent visible objects are so small, that we do not distinguish their minute parts; or so similar, that we do not know them from each other; we cannot determine our perpendicularity by them. Thus in a room hung with a paper, which is coloured over with similar small black lozenges or rhomboids, many people become dizzy; for when they begin to fall, the next and the next lozenge succeeds upon the eye; which they mistake for the first, and are not aware, that they have any apparent motion. But if you fix a sheet of paper, or draw any other figure, in the midst of these lozenges, the charm ceases, and no dizziness is perceptible.—The same occurs, when we ride over a plain covered with snow without trees or other eminent objects.
[2]. But after having compared visible objects at rest with the sense of touch, and learnt to distinguish their shapes and shades, and to measure our want of perpendicularity by their apparent motions, we come to consider them in real motion. Here a new difficulty occurs, and we require some experience to learn the peculiar mode of motion of any moving objects, before we can make use of them for the purposes of determining our perpendicularity. Thus some people become dizzy at the sight of a whirling wheel, or by gazing on the fluctuations of a river, if no steady objects are at the same time within the sphere of their distinct vision; and when a child first can stand erect upon his legs, if you gain his attention to a white handkerchief steadily extended like a sail, and afterwards make it undulate, he instantly loses his perpendicularity, and tumbles on the ground.
[3]. A second difficulty we have to encounter is to distinguish our own real movements from the apparent motions of objects. Our daily practice of walking and riding on horseback soon instructs us with accuracy to discern these modes of motion, and to ascribe the apparent motions of the ambient objects to ourselves; but those, which we have not acquired by repeated habit, continue to confound us. So as we ride on horseback the trees and cottages, which occur to us, appear at rest; we can measure their distances with our eye, and regulate our attitude by them; yet if we carelessly attend to distant hills or woods through a thin hedge, which is near us, we observe the jumping and progressive motions of them; as this is increased by the paralax of these objects; which we have not habituated ourselves to attend to. When first an European mounts an elephant sixteen feet high, and whose mode of motion he is not accustomed to, the objects seem to undulate, as he passes, and he frequently becomes sick and vertiginous, as I am well informed. Any other unusual movement of our bodies has the same effect, as riding backwards in a coach, swinging on a rope, turning round swiftly on one leg, scating on the ice, and a thousand others. So after a patient has been long confined to his bed, when he first attempts to walk, he finds himself vertiginous, and is obliged by practice to learn again the particular modes of the apparent motions of objects, as he walks by them.
[4]. A third difficulty, which occurs to us in learning to balance ourselves by the eye, is, when both ourselves and the circumjacent objects are in real motion. Here it is necessary, that we should be habituated to both these modes of motion in order to preserve our perpendicularity. Thus on horseback we accurately observe another person, whom we meet, trotting towards us, without confounding his jumping and progressive motion with our own, because we have been accustomed to them both; that is, to undergo the one, and to see the other at the same time. But in riding over a broad and fluctuating stream, though we are well experienced in the motions of our horse, we are liable to become dizzy from our inexperience in that of the water. And when first we go on ship-board, where the movements of ourselves, and the movements of the large waves are both new to us, the vertigo is almost unavoidable with the terrible sickness, which attends it. And this I have been assured has happened to several from being removed from a large ship into a small one; and again from a small one into a man of war.
[5]. From the foregoing examples it is evident, that, when we are surrounded with unusual motions, we lose our perpendicularity: but there are some peculiar circumstances attending this effect of moving objects, which we come now to mention, and shall hope from the recital of them to gain some insight into the manner of their production.
When a child moves round quick upon one foot, the circumjacent objects become quite indistinct, as their distance increases their apparent motions; and this great velocity confounds both their forms, and their colours, as is seen in whirling round a many coloured wheel; he then loses his usual method of balancing himself by vision, and begins to stagger, and attempts to recover himself by his muscular feelings. This staggering adds to the instability of the visible objects by giving a vibratory motion besides their rotatory one. The child then drops upon the ground, and the neighbouring objects seem to continue for some seconds of time to circulate around him, and the earth under him appears to librate like a balance. In some seconds of time these sensations of a continuation of the motion of objects vanish; but if he continues turning round somewhat longer, before he falls, sickness and vomiting are very liable to succeed. But none of these circumstances affect those who have habituated themselves to this kind of motion, as the dervises in Turkey, amongst whom these swift gyrations are a ceremony of religion.
In an open boat passing from Leith to Kinghorn in Scotland, a sudden change of the wind shook the undistended sail, and stopt our boat; from this unusual movement the passengers all vomited except myself. I observed, that the undulation of the ship, and the instability of all visible objects, inclined me strongly to be sick; and this continued or increased, when I closed my eyes, but as often as I bent my attention with energy on the management and mechanism of the ropes and sails, the sickness ceased; and recurred again, as often as I relaxed this attention; and I am assured by a gentleman of observation and veracity, that he has more than once observed, when the vessel has been in immediate danger, that the sea-sickness of the passengers has instantaneously ceased, and recurred again, when the danger was over.
Those, who have been upon the water in a boat or ship so long, that they have acquired the necessary habits of motion upon that unstable element, at their return on land frequently think in their reveries, or between sleeping and waking, that they observe the room, they sit in, or some of its furniture, to librate like the motion of the vessel. This I have experienced myself, and have been told, that after long voyages, it is some time before these ideas entirely vanish. The same is observable in a less degree after having travelled some days in a stage coach, and particularly when we lie down in bed, and compose ourselves to sleep; in this case it is observable, that the rattling noise of the coach, as well as the undulatory motion, haunts us. The drunken vertigo, and the vulgar custom of rocking children, will be considered in the next Section.
[6]. The motions, which are produced by the power of volition, may be immediately stopped by the exertion of the same power on the antagonist muscles; otherwise these with all the other classes of motion continue to go on, some time after they are excited, as the palpitation of the heart continues after the object of fear, which occasioned it, is removed. But this circumstance is in no class of motions more remarkable than in those dependent on irritation; thus if any one looks at the sun, and then covers his eyes with his hand, he will for many seconds of time, perceive the image of the sun marked on his retina: a similar image of all other visible objects would remain some time formed on the retina, but is extinguished by the perpetual change of the motions of this nerve in our attention to other objects. To this must be added, that the longer time any movements have continued to be excited without fatigue to the organ, the longer will they continue spontaneously, after the excitement is withdrawn: as the taste of tobacco in the mouth after a person has been smoaking it.
This taste remains so strong, that if a person continues to draw air through a tobacco pipe in the dark, after having been smoking some time, he cannot distinguish whether his pipe be lighted or not.
From these two considerations it appears, that the dizziness felt in the head, after seeing objects in unusual motion, is no other than a continuation of the motions of the optic nerve excited by those objects and which engage our attention. Thus on turning round on one foot, the vertigo continues for some seconds of time after the person is fallen on the ground; and the longer he has continued to revolve, the longer will continue these successive motions of the parts of the optic nerve.
Additional Observations on VERTIGO.
After revolving with your eyes open till you become vertiginous, as soon as you cease to revolve, not only the circum-ambient objects appear to circulate round you in a direction contrary to that, in which you have been turning, but you are liable to roll your eyes forwards and backwards; as is well observed, and ingeniously demonstrated by Dr. Wells in a late publication on vision. The same occurs, if you revolve with your eyes closed, and open them immediately at the time of your ceasing to turn; and even during the whole time of revolving, as may be felt by your hand pressed lightly on your closed eyelids. To these movements of the eyes, of which he supposes the observer to be inconscious, Dr. Wells ascribes the apparent circumgyration of objects on ceasing to revolve.
The cause of thus turning our eyes forwards, and then back again, after our body is at rest, depends, I imagine, on the same circumstance, which induces us to follow the indistinct spectra, which are formed on one side of the center of the retina, when we observe them apparently on clouds, as described in Sect. [XL. 2. 2].; and then not being able to gain a more distinct vision of them, we turn our eyes back, and again and again pursue the flying shade.
But this rolling of the eyes, after revolving till we become vertiginous, cannot cause the apparent circumgyration of objects, in a direction contrary to that in which we have been revolving, for the following reasons. 1. Because in pursuing a spectrum in the sky, or on the ground, as above mentioned, we perceive no retrograde motions of objects. 2. Because the apparent retrograde motions of objects, when we have revolved till we are vertiginous, continues much longer than the rolling of the eyes above described.
3. When we have revolved from right to left, the apparent motion of objects, when we stop, is from left to right; and when we have revolved from left to right, the apparent circulation of objects is from right to left; yet in both these cases the eyes of the revolver are seen equally to roll forwards and backwards.
4. Because this rolling of the eyes backwards and forwards takes place during our revolving, as may be perceived by the hand lightly pressed on the closed eyelids, and therefore exists before the effect ascribed to it.
And fifthly, I now come to relate an experiment, in which the rolling of the eyes does not take place at all after revolving, and yet the vertigo is more distressing than in the situations above mentioned. If any one looks steadily at a spot in the ceiling over his head, or indeed at his own finger held up high over his head, and in that situation turns round till he becomes giddy; and then stops, and looks horizontally; he now finds, that the apparent rotation of objects is from above downwards, or from below upwards; that is, that the apparent circulation of objects is now vertical instead of horizontal, making part of a circle round the axis of his eye; and this without any rolling of his eyeballs. The reason of there being no rolling of the eyeballs, perceived after this experiment, is, because the images of objects are formed in rotation round the axis of the eye, and not from one side to the other of the axis of it; so that, as the eyeball has not power to turn in its socket round its own axis, it cannot follow the apparent motions of these evanescent spectra, either before or after the body is at rest. From all which arguments it is manifest, that these apparent retrograde gyrations of objects are not caused by the rolling of the eyeballs; first, because no apparent retrogression of objects is observed in other rollings of the eyes: secondly, because the apparent retrogression of objects continues many seconds after the rolling of the eyeballs ceases. Thirdly, because the apparent retrogression of objects is sometimes one way, and sometimes another, yet the rolling of the eyeballs is the same. Fourthly, because the rolling of the eyeballs exists before the apparent retrograde motions of objects is observed; that is, before the revolving person stops. And fifthly, because the apparent retrograde gyration of objects is produced, when there is no rolling of the eyeballs at all.
Doctor Wells imagines, that no spectra can be gained in the eye, if a person revolves with his eyelids closed, and thinks this a sufficient argument against the opinion, that the apparent progression of the spectra of light or colours in the eye can cause the apparent retrogression of objects in the vertigo above described; but it is certain, when any person revolves in a light room with his eyes closed, that he nevertheless perceives differences of light both in quantity and colour through his eyelids, as he turns round; and readily gains spectra of those differences. And these spectra are not very different except in vivacity from those, which he acquires, when he revolves with unclosed eyes, since if he then revolves very rapidly the colours and forms of surrounding objects are as it were mixed together in his eye;. as when, the prismatic colours are painted on a wheel, they appear white as they revolve. The truth of this is evinced by the staggering or vertigo of men perfectly blind, when they turn round; which is not attended with apparent circulation of objects, but is a vertiginous disorder of the sense of touch. Blind men balance themselves by their sense of touch; which, being less adapted for perceiving small deviations from their perpendicular, occasions them to carry themselves more erect in walking. This method of balancing themselves by the direction of their pressure against the floor, becomes disordered by the unusual mode of action in turning round, and they begin to lose their perpendicularity, that is, they become vertiginous; but without any apparent circular motions of visible objects.
It will appear from the following experiments, that the apparent progression of the ocular spectra of light or colours is the cause of the apparent retrogression of objects, after a person has revolved, till he is vertiginous.
First, when a person turns round in a light room with his eyes open, but closes them before he stops, he will seem to be carried forwards in the direction he was turning for a short time after he stops. But if he opens his eyes again, the objects before him instantly appear to move in a retrograde direction, and he loses the sensation of being carried forwards. The same occurs if a person revolves in a light room with his eyes closed; when he stops, he seems to be for a time carried forwards, if his eyes are still closed; but the instant he opens them, the surrounding objects appear to move in retrograde gyration. From hence it may be concluded, that it is the sensation or imagination of our continuing to go forwards in the direction in which we were turning, that causes the apparent retrograde circulation of objects.
Secondly, though there is an audible vertigo, as is known by the battement, or undulations of sound in the ears, which many vertiginous people experience; and though there is also a tangible vertigo, as when a blind person turns round, as mentioned above; yet as this circumgyration of objects is an hallucination or deception of the sense of sight, we are to look for the cause of our appearing to move forward, when we stop with our eyes closed after gyration, to some affection of this sense. Now, thirdly, if the spectra formed in the eye during our rotation, continue to change, when we stand still, like the spectra described in Sect. [III. 3. 6]. such changes must suggest to us the idea or sensation of our still continuing to turn round; as is the case, when we revolve in a light room, and close our eyes before we stop. And lastly, on opening our eyes in the situation above described, the objects we chance to view amid these changing spectra in the eye, must seem to move in a contrary direction; as the moon sometimes appears to move retrograde, when swift-gliding clouds are passing forwards so much nearer the eye of the beholder.
To make observations on faint ocular spectra requires some degree of habit, and composure of mind, and even patience; some of those described in Sect. [XL]. were found difficult to see, by many, who tried them; now it happens, that the mind, during the confusion of vertigo, when all the other irritative tribes of motion, as well as those of vision, are in some degree disturbed, together with the fear of falling, is in a very unfit state for the contemplation of such weak sensations, as are occasioned by faint ocular spectra. Yet after frequently revolving, both with my eyes closed, and with them open, and attending to the spectra remaining in them, by shading the light from my eyelids more or less with my hand, I at length ceased to have the idea of going forward, after I stopped with my eyes closed; and saw changing spectra in my eyes, which seemed to move, as it were, over the field of vision; till at length, by repeated trials on sunny days, I persuaded myself, on opening my eyes, after revolving some time, on a shelf of gilded books in my library, that I could perceive the spectra in my eyes move forwards over one or two of the books, like the vapours in the air of a summer's day; and could so far undeceive myself, as to perceive the books to stand still. After more trials I sometimes brought myself to believe, that I saw changing spectra of lights and shades moving in my eyes, after turning round for some time, but did not imagine either the spectra or the objects to be in a state of gyration. I speak, however, with diffidence of these facts, as I could not always make the experiments succeed, when there was not a strong light in my room, or when my eyes were not in the most proper state for such observations.
The ingenious and learned M. Sauvage has mentioned other theories to account for the apparent circumgyration of objects in vertiginous people. As the retrograde motions of the particles of blood in the optic arteries, by spasm, or by fear, as is seen in the tails of tadpoles, and membranes between the fingers of frogs. Another cause he thinks may be from the librations to one side, and to the other, of the crystalline lens in the eye, by means of involuntary actions of the muscles, which constitute the ciliary process. Both these theories lie under the same objection as that of Dr. Wells before mentioned; namely, that the apparent motions of objects, after the observer has revolved for some time, should appear to vibrate this way and that; and not to circulate uniformly in a direction contrary to that, in which the observer had revolved.
M. Sauvage has, lastly, mentioned the theory of colours left in the eye, which he has termed impressions on the retina. He says, "Experience teaches us, that impressions made on the retina by a visible object remain some seconds after the object is removed; as appears from the circle of fire which we see, when a fire-stick is whirled round in the dark; therefore when we are carried round our own axis in a circle, we undergo a temporary vertigo, when we stop; because the impressions of the circumjacent objects remain for a time afterwards on the retina." Nosolog. Method. Clas. VIII. I. 1. We have before observed, that the changes of these colours remaining in the eye, evinces them to be motions of the fine terminations of the retina, and not impressions on it; as impressions on a passive substance must either remain, or cease intirely. See an additional note at the end of the second volume.
Any one, who stands alone on the top of a high tower, if he has not been accustomed to balance himself by objects placed at such distances and with such inclinations, begins to stagger, and endeavours to recover himself by his muscular feelings. During this time the apparent motion of objects at a distance below him is very great, and the spectra of these apparent motions continue a little time after he has experienced them; and he is persuaded to incline the contrary way to counteract their effects; and either immediately falls, or applying his hands to the building, uses his muscular feelings to preserve his perpendicular attitude, contrary to the erroneous persuasions of his eyes. Whilst the person, who walks in the dark, staggers, but without dizziness; for he neither has the sensation of moving objects to take off his attention from his muscular feelings, nor has he the spectra of those motions continued on his retina to add to his confusion. It happens indeed sometimes to one landing on a tower, that the idea of his not having room to extend his base by moving one of his feet outwards, when he begins to incline, superadds fears to his other inconveniences; which like surprise, joy, or any great degree of sensation, enervates him in a moment, by employing the whole sensorial power, and by thus breaking all the associated trains and tribes of motion.
[7]. The irritative ideas of objects, whilst we are awake, are perpetually present to our sense of sight; as we view the furniture of our rooms, or the ground, we tread upon, throughout the whole day without attending to it. And as our bodies are never at perfect rest during our waking hours, these irritative ideas of objects are attended perpetually with irritative ideas of their apparent motions. The ideas of apparent motions are always irritative ideas, because we never attend to them, whether we attend to the objects themselves, or to their real motions, or to neither. Hence the ideas of the apparent motions of objects are a complete circle of irritative ideas, which continue throughout the day.
Also during all our waking hours, there is a perpetual confused sound of various bodies, as of the wind in our rooms, the fire, distant conversations, mechanic business; this continued buzz, as we are seldom quite motionless, changes its loudness perpetually, like the sound of a bell; which rises and falls as long as it continues, and seems to pulsate on the ear. This any one may experience by turning himself round near a waterfall; or by striking a glass bell, and then moving the direction of its mouth towards the ears, or from them, as long as its vibrations continue. Hence this undulation of indistinct sound makes another concomitant circle of irritative ideas, which continues throughout the day.
We hear this undulating sound, when we are perfectly at rest ourselves, from other sonorous bodies besides bells; as from two organ-pipes, which are nearly but not quite in unison, when they are sounded together. When a bell is struck, the circular form is changed into an eliptic one; the longest axis of which, as the vibrations continue, moves round the periphery of the bell; and when either axis of this elipse is pointed towards our ears, the sound is louder; and less when the intermediate parts of the elipse are opposite to us. The vibrations of the two organ-pipes may be compared to Nonius's rule; the sound is louder, when they coincide, and less at the intermediate times. But, as the sound of bells is the most familiar of those sounds, which have a considerable battement, the vertiginous patients, who attend to the irritative circles of sounds above described, generally compare it to the noise of bells.
The peristaltic motions of our stomach and intestines, and the secretions of the various glands, are other circles of irritative motions, some of them more or less complete, according to our abstinence or satiety.
So that the irritative ideas of the apparent motions of objects, the irritative battements of sounds, and the movements of our bowels and glands compose a great circle of irritative tribes of motion: and when one considerable part of this circle of motions becomes interrupted, the whole proceeds in confusion, as described in Section [XVII. 1. 7]. on Catenation of Motions.
[8]. Hence a violent vertigo, from whatever cause it happens, is generally attended with undulating noise in the head, perversions of the motions of the stomach and duodenum, unusual excretion of bile and gastric juice, with much pale urine, sometimes with yellowness of the skin, and a disordered secretion of almost every gland of the body, till at length the arterial system is affected, and fever succeeds.
Thus bilious vomitings accompany the vertigo occasioned by the motion of a ship; and when the brain is rendered vertiginous by a paralytic affection of any part of the body, a vomiting generally ensues, and a great discharge of bile: and hence great injuries of the head from external violence are succeeded with bilious vomitings, and sometimes with abscesses of the liver. And hence, when a patient is inclined to vomit from other causes, as in some fevers, any motions of the attendants in his room, or of himself when he is raised or turned in his bed, presently induces the vomiting by superadding a degree of vertigo.
[9]. And conversely it is very usual with those, whose stomachs are affected from internal causes, to be afflicted with vertigo, and noise in the head; such is the vertigo of drunken people, which continues, when their eyes are closed, and themselves in a recumbent posture, as well as when they are in an erect posture, and have their eyes open. And thus the irritation of a stone in the bile-duct, or in the ureter, or an inflammation of any of the intestines, are accompanied with vomitings and vertigo.
In these cases the irritative motions of the stomach, which are in general not attended to, become so changed by some unnatural stimulus, as to become uneasy, and excite our sensation or attention. And thus the other irritative trains of motions, which are associated with it, become disordered by their sympathy. The same happens, when a piece of gravel sticks in the ureter, or when some part of the intestinal canal becomes inflamed. In these cases the irritative muscular motions are first disturbed by unusual stimulus, and a disordered action of the sensual motions, or dizziness ensues. While in sea-sickness the irritative sensual motions, as vertigo, precedes; and the disordered irritative muscular motions, as those of the stomach in vomiting, follow.
[10]. When these irritative motions are disturbed, if the degree be not very great, the exertion of voluntary attention to any other object, or any sudden sensation, will disjoin these new habits of motion. Thus some drunken people have become sober immediately, when any accident has strongly excited their attention; and sea-sickness has vanished, when the ship has been in danger. Hence when our attention to other objects is most relaxed, as just before we fall asleep, or between our reveries when awake, these irritative ideas of motion and sound are most liable to be perceived; as those, who have been at sea, or have travelled long in a coach, seem to perceive the vibrations of the ship, or the rattling of the wheels, at these intervals; which cease again, as soon as they exert their attention. That is, at those intervals they attend to the apparent motions, and to the battement of sounds of the bodies around them, and for a moment mistake them for those real motions of the ship, and noise of wheels, which they had lately been accustomed to: or at these intervals of reverie, or on the approach of sleep, these supposed motions or sounds may be produced entirely by imagination.
We may conclude from this account of vertigo, that sea-sickness is not an effort of nature to relieve herself, but a necessary consequence of the associations or catenations of animal motions. And may thence infer, that the vomiting, which attends the gravel in the ureter, inflammations of the bowels, and the commencement of some fevers, has a similar origin, and is not always an effort of the vis medicatrix naturæ. But where the action of the organ is the immediate consequence of the stimulating cause, it is frequently exerted to dislodge that stimulus, as in vomiting up an emetic drug; at other times, the action of an organ is a general effort to relieve pain, as in convulsions of the locomotive muscles; other actions drink up and carry on the fluids, as in absorption and secretion; all which may be termed efforts of nature to relieve, or to preserve herself.
[11]. The cure of vertigo will frequently depend on our previously investigating the cause of it, which from what has been delivered above may originate from the disorder of any part of the great tribes of irritative motions, and of the associate motions catenated with them.
Many people, when they arrive at fifty or sixty years of age, are affected with slight vertigo; which is generally but wrongly ascribed to indigestion, but in reality arises from a beginning defect of their sight; as about this time they also find it necessary to begin to use spectacles, when they read small prints, especially in winter, or by candle light, but are yet able to read without them during the summer days, when the light is stronger. These people do not see objects so distinctly as formerly, and by exerting their eyes more than usual, they perceive the apparent motions of objects, and confound them with the real motions of them; and therefore cannot accurately balance themselves so as easily to preserve their perpendicularity by them.
That is, the apparent motions of objects, which are at rest, as we move by them, should only excite irritative ideas: but as these are now become less distinct, owing to the beginning imperfection of our sight, we are induced voluntarily to attend to them; and then these apparent motions become succeeded by sensation; and thus the other parts of the trains of irritative ideas, or irritative muscular motions, become disordered, as explained above. In these cases of slight vertigo I have always promised my patients, that they would get free from it in two or three months, as they should acquire the habit of balancing their bodies by less distinct objects, and have seldom been mistaken in my prognostic.
There is an auditory vertigo, which is called a noise in the head, explained in No. [7]. of this section, which also is very liable to affect people in the advance of life, and is owing to their hearing less perfectly than before. This is sometimes called a ringing, and sometimes a singing, or buzzing, in the ears, and is occasioned by our first experiencing a disagreeable sensation from our not being able distinctly to hear the sounds, we used formerly to hear distinctly. And this disagreeable sensation excites desire and consequent volition; and when we voluntarily attend to small indistinct sounds, even the whispering of the air in a room, and the pulsations of the arteries of the ear are succeeded by sensation; which minute sounds ought only to have produced irritative sensual motions, or unperceived ideas. See Section [XVII. 3. 6]. These patients after a while lose this auditory vertigo, by acquiring a new habit of not attending voluntarily to these indistinct sounds, but contenting themselves with the less accuracy of their sense of hearing.
Another kind of vertigo begins with the disordered action of some irritative muscular motions, as those of the stomach from intoxication, or from emetics; or those of the ureter, from the stimulus of a stone lodged in it; and it is probable, that the disordered motions of some of the great congeries of glands, as of those which form the liver, or of the intestinal canal, may occasion vertigo in consequence of their motions being associated or catenated with the great circles of irritative motions; and from hence it appears, that the means of cure must be adapted to the cause.
To prevent sea-sickness it is probable, that the habit of swinging for a week or two before going on shipboard might be of service. For the vertigo from failure of sight, spectacles may be used. For the auditory vertigo, æther may be dropt into the ear to stimulate the part, or to dissolve ear-wax, if such be a part of the cause. For the vertigo arising from indigestion, the peruvian bark and a blister are recommended. And for that owing to a stone in the ureter, venesection, cathartics, opiates, sal soda aerated.
[12]. Definition of vertigo. 1. Some of the irritative sensual, or muscular motions, which were usually not succeeded by sensation, are in this disease succeeded by sensation; and the trains or circles of motions, which were usually catenated with them, are interrupted, or inverted, or proceed in confusion. 2. The sensitive and voluntary motions continue undisturbed. 3. The associate trains or circles of motions continue; but their catenations with some of the irritative motions are disordered, or inverted, or dissevered.
SECT. [XXI].
OF DRUNKENNESS.
[1]. Sleep from satiety of hunger. From rocking children. From uniform sounds. [2]. Intoxication from common food after fatigue and inanition. [3]. From wine or of opium. Chilness after meals. Vertigo. Why pleasure is produced by intoxication, and by swinging and rocking children. And why pain is relieved by it. [4]. Why drunkards stagger and stammer, and are liable to weep. [5]. And become delirious, sleepy, and stupid. [6]. Or make pale urine and vomit. [7]. Objects are seen double. [8]. Attention of the mind diminishes drunkenness. [9]. Disordered irritative motions of all the senses. [10]. Diseases from drunkenness. [11]. Definition of drunkenness.
[1]. In the state of nature when the sense of hunger is appeased by the stimulus of agreeable food, the business of the day is over, and the human savage is at peace with the world, he then exerts little attention to external objects, pleasing reveries of imagination succeed, and at length sleep is the result: till the nourishment which he has procured, is carried over every part of the system to repair the injuries of action, and he awakens with fresh vigour, and feels a renewal of his sense of hunger.
The juices of some bitter vegetables, as of the poppy and the laurocerasus, and the ardent spirit produced in the fermentation of the sugar found in vegetable juices, are so agreeable to the nerves of the stomach, that, taken in a small quantity, they instantly pacify the sense of hunger; and the inattention to external stimuli with the reveries of imagination, and sleep, succeeds, in the same manner as when the stomach is filled with other less intoxicating food.
This inattention to the irritative motions occasioned by external stimuli is a very important circumstance in the approach of sleep, and is produced in young children by rocking their cradles: during which all visible objects become indistinct to them. An uniform soft repeated sound, as the murmurs of a gentle current, or of bees, are said to produce the same effect, by presenting indistinct ideas of inconsequential sounds, and by thus stealing our attention from other objects, whilst by their continued reiterations they become familiar themselves, and we cease gradually to attend to any thing, and sleep ensues.
[2]. After great fatigue or inanition, when the stomach is suddenly filled with flesh and vegetable food, the inattention to external stimuli, and the reveries of imagination, become so conspicuous as to amount to a degree of intoxication. The same is at any time produced by superadding a little wine or opium to our common meals; or by taking these separately in considerable quantity; and this more efficaciously after fatigue or inanition; because a less quantity of any stimulating material will excite an organ into energetic action, after it has lately been torpid from defect of stimulus; as objects appear more luminous, after we have been in the dark; and because the suspension of volition, which is the immediate cause of sleep, is sooner induced, after a continued voluntary exertion has in part exhausted the sensorial power of volition; in the same manner as we cannot contract a single muscle long together without intervals of inaction.
[3]. In the beginning of intoxication we are inclined to sleep, as mentioned above, but by the excitement of external circumstances, as of noise, light, business, or by the exertion of volition, we prevent the approaches of it, and continue to take into our stomach greater quantities of the inebriating materials. By these means the irritative movements of the stomach are excited into greater action than is natural; and in consequence all the irritative tribes and trains of motion, which are catenated with them, become susceptible of stronger action from their accustomed stimuli; because these motions are excited both by their usual irritation, and by their association with the increased actions of the stomach and lacteals. Hence the skin glows, and the heat of the body is increased, by the more energetic action of the whole glandular system; and pleasure is introduced in consequence of these increased motions from internal stimulus. According to Law 5. Sect. [IV]. on Animal Causation.
From this great increase of irritative motions from internal stimulus, and the increased sensation introduced into the system in consequence; and secondly, from the increased sensitive motions in consequence of this additional quantity of sensation, so much sensorial power is expended, that the voluntary power becomes feebly exerted, and the irritation from the stimulus of external objects is less forcible; the external parts of the eye are not therefore voluntarily adapted to the distances of objects, whence the apparent motions of those objects either are seen double, or become too indistinct for the purpose of balancing the body, and vertigo is induced.
Hence we become acquainted with that very curious circumstance, why the drunken vertigo is attended with an increase of pleasure; for the irritative ideas and motions occasioned by internal stimulus, that were not attended to in our sober hours, are now just so much increased as to be succeeded by pleasurable sensation, in the same manner as the more violent motions of our organs are succeeded by painful sensation. And hence a greater quantity of pleasurable sensation is introduced into the constitution; which is attended in some people with an increase of benevolence and good humour.
If the apparent motions of objects is much increased, as when we revolve on one foot, or are swung on a rope, the ideas of these apparent motions are also attended to, and are succeeded with pleasureable sensation, till they become familiar to us by frequent use. Hence children are at first delighted with these kinds of exercise, and with riding, and failing, and hence rocking young children inclines them to sleep. For though in the vertigo from intoxication the irritative ideas of the apparent motions of objects are indistinct from their decrease of energy: yet in the vertigo occasioned by rocking or swinging the irritative ideas of the apparent motions of objects are increased in energy, and hence they induce pleasure into the system, but are equally indistinct, and in consequence equally unfit to balance ourselves by. This addition of pleasure precludes desire or aversion, and in consequence the voluntary power is feebly exerted, and on this account rocking young children inclines them to sleep.
In what manner opium and wine act in relieving pain is another article, that well deserves our attention. There are many pains that originate from defect as well as from excess of stimulus; of these are those of the six appetites of hunger, thirst, lust, the want of heat, of distention, and of fresh air. Thus if our cutaneous capillaries cease to act from the diminished stimulus of heat, when we are exposed to cold weather, or our stomach is uneasy for want of food; these are both pains from defect of stimulus, and in consequence opium, which stimulates all the moving system into increased action, must relieve them. But this is not the case in those pains, which arise from excess of stimulus, as in violent inflammations: in these the exhibition of opium is frequently injurious by increasing the action of the system already too great, as in inflammation of the bowels mortification is often produced by the stimulus of opium. Where, however, no such bad consequences follow; the stimulus of opium, by increasing all the motions of the system, expends so much of the sensorial power, that the actions of the whole system soon become feebler, and in consequence those which produced the pain and inflammation.
[4]. When intoxication proceeds a little further, the quantity of pleasurable sensation is so far increased, that all desire ceases, for there is no pain in the system to excite it. Hence the voluntary exertions are diminished, staggering and stammering succeed; and the trains of ideas become more and more inconsistent from this defect of voluntary exertion, as explained in the sections on sleep and reverie, whilst those passions which are unmixed with volition are more vividly felt, and shewn with less reserve; hence pining love, or superstitious fear, and the maudling tear dropped on the remembrance of the most trifling distress.
[5]. At length all these circumstances are increased; the quantity of pleasure introduced into the system by the increased irritative muscular motions of the whole sanguiferous, and glandular, and absorbent systems, becomes so great, that the organs of sense are more forcibly excited into action by this internal pleasurable sensation, than by the irritation from the stimulus of external objects. Hence the drunkard ceases to attend to external stimuli, and as volition is now also suspended, the trains of his ideas become totally inconsistent as in dreams, or delirium: and at length a stupor succeeds from the great exhaustion of sensorial power, which probably does not even admit of dreams, and in which, as in apoplexy, no motions continue but those from internal stimuli, from sensation, and from association.
[6]. In other people a paroxysm of drunkenness has another termination; the inebriate, as soon as he begins to be vertiginous, makes pale urine in great quantities and very frequently, and at length becomes sick, vomits repeatedly, or purges, or has profuse sweats, and a temporary fever ensues with a quick strong pulse. This in some hours is succeeded by sleep; but the unfortunate bacchanalian does not perfectly recover himself till about the same time of the succeeding day, when his course of inebriation began. As shewn in Sect. [XVII. 1. 7]. on Catenation. The temporary fever with strong pulse is owing to the same cause as the glow on the skin mentioned in the third paragraph of this Section: the flow of urine and sickness arises from the whole system of irritative motions being thrown into confusion by their associations with each other; as in sea-sickness, mentioned in Sect. [XX. 4]. on Vertigo; and which is more fully explained in Section [XXIX]. on Diabetes.
[7]. In this vertigo from internal causes we see objects double, as two candles instead of one, which is thus explained. Two lines drawn through the axes of our two eyes meet at the object we attend to: this angle of the optic axes increases or diminishes with the less or greater distances of objects. All objects before or behind the place where this angle is formed, appear double; as any one may observe by holding up a pen between his eyes and the candle; when he looks attentively at a spot on the pen, and carelessly at the candle, it will appear double; and the reverse when he looks attentively at the candle and carelessly at the pen; so that in this case the muscles of the eye, like those of the limbs, stagger and are disobedient to the expiring efforts of volition. Numerous objects are indeed sometimes seen by the inebriate, occasioned by the refractions made by the tears, which stand upon his eye-lids.
[8]. This vertigo also continues, when the inebriate lies in his bed, in the dark, or with his eyes closed; and this more powerfully than when he is erect, and in the light. For the irritative ideas of the apparent motions of objects are now excited by irritation from internal stimulus, or by association with other irritative motions; and the inebriate, like one in a dream, believes the objects of these irritative motions to be present, and feels himself vertiginous. I have observed in this situation, so long as my eyes and mind were intent upon a book, the sickness and vertigo ceased, and were renewed again the moment I discontinued this attention; as was explained in the preceding account of sea-sickness. Some drunken people have been known to become sober instantly from some accident, that has strongly excited their attention, as the pain of a broken bone, or the news of their house being on fire.
[9]. Sometimes the vertigo from internal causes, as from intoxication, or at the beginning of some fevers, becomes so universal, that the irritative motions which belong to other organs of sense are succeeded by sensation or attention, as well as those of the eye. The vertiginous noise in the ears has been explained in Section [XX]. on Vertigo. The taste of the saliva, which in general is not attended to, becomes perceptible, and the patients complain of a bad taste in their mouth.
The common smells of the surrounding air sometimes excite the attention of these patients, and bad smells are complained of, which to other people are imperceptible. The irritative motions that belong to the sense of pressure, or of touch, are attended to, and the patient conceives the bed to librate, and is fearful of falling out of it. The irritative motions belonging to the senses of distention, and of heat, like those above mentioned, become attended to at this time: hence we feel the pulsation of our arteries all over us, and complain of heat, or of cold, in parts of the body where there is no accumulation or diminution of actual heat. All which are to be explained, as in the last paragraph, by the irritative ideas belonging to the various senses being now excited by internal stimuli, or by their associations with other irritative motions. And that the inebriate, like one in a dream, believes the external objects, which usually caused these irritative ideas, to be now present.
[10]. The diseases in consequence of frequent inebriety, or of daily taking much vinous spirit without inebriety, consist in the paralysis, which is liable to succeed violent stimulation. Organs, whose actions are associated with others, are frequently more affected than the organ, which is stimulated into too violent action. See Sect. [XXIV. 2. 8]. Hence in drunken people it generally happens, that the secretory vessels of the liver become first paralytic, and a torpor with consequent gall-stones or schirrus of this viscus is induced with concomitant jaundice; otherwise it becomes inflamed in consequence of previous torpor, and this inflammation is frequently transferred to a more sensible part, which is associated with it, and produces the gout, or the rosy eruption of the face, or some other leprous eruption on the head, or arms, or legs. Sometimes the stomach is first affected, and paralysis of the lacteal system is induced: whence a total abhorrence from flesh-food, and general emaciation. In others the lymphatic system is affected with paralysis, and dropsy is the consequence. In some inebriates the torpor of the liver produces pain without apparent schirrus, or gall stones, or inflammation, or consequent gout, and in these epilepsy or insanity are often the consequence. All which will be more fully treated of in the course of the work.
I am well aware, that it is a common opinion, that the gout is as frequently owing to gluttony in eating, as to intemperance in drinking fermented or spirituous liquors. To this I answer, that I have seen no person afflicted with the gout, who has not drank freely of fermented liquor, as wine and water, or small beer; though as the disposition to all the diseases, which have originated from intoxication, is in some degree hereditary, a less quantity of spirituous potation will induce the gout in those, who inherit the disposition from their parents. To which I must add, that in young people the rheumatism is frequently mistaken for the gout.
Spice is seldom taken in such quantity as to do any material injury to the system, flesh-meats as well as vegetables are the natural diet of mankind; with these a glutton may be crammed up to the throat, and fed fat like a stalled ox; but he will not be diseased, unless he adds spirituous or fermented liquor to his food. This is well known in the distilleries, where the swine, which are fattened by the spirituous sediments of barrels, acquire diseased livers. But mark what happens to a man, who drinks a quart of wine or of ale, if he has not been habituated to it. He loses the use both of his limbs and of his understanding! He becomes a temporary idiot, and has a temporary stroke of the palsy! And though he slowly recovers after some hours, is it not reasonable to conclude, that a perpetual repetition of so powerful a poison must at length permanently affect him?—If a person accidentally becomes intoxicated by eating a few mushrooms of a peculiar kind, a general alarm is excited, and he is said to be poisoned, and emetics are exhibited; but so familiarised are we to the intoxication from vinous spirit, that it occasions laughter rather than alarm.
There is however considerable danger in too hastily discontinuing the use of so strong a stimulus, lest the torpor of the system, or paralysis, should sooner be induced by the omission than by the continuance of this habit, when unfortunately acquired. A golden rule for determining the quantity, which may with safety be discontinued, is delivered in Sect. [XII. 7. 8].
[11]. Definition of drunkenness. Many of the irritative motions are much increased in energy by internal stimulation.
2. A great additional quantity of pleasurable sensation is occasioned by this increased exertion of the irritative motions. And many sensitive motions are produced in consequence of this increased sensation.
3. The associated trains and tribes of motions, catenated with the increased irritative and sensitive motions, are disturbed, and proceed in confusion.
4. The faculty of volition is gradually impaired, whence proceeds the instability of locomotion, inaccuracy of perception, and inconsistency of ideas; and is at length totally suspended, and a temporary apoplexy succeeds.
SECT. [XXII].
OF PROPENSITY TO MOTION, REPETITION AND IMITATION.
[I]. Accumulation of sensorial power in hemiplagia, in sleep, in cold fit of fever, in the locomotive muscles, in the organs of sense. Produces propensity to action. [II]. Repetition by three sensorial powers. In rhimes and alliterations, in music, dancing, architecture, landscape-painting, beauty. [III]. [1]. Perception consists in imitation. Four kinds of imitation. [2]. Voluntary. Dogs taught to dance. [3]. Sensitive. Hence sympathy, and all our virtues. Contagious matter of venereal ulcers, of hydrophobia, of jail-fever, of small-pox, produced by imitation, and the sex of the embryon. [4]. Irritative imitation. [5]. Imitations resolvable into associations.
[I]. [1]. In the hemiplagia, when the limbs on one side have lost their power of voluntary motion, the patient is for many days perpetually employed in moving those of the other. [2]. When the voluntary power is suspended during sleep, there commences a ceaseless flow of sensitive motions, or ideas of imagination, which compose our dreams. [3]. When in the cold fit of an intermittent fever some parts of the system have for a time continued torpid, and have thus expended less than their usual expenditure of sensorial power; a hot fit succeeds, with violent action of those vessels, which had previously been quiescent. All these are explained from an accumulation of sensorial power during the inactivity of some part of the system.
Besides the very great quantity of sensorial power perpetually produced and expended in moving the arterial, venous, and glandular systems, with the various organs or digestion, as described in Section [XXXII. 3. 2]. there is also a constant expenditure of it by the action of our locomotive muscles and organs of sense. Thus the thickness of the optic nerves, where they enter the eye, and the great expansion of the nerves of touch beneath the whole of the cuticle, evince the great consumption of sensorial power by these senses. And our perpetual muscular actions in the common offices of life, and in constantly preserving the perpendicularity of our bodies during the day, evince a considerable expenditure of the spirit of animation by our locomotive muscles. It follows, that if the exertion of these organs of sense and muscles be for a while intermitted, that some quantity of sensorial power must be accumulated, and a propensity to activity of some kind ensue from the increased excitability of the system. Whence proceeds the irksomeness of a continued attitude, and of an indolent life.
However small this hourly accumulation of the spirit of animation may be, it produces a propensity to some kind of action; but it nevertheless requires either desire or aversion, either pleasure or pain, or some external stimulus, or a previous link of association, to excite the system into activity; thus it frequently happens, when the mind and body are so unemployed as not to possess any of the three first kinds of stimuli, that the last takes place, and consumes the small but perpetual accumulation of sensorial power. Whence some indolent people repeat the same verse for hours together, or hum the same tune. Thus the poet:
Onward he trudged, not knowing what he sought,
And whistled, as he went, for want of thought.
[II]. The repetitions of motions may be at first produced either by volition, or by sensation, or by irritation, but they soon become easier to perform than any other kinds of action, because they soon become associated together, according to Law the seventh, Section [IV]. on Animal Causation. And because their frequency of repetition, if as much sensorial power be produced during every reiteration as is expended, adds to the facility of their production.
If a stimulus be repeated at uniform intervals of time, as described in Sect. [XII. 3. 3]. the action, whether of our muscles or organs of sense, is produced with still greater facility or energy; because the sensorial power of association, mentioned above, is combined with the sensorial power of irritation; that is, in common language, the acquired habit assists the power of the stimulus.
This not only obtains in the annual, lunar, and diurnal catenations of animal motions, as explained in Sect. [XXXVI]. which are thus performed with great facility and energy; but in every less circle of actions or ideas, as in the burthen of a song, or the reiterations of a dance. To the facility and distinctness, with which we hear sounds at repeated intervals, we owe the pleasure, which we receive from musical time, and from poetic time; as described in Botanic Garden, P. 2. Interlude 3. And to this the pleasure we receive from the rhimes and alliterations of modern verification; the source of which without this key would be difficult to discover. And to this likewise should be ascribed the beauty of the duplicature in the perfect tense of the Greek verbs, and of some Latin ones, as tango tetegi, mordeo momordi.
There is no variety of notes referable to the gamut in the beating of the drum, yet if it be performed in musical time, it is agreeable to our ears; and therefore this pleasurable sensation must be owing to the repetition of the divisions of the sounds at certain intervals of time, or musical bars. Whether these times or bars are distinguished by a pause, or by an emphasis, or accent, certain it is, that this distinction is perpetually repeated; otherwise the ear could not determine instantly, whether the successions of sound were in common or in triple time. In common time there is a division between every two crotchets, or other notes of equivalent time; though the bar in written music is put after every fourth crotchet, or notes equivalent in time; in triple time the division or bar is after every three crotchets, or notes equivalent; so that in common time the repetition recurs more frequently than in triple time. The grave or heroic verses of the Greek and Latin poets are written in common time; the French heroic verses, and Mr. Anstie's humorous verses in his Bath Guide, are written in the same time as the Greek and Latin verses, but are one bar shorter. The English grave or heroic verses are measured by triple time, as Mr. Pope's translation of Homer.
But besides these little circles of musical time, there are the greater returning periods, and the still more distant choruses, which, like the rhimes at the ends of verses, owe their beauty to repetition; that is, to the facility and distinctness with which we perceive sounds, which we expect to perceive, or have perceived before; or in the language of this work, to the greater ease and energy with which our organ is excited by the combined sensorial powers of association and irritation, than by the latter singly.
A certain uniformity or repetition of parts enters the very composition of harmony. Thus two octaves nearest to each other in the scale commence their vibrations together after every second vibration of the higher one. And where the first, third, and fifth compose a chord the vibrations concur or coincide frequently, though less to than in the two octaves. It is probable that these chords bear some analogy to a mixture of three alternate colours in the sun's spectrum separated by a prism.
The pleasure we receive from a melodious succession of notes referable to the gamut is derived from another source, viz. to the pandiculation or counteraction of antagonist fibres. See Botanic Garden, P. 2. Interlude 3. If to these be added our early associations of agreeable ideas with certain proportions of sound, I suppose, from these three sources springs all the delight of music, so celebrated by ancient authors, and so enthusiastically cultivated at present. See Sect. [XVI. No. 10]. on Instinct.
This kind of pleasure arising from repetition, that is from the facility and distinctness, with which we perceive and understand repeated sensations, enters into all the agreeable arts; and when it is carried to excess is termed formality. The art of dancing like that of music depends for a great part of the pleasure, it affords, on repetition; architecture, especially the Grecian, consists of one part being a repetition of another; and hence the beauty of the pyramidal outline in landscape-painting; where one side of the picture may be said in some measure to balance the other. So universally does repetition contribute to our pleasure in the fine arts, that beauty itself has been defined by some writers to consist in a due combination of uniformity and variety. See Sect. [XVI. 6].
[III]. [1]. Man is termed by Aristotle an imitative animal; this propensity to imitation not only appears in the actions of children, but in all the customs and fashions of the world: many thousands tread in the beaten paths of others, for one who traverses regions of his own discovery. The origin of this propensity of imitation has not, that I recollect, been deduced from any known principle; when any action presents itself to the view of a child, as of whetting a knife, or threading a needle, the parts of this action in respect of time, motion, figure, is imitated by a part of the retina of his eye; to perform this action therefore with his hands is easier to him than to invent any new action, because it consists in repeating with another set of fibres, viz. with the moving muscles, what he had just performed by some parts of the retina; just as in dancing we transfer the times of motion from the actions of the auditory nerves to the muscles of the limbs. Imitation therefore consists of repetition, which we have shewn above to be the easiest kind of animal action, and which we perpetually fall into, when we possess an accumulation of sensorial power, which is not otherwise called into exertion.
It has been shewn, that our ideas are configurations of the organs of sense, produced originally in consequence of the stimulus of external bodies. And that these ideas, or configurations of the organs of sense, referable in some property a correspondent property of external matter; as the parts of the senses of light and of touch, which are excited into action, resemble in figure the figure of the stimulating body; and probably also the colour, and the quantity of density, which they perceive. As explained in Sect. [XIV. 2. 2]. Hence it appears, that our perceptions themselves are copies, that is, imitations of some properties of external matter; and the propensity to imitation is thus interwoven with our existence, as it is produced by the stimuli of external bodies, and is afterwards repeated by our volitions and sensations, and thus constitutes all the operations of our minds.
[2]. Imitations resolve themselves into four kinds, voluntary, sensitive, irritative, and associate. The voluntary imitations are, when we imitate deliberately the actions of others, either by mimicry, as in acting a play, or in delineating a flower; or in the common actions of our lives, as in our dress, cookery, language, manners, and even in our habits of thinking.
Not only the greatest part of mankind learn all the common arts of life by imitating others, but brute animals seem capable of acquiring knowledge with greater facility by imitating each other, than by any methods by which we can teach them; as dogs and cats, when they are sick, learn of each other to eat grass; and I suppose, that by making an artificial dog perform certain tricks, as in dancing on his hinder legs, a living dog might be easily induced to imitate them; and that the readiest way of instructing dumb animals is by practising them with others of the same species, which have already learned the arts we wish to teach them. The important use of imitation in acquiring natural language is mentioned in Section [XVI. 7]. and [8]. on Instinct.
[3]. The sensitive imitations are the immediate consequences of pleasure or pain, and these are often produced even contrary to the efforts of the will. Thus many young men on seeing cruel surgical operations become sick, and some even feel pain in the parts of their own bodies, which they see tortured or wounded in others; that is, they in some measure imitate by the exertions of their own fibres the violent actions, which they witnessed in those of others. In this case a double imitation takes place, first the observer imitates with the extremities of the optic nerve the mangled limbs, which are present before his eyes; then by a second imitation he excites to violent action of the fibres of his own limbs as to produce pain in those parts of his own body, which he saw wounded in another. In these pains produced by imitation the effect has some similarity to the cause, which distinguishes them from those produced by association; as the pains of the teeth, called tooth-edge, which are produced by association with disagreeable sounds, as explained in Sect. [XVI. 10].
The effect of this powerful agent, imitation, in the moral world, is mentioned in Sect. [XVI. 7]. as it is the foundation of all our intellectual sympathies with the pains and pleasures of others, and is in consequence the source of all our virtues. For in what consists our sympathy with the miseries, or with the joys, of our fellow creatures, but in an involuntary excitation of ideas in some measure similar or imitative of those, which we believe to exist in the minds of the persons, whom we commiserate or congratulate?
There are certain concurrent or successive actions of some of the glands, or other parts of the body, which are possessed of sensation, which become intelligible from this propensity to imitation. Of these are the production of matter by the membranes of the fauces, or by the skin, in consequence of the venereal disease previously affecting the parts of generation. Since as no fever is excited, and as neither the blood of such patients, nor even the matter from ulcers of the throat, or from cutaneous ulcers, will by inoculation produce the venereal disease in others, as observed by Mr. Hunter, there is reason to conclude, that no contagious matter is conveyed thither by the blood-vessels, but that a milder matter is formed by the actions of the fine vessels in those membranes imitating each other. See Section [XXXIII. 2. 9]. In this disease the actions of these vessels producing ulcers on the throat and skin are imperfect imitations of those producing chanker, or gonorrhœa; since the matter produced by them is not infectious, while the imitative actions in the hydrophobia appear to be perfect resemblances, as they produce a material equally infectious with the original one, which induced them.
The contagion from the bite of a mad dog differs from other contagious materials, from its being communicable from other animals to mankind, and from many animals to each other; the phenomena attending the hydrophobia are in some degree explicable on the foregoing theory. The infectious matter does not appear to enter the circulation, as it cannot be traced along the course of the lymphatics from the wound, nor is there any swelling of the lymphatic glands, nor does any fever attend, as occurs in the small-pox, and in many other contagious diseases; yet by some unknown process the disease is communicated from the wound to the throat, and that many months after the injury, so as to produce pain and hydrophobia, with a secretion of infectious saliva of the same kind, as that of the mad dog, which inflicted the wound.
This subject is very intricate.—It would appear, that by certain morbid actions of the salivary glands of the mad dog, a peculiar kind of saliva is produced; which being instilled into a wound of another animal stimulates the cutaneous or mucous glands into morbid actions, but which are ineffectual in respect to the production of a similar contagious material; but the salivary glands by irritative sympathy are thrown into similar action, and produce an infectious saliva similar to that instilled into the wound.
Though in many contagious fevers a material similar to that which produced the disease, is thus generated by imitation; yet there are other infectious materials, which do not thus propagate themselves, but which seem to act like slow poisons. Of this kind was the contagious matter, which produced the jail-fever at the assizes at Oxford about a century ago. Which, though fatal to so many, was not communicated to their nurses or attendants. In these cases, the imitations of the fine vessels, as above described, appear to be imperfect, and do not therefore produce a matter similar to that, which stimulates them; in this circumstance resembling the venereal matter in ulcers of the throat or skin, according to the curious discovery of Mr. Hunter above related, who found, by repeated inoculations, that it would not infect. Hunter on Venereal Disease, Part vi. ch. 1.
Another example of morbid imitation is in the production of a great quantity of contagious matter, as in the inoculated small-pox, from a small quantity of it inserted into the arm, and probably diffused in the blood. These particles of contagious matter stimulate the extremities of the fine arteries of the skin, and cause them to imitate some properties of those particles of contagious matter, so as to produce a thousandfold of a similar material. See Sect. [XXXIII. 2. 6]. Other instances are mentioned in the Section on Generation, which shew the probability that the extremities of the seminal glands may imitate certain ideas of the mind, or actions of the organs of sense, and thus occasion the male or female sex of the embryon. See Sect. [XXXIX. 6].
[4]. We come now to those imitations, which are not attended with sensation. Of these are all the irritative ideas already explained, as when the retina of the eye imitates by its action or configuration the tree or the bench, which I shun in walking past without attending to them. Other examples of these irritative imitations are daily observable in common life; thus one yawning person shall set a whole company a yawning; and some have acquired winking of the eyes or impediments of speech by imitating their companions without being conscious of it.
[5]. Besides the three species of imitations above described there may be some associate motions, which may imitate each other in the kind as well as in the quantity of their action; but it is difficult to distinguish them from the associations of motions treated of in Section [XXXV]. Where the actions of other persons are imitated there can be no doubt, or where we imitate a preconceived idea by exertion of our locomotive muscles, as in painting a dragon; all these imitations may aptly be referred to the sources above described of the propensity to activity, and the facility of repetition; at the same time I do not affirm, that all those other apparent sensitive and irritative imitations may not be resolvable into associations of a peculiar kind, in which certain distant parts of similar irritability or sensibility, and which have habitually acted together, may affect each other exactly with the same kinds of motion; as many parts are known to sympathise in the quantity of their motions. And that therefore they may be ultimately resolvable into associations of action, as described in Sect. [XXXV].
SECT. [XXIII].
OF THE CIRCULATORY SYSTEM.
[I]. The heart and arteries have no antagonist muscles. Veins absorb the blood, propel it forwards, and distend the heart; contraction of the heart distends the arteries. Vena portarum. [II]. Glands which take their fluids from the blood. With long necks, with short necks. [III]. Absorbent system. [IV]. Heat given out from glandular secretions. Blood changes colour in the lungs and in the glands and capillaries. [V]. Blood is absorbed by veins, as chyle by lacteal vessels, otherwise they could not join their streams. [VI]. Two kinds of stimulus, agreeable and disagreeable. Glandular appetency. Glands originally possessed sensation.
[I]. We now step forwards to illustrate some of the phenomena of diseases, and to trace out their most efficacious methods of cure; and shall commence this subject with a short description of the circulatory system.
As the nerves, whose extremities form our various organs of sense and muscles, are all joined, or communicate, by means of the brain, for the convenience perhaps of the distribution of a subtile ethereal fluid for the purpose of motion; so all those vessels of the body, which carry the grosser fluids for the purposes of nutrition, communicate with each other by the heart.
The heart and arteries are hollow muscles, and are therefore indued with power of contraction in consequence of stimulus, like all other muscular fibres; but, as they have no antagonist muscles, the cavities of the vessels, which they form, would remain for ever closed, after they have contracted themselves, unless some extraneous power be applied to again distend them. This extraneous power in respect to the heart is the current of blood, which is perpetually absorbed by the veins from the various glands and capillaries, and pushed into the heart by a power probably very similar to that, which raises the sap in vegetables in the spring, which, according to Dr. Hale's experiment on the stump of a vine, exerted a force equal to a column of water above twenty feet high. This force of the current of blood in the veins is partly produced by their absorbent power, exerted at the beginning of every fine ramification; which may be conceived to be a mouth absorbing blood, as the mouths of the lacteals and lymphatics absorb chyle and lymph. And partly by their intermitted compression by the pulsations of their generally concomitant arteries; by which the blood is perpetually propelled towards the heart, as the valves in many veins, and the absorbent mouths in them all, will not suffer it to return.
The blood, thus forcibly injected into the chambers of the heart, distends this combination of hollow muscles; till by the stimulus of distention they contract themselves; and, pushing forwards the blood into the arteries, exert sufficient force to overcome in less than a second of time the vis inertiæ, and perhaps some elasticity, of the very extensive ramifications of the two great systems of the aortal and pulmonary arteries. The power necessary to do this in so short a time must be considerable, and has been variously estimated by different physiologists.
The muscular coats of the arterial system are then brought into action by the stimulus of distention, and propel the blood to the mouths, or through the convolutions, which precede the secretory apertures of the various glands and capillaries.
In the vessels of the liver there is no intervention of the heart; but the vena portarum, which does the office of an artery, is distended by the blood poured into it from the mesenteric veins, and is by this distention stimulated to contract itself, and propel the blood to the mouths of the numerous glands, which compose that viscus.
[II]. The glandular system of vessels may be divided into those, which take some fluid from the circulation; and those, which give something to it. Those, which take their fluid from the circulation are the various glands, by which the tears, bile, urine, perspiration, and many other secretions are produced; these glands probably consist of a mouth to select, a belly to digest, and an excretory aperture to emit their appropriated fluids; the blood is conveyed by the power of the heart and arteries to the mouths of these glands, it is there taken up by the living power of the gland, and carried forwards to its belly, and excretory aperture, where a part is separated, and the remainder absorbed by the veins for further purposes.
Some of these glands are furnished with long convoluted necks or tubes, as the seminal ones, which are curiously seen when injected with quicksilver. Others seem to consist of shorter tubes, as that great congeries of glands, which constitute the liver, and those of the kidneys. Some have their excretory apertures opening into reservoirs, as the urinary and gall-bladders. And others on the external body, as those which secrete the tears, and perspirable matter.
Another great system of glands, which have very short necks, are the capillary vessels; by which the insensible perspiration is secreted on the skin; and the mucus of various consistences, which lubricates the interstices of the cellular membrane, of the muscular fibres, and of all the larger cavities of the body. From the want of a long convolution of vessels some have doubted, whether these capillaries should be considered as glands, and have been led to conclude, that the perspirable matter rather exuded than was secreted. But the fluid of perspiration is not simple water, though that part of it, which exhales into the air may be such; for there is another part of it, which in a state of health is absorbed again; but which, when the absorbents are diseased, remains on the surface of the skin, in the form of scurf, or indurated mucus. Another thing, which shews their similitude to other glands, is their sensibility to certain affections of the mind; as is seen in the deeper colour of the skin in the blush of shame, or the greater paleness of it from fear.
[III]. Another series of glandular vessels is called the absorbent system; these open their mouths into all the cavities, and upon all those surfaces of the body, where the excretory apertures of the other glands pour out their fluids. The mouths of the absorbent system drink up a part or the whole of these fluids, and carry them forwards by their living power to their respective glands, which are called conglobate glands. There these fluids undergo some change, before they pass on into the circulation; but if they are very acrid, the conglobate gland swells, and sometimes suppurates, as in inoculation of the small-pox, in the plague, and in venereal absorptions; at other times the fluid may perhaps continue there, till it undergoes some chemical change, that renders it less noxious; or, what is more likely, till it is regurgitated by the retrograde motion of the gland in spontaneous sweats or diarrhœas, as disagreeing food is vomited from the stomach.
[IV]. As all the fluids, that pass through these glands, and capillary vessels, undergo a chemical change, acquiring new combinations, the matter of heat is at the same time given out; this is apparent, since whatever increases insensible perspiration, increases the heat of the skin; and when the action of these vessels is much increased but for a moment, as in blushing, a vivid heat on the skin is the immediate consequence. So when great bilious secretions, or those of any other gland, are produced, heat is generated in the part in proportion to the quantity of the secretion.
The heat produced on the skin by blushing may be thought by some too sudden to be pronounced a chemical effect, as the fermentations or new combinations taking place in a fluid is in general a slower process. Yet are there many chemical mixtures in which heat is given out as instantaneously; as in solutions of metals in acids, or in mixtures of essential oils and acids, as of oil of cloves and acid of nitre. So the bruised parts of an unripe apple become almost instantaneously sweet; and if the chemico-animal process of digestion be stopped for but a moment, as by fear, or even by voluntary eructation, a great quantity of air is generated, by the fermentation, which instantly succeeds the stop of digestion. By the experiments of Dr. Hales it appears, that an apple during fermentation gave up above six hundred times its bulk of air; and the materials in the stomach are such, and in such a situation, as immediately to run into fermentation, when digestion is impeded.
As the blood passes through the small vessels of the lungs, which connect the pulmonary artery and vein, it undergoes a change of colour from a dark to a light red; which may be termed a chemical change, as it is known to be effected by an admixture of oxygene, or vital air; which, according to a discovery of Dr. Priestley, passes through the moist membranes, which constitute the sides of these vessels. As the blood passes through the capillary vessels, and glands, which connect the aorta and its various branches with their correspondent veins in the extremities of the body, it again loses the bright red colour, and undergoes some new combinations in the glands or capillaries, in which the matter of heat is given out from the secreted fluids. This process therefore, as well as the process of respiration, has some analogy to combustion, as the vital air or oxygene seems to become united to some inflammable base, and the matter of heat escapes from the new acid, which is thus produced.
[V]. After the blood has passed these glands and capillaries, and parted with whatever they chose to take from it, the remainder is received by the veins, which are a set of blood-absorbing vessels in general corresponding with the ramifications of the arterial system. At the extremity of the fine convolutions of the glands the arterial force ceases; this in respect to the capillary vessels, which unite the extremities of the arteries with the commencement of the veins, is evident to the eye, on viewing the tail of a tadpole by means of a solar, or even by a common microscope, for globules of blood are seen to endeavour to pass, and to return again and again, before they become absorbed by the mouths of the veins; which returning of these globules evinces, that the arterial force behind them has ceased. The veins are furnished with valves like the lymphatic absorbents; and the great trunks of the veins, and of the lacteals and lymphatics, join together before the ingress of their fluids into the left chamber of the heart; both which evince, that the blood in the veins, and the lymph and chyle in the lacteals and lymphatics, are carried on by a similar force; otherwise the stream, which was propelled with a less power, could not enter the vessels, which contained the stream propelled with a greater power. From whence it appears, that the veins are a system of vessels absorbing blood, as the lacteals and lymphatics are a system of vessels absorbing chyle and lymph. See Sect. [XXVII. 1].
[VI]. The movements of their adapted fluids in the various vessels of the body are carried forwards by the actions of those vessels in consequence of two kinds of stimulus, one of which may be compared to a pleasurable sensation or desire inducing the vessel to seize, and, as it were, to swallow the particles thus selected from the blood; as is done by the mouths of the various glands, veins, and other absorbents, which may be called glandular appetency. The other kind of stimulus may be compared to disagreeable sensation, or aversion, as when the heart has received the blood, and is stimulated by it to push it forwards into the arteries; the same again stimulates the arteries to contract, and carry forwards the blood to their extremities, the glands and capillaries. Thus the mesenteric veins absorb the blood from the intestines by glandular appetency, and carry it forward to the vena portarum; which acting as an artery contracts itself by disagreeable stimulus, and pushes it to its ramified extremities, the various glands, which constitute the liver.
It seems probable, that at the beginning of the formation of these vessels in the embryon, an agreeable sensation was in reality felt by the glands during secretion, as is now felt in the act of swallowing palatable food; and that a disagreeable sensation was originally felt by the heart from the distention occasioned by the blood, or by its chemical stimulus; but that by habit these are all become irritative motions; that is, such motions as do not affect the whole system, except when the vessels are diseased by inflammation.
SECT. [XXIV].
OF THE SECRETIONS OF SALIVA, AND OF TEARS, AND OF THE LACRYMAL SACK.
[I]. Secretion of saliva increased by mercury in the blood. [1]. By the food in the mouth. Dryness of the mouth not from a deficiency of saliva. [2]. By Sensitive ideas. [3]. By volition. [4]. By distasteful substances. It is secreted in a dilute and saline state. It then becomes more viscid. [5]. By ideas of distasteful substances. [6]. By nausea. [7]. By aversion. [8]. By catenation with stimulating substances in the ear. [II]. [1]. Secretion of tears less in sleep. From stimulation of their excretory duct. [2]. Lacrymal sack is a gland. [3]. Its uses. [4]. Tears are secreted, when the nasal duct is stimulated. [5]. Or when it is excited by sensation. [6]. Or by volition. [7]. The lacrymal sack can regurgitate its contents into the eye. [8]. More tears are secreted by association with the irritation of the nasal duct of the lacrymal sack, than the puncta lacrymalia can imbibe. Of the gout in the liver and stomach.
[I]. The salival glands drink up a certain fluid from the circumfluent blood, and pour it into the mouth. They are sometimes stimulated into action by the blood, that surrounds their origin, or by some part of that heterogeneous fluid: for when mercurial salts, or oxydes, are mixed with the blood, they stimulate these glands into unnatural exertions; and then an unusual quantity of saliva is separated.
[1]. As the saliva secreted by these glands is most wanted during the mastication of our food, it happens, when the terminations of their ducts in the mouth are stimulated into action, the salival glands themselves are brought into increased action at the same time by association, and separate a greater quantity of their juices from the blood; in the same manner as tears are produced in greater abundance during the stimulus of the vapour of onions, or of any other acrid material in the eye.
The saliva is thus naturally poured into the mouth only during the stimulus of our food in mastication; for when there is too great an exhalation of the mucilaginous secretion from the membranes, which line the mouth, or too great an absorption of it, the mouth becomes dry, though there is no deficiency in the quantity of saliva; as in those who sleep with their mouths open, and in some fevers.
[2]. Though during the mastication of our natural food the salival glands are excited into action by the stimulus on their excretory ducts, and a due quantity of saliva is separated from the blood, and poured into the mouth; yet as this mastication of our food is always attended with a degree of pleasure; and that pleasurable sensation is also connected with our ideas of certain kinds of aliment; it follows, that when these ideas are reproduced, the pleasurable sensation arises along with them, and the salival glands are excited into action, and fill the mouth with saliva from this sensitive association, as is frequently seen in dogs, who slaver at the sight of food.
[3]. We have also a voluntary power over the action of these salival glands, for we can at any time produce a flow of saliva into our mouth, and spit out, or swallow it at will.
[4]. If any very acrid material be held in the mouth, as the root of pyrethrum, or the leaves of tobacco, the salival glands are stimulated into stronger action than is natural, and thence secrete a much larger quantity of saliva; which is at the same time more viscid than in its natural state; because the lymphatics, that open their mouths into the ducts of the salival glands, and on the membranes, which line the mouth, are likewise stimulated into stronger action, and absorb the more liquid parts of the saliva with greater avidity; and the remainder is left both in greater quantity and more viscid.
The increased absorption in the mouth by some stimulating substances, which are called astringents, as crab juice, is evident from the instant dryness produced in the mouth by a small quantity of them.
As the extremities of the glands are of exquisite tenuity, as appears by their difficulty of injection, it was necessary for them to secrete their fluids in a very dilute state; and, probably for the purpose of stimulating them into action, a quantity of neutral salt is likewise secreted or formed by the gland. This aqueous and saline part of all secreted fluids is again reabsorbed into the habit. More than half of some secreted fluids is thus imbibed from the reservoirs, into which they are poured; as in the urinary bladder much more than half of what is secreted by the kidneys becomes reabsorbed by the lymphatics, which are thickly dispersed around the neck of the bladder. This seems to be the purpose of the urinary bladders of fish, as otherwise such a receptacle for the urine could have been of no use to an animal immersed in water.
[5]. The idea of substances disagreeably acrid will also produce a quantity of saliva in the mouth; as when we smell very putrid vapours, we are induced to spit out our saliva, as if something disagreeable was actually upon our palates.
[6]. When disagreeable food in the stomach produces nausea, a flow of saliva is excited in the mouth by association; as efforts to vomit are frequently produced by disagreeable drugs in the mouth by the same kind of association.
[7]. A preternatural flow of saliva is likewise sometimes occasioned by a disease of the voluntary power; for if we think about our saliva, and determine not to swallow it, or not to spit it out, an exertion is produced by the will, and more saliva is secreted against our wish; that is, by our aversion, which bears the same analogy to desire, as pain does to pleasure; as they are only modifications of the same disposition of the sensorium. See Class IV. 3. 2. 1.
[8]. The quantity of saliva may also be increased beyond what is natural, by the catenation of the motions of these glands with other motions, or sensations, as by an extraneous body in the ear; of which I have known an instance; or by the application of stizolobium, siliqua hirsuta, cowhage, to the seat of the parotis, as some writers have affirmed.
[II]. [1]. The lacrymal gland drinks up a certain fluid from the circumfluent blood, and pours it on the ball of the eye, on the upper part of the external corner of the eyelids. Though it may perhaps be stimulated into the performance of its natural action by the blood, which surrounds its origin, or by some part of that heterogeneous fluid; yet as the tears secreted by this gland are more wanted at some times than at others, its secretion is variable, like that of the saliva above mentioned, and is chiefly produced when its excretory duct is stimulated; for in our common sleep there seems to be little or no secretion of tears; though they are occasionally produced by our sensations in dreams.
Thus when any extraneous material on the eye-ball, or the dryness of the external covering of it, or the coldness of the air, or the acrimony of some vapours, as of onions, stimulates the excretory duct of the lacrymal gland, it discharges its contents upon the ball; a quicker secretion takes place in the gland, and abundant tears succeed, to moisten, clean, and lubricate the eye. These by frequent nictitation are diffused over the whole ball, and as the external angle of the eye in winking is closed sooner than the internal angle, the tears are gradually driven forwards, and downwards from the lacrymal gland to the puncta lacrymalia.
[2]. The lacrymal sack, with its puncta lacrymalia, and its nasal duct, is a complete gland; and is singular in this respect, that it neither derives its fluid from, nor disgorges it into the circulation. The simplicity of the structure of this gland, and both the extremities of it being on the surface of the body, makes it well worthy our minuter observation; as the actions of more intricate and concealed glands may be better understood from their analogy to this.
[3]. This simple gland consists of two absorbing mouths, a belly, and an excretory duct. As the tears are brought to the internal angle of the eye, these two mouths drink them up, being stimulated into action by this fluid, which they absorb. The belly of the gland, or lacrymal sack, is thus filled, in which the saline part of the tears is absorbed, and when the other end of the gland, or nasal duct, is stimulated by the dryness, or pained by the coldness of the air, or affected by any acrimonious dust or vapour in the nostrils, it is excited into action together with the sack, and the tears are disgorged upon the membrane, which lines the nostrils; where they serve a second purpose to moisten, clean, and lubricate, the organ of smell.
[4]. When the nasal duct of this gland is stimulated by any very acrid material, as the powder of tobacco, or volatile spirits, it not only disgorges the contents of its belly or receptacle (the lacrymal sack), and absorbs hastily all the fluid, that is ready for it in the corner of the eye; but by the association of its motions with those of the lacrymal gland, it excites that also into increased action, and a large flow of tears is poured into the eye.
[5]. This nasal duct is likewise excited into strong action by sensitive ideas, as in grief, or joy, and then also by its associations with the lacrymal gland it produces a great flow of tears without any external stimulus; as is more fully explained in Sect. [XVI. 8]. on Instinct.
[6]. There are some, famous in the arts of exciting compassion, who are said to have acquired a voluntary power of producing a flow of tears in the eye; which, from what has been said in the section on Instinct above mentioned, I should suspect, is performed by acquiring a voluntary power over the action of this nasal duct.
[7]. There is another circumstance well worthy our attention, that when by any accident this nasal duct is obstructed, the lacrymal sack, which is the belly or receptacle of this gland, by slight pressure of the finger is enabled to disgorge its contents again into the eye; perhaps the bile in the same manner, when the biliary ducts are obstructed, is returned into the blood by the vessels which secrete it?
[8]. A very important though minute occurrence must here be observed, that though the lacrymal gland is only excited into action, when we weep at a distressful tale, by its association with this nasal duct, as is more fully explained in Sect. [XVI. 8]; yet the quantity of tears secreted at once is more than the puncta lacrymalia can readily absorb; which shews that the motions occasioned by associations are frequently more energetic than the original motions, by which they were occasioned. Which we shall have occasion to mention hereafter, to illustrate, why pains frequently exist in a part distant from the cause of them, as in the other end of the urethra, when a stone stimulates the neck of the bladder. And why inflammations frequently arise in parts distant from their cause, as the gutta rosea of drinking people, from an inflamed liver.
The inflammation of a part is generally preceded by a torpor or quiescence of it; if this exists in any large congeries of glands, as in the liver, or any membranous part, as the stomach, pain is produced and chilliness in consequence of the torpor of the vessels. In this situation sometimes an inflammation of the parts succeeds the torpor; at other times a distant more sensible part becomes inflamed; whose actions have previously been associated with it; and the torpor of the first part ceases. This I apprehend happens, when the gout of the foot succeeds a pain of the biliary duct, or of the stomach. Lastly, it sometimes happens, that the pain of torpor exists without any consequent inflammation of the affected part, or of any distant part associated with it, as in the membranes about the temple and eye-brows in hemicrania, and in those pains, which occasion convulsions; if this happens to gouty people, when it affects the liver, I suppose epileptic fits are produced; and, when it affects the stomach, death is the consequence. In these cases the pulse is weak, and the extremities cold, and such medicines as stimulate the quiescent parts into action, or which induce inflammation in them, or in any distant part, which is associated with them, cures the present pain of torpor, and saves the patient.
I have twice seen a gouty inflammation of the liver, attended with jaundice; the patients after a few days were both of them affected with cold fits, like ague-fits, and their feet became affected with gout, and the inflammation of their livers ceased. It is probable, that the uneasy sensations about the stomach, and indigestion, which precedes gouty paroxysms, are generally owing to torpor or slight inflammation of the liver, and biliary ducts; but where great pain with continued sickness, with feeble pulse, and sensation of cold, affect the stomach in patients debilitated by the gout, that it is a torpor of the stomach itself, and destroys the patient from the great connexion of that viscus with the vital organs. See Sect. [XXV. 17].
SECT. [XXV].
OF THE STOMACH AND INTESTINES.
[1]. Of swallowing our food. Ruminating animals. [2]. Action of the stomach. [3]. Action of the intestines. Irritative motions connected with these. [4]. Effects of repletion. [5]. Stronger action of the stomach and intestines from more stimulating food. [6]. Their action inverted by still greater stimuli. Or by disgustful ideas. Or by volition. [7]. Other glands strengthen or invert their motions by sympathy. [8]. Vomiting performed by intervals. [9]. Inversion of the cutaneous absorbents. [10]. Increased secretion of bile and pancreatic juice. [11]. Inversion of the lacteals. [12]. And of the bile-ducts. [13]. Case of a cholera. [14]. Further account of the inversion of lacteals. [15]. Iliac passions. Valve of the colon. [16]. Cure of the iliac passion. [17]. Pain of gall-stone distinguished from pain of the stomach. Gout of the stomach from torpor, from inflammation. Intermitting pulse owing to indigestion. To overdose of foxglove. Weak pulse from emetics. Death from a blow on the stomach. From gout of the stomach.
[1]. The throat, stomach, and intestines, may be considered as one great gland; which like the lacrymal sack above mentioned, neither begins nor ends in the circulation. Though the act of masticating our aliment belongs to the sensitive class of motions, for the pleasure of its taste induces the muscles of the jaw into action; yet the deglutition of it when masticated is generally, if not always, an irritative motion, occasioned by the application of the food already masticated to the origin of the pharinx; in the same manner as we often swallow our spittle without attending to it.
The ruminating class of animals have the power to invert the motion of their gullet, and of their first stomach, from the stimulus of this aliment, when it is a little further prepared; as is their daily practice in chewing the cud; and appears to the eye of any one, who attends to them, whilst they are employed in this second mastication of their food.
[2]. When our natural aliment arrives into the stomach, this organ is simulated into its proper vermicular action; which beginning at the upper orifice of it, and terminating at the lower one, gradually mixes together and pushes forwards the digesting materials into the intestine beneath it.
At the same time the glands, that supply the gastric juices, which are necessary to promote the chemical part of the process of digestion, are stimulated to discharge their contained fluids, and to separate a further supply from the blood-vessels: and the lacteals or lymphatics, which open their mouths into the stomach, are stimulated into action, and take up some part of the digesting materials.
[3]. The remainder of these digesting materials is carried forwards into the upper intestines, and stimulates them into their peristaltic motion similar to that of the stomach; which continues gradually to mix the changing materials, and pass them along through the valve of the colon to the excretory end of this great gland, the sphincter ani.
The digesting materials produce a flow of bile, and of pancreatic juice, as they pass along the duodenum, by stimulating the excretory ducts of the liver and pancreas, which terminate in that intestine: and other branches of the absorbent or lymphatic system, called lacteals, are excited to drink up, as it passes, those parts of the digesting materials, that are proper for their purpose, by its stimulus on their mouths.
[4]. When the stomach and intestines are thus filled with their proper food, not only the motions of the gastric glands, the pancreas, liver, and lacteal vessels, are excited into action; but at the same time the whole tribe of irritative motions are exerted with greater energy, a greater degree of warmth, colour, plumpness, and moisture, is given to the skin from the increased action of those glands called capillary vessels; pleasurable sensation is excited, the voluntary motions are less easily exerted, and at length suspended; and sleep succeeds, unless it be prevented by the stimulus of surrounding objects, or by voluntary exertion, or by an acquired habit, which was originally produced by one or other of these circumstances, as is explained in Sect. [XXI]. on Drunkenness.
At this time also, as the blood-vessels become replete with chyle, more urine is separated into the bladder, and less of it is reabsorbed; more mucus poured into the cellular membranes, and less of it reabsorbed; the pulse becomes fuller, and softer, and in general quicker. The reason why less urine and cellular mucus is absorbed after a full meal with sufficient drink is owing to the blood-vessels being fuller: hence one means to promote absorption is to decrease the resistance by emptying the vessels by venesection. From this decreased absorption the urine becomes pale as well as copious, and the skin appears plump as well as florid.
By daily repetition of these movements they all become connected together, and make a diurnal circle of irritative action, and if one of this chain be disturbed, the whole is liable to be put into disorder. See Sect. [XX]. on Vertigo.
[5]. When the stomach and intestines receive a quantity of food, whose stimulus is greater than usual, all their motions, and those of the glands and lymphatics, are stimulated into stronger action than usual, and perform their offices with greater vigour and in less time: such are the effects of certain quantities of spice or of vinous spirit.
[6]. But if the quantity or duration of these stimuli are still further increased, the stomach and throat are stimulated into a motion, whose direction is contrary to the natural one above described; and they regurgitate the materials, which they contain, instead of carrying them forwards. This retrograde motion of the stomach may be compared to the stretchings of wearied limbs the contrary way, and is well elucidated by the following experiment. Look earnestly for a minute or two on an area an inch square of pink silk, placed in a strong light, the eye becomes fatigued, the colour becomes faint, and at length vanishes, for the fatigued eye can no longer be stimulated into direct motions; then on closing the eye a green spectrum will appear in it, which is a colour directly contrary to pink, and which will appear and disappear repeatedly, like the efforts in vomiting. See Section [XXIX. 11].
Hence all those drugs, which by their bitter or astringent stimulus increase the action of the stomach, as camomile and white vitriol, if their quantity is increased above a certain dose become emetics.
These inverted motions of the stomach and throat are generally produced from the stimulus of unnatural food, and are attended with the sensation of nausea or sickness: but as this sensation is again connected with an idea of the distasteful food, which induced it; so an idea of nauseous food will also sometimes excite the action of nausea; and that give rise by association to the inversion of the motions of the stomach and throat. As some, who have had horse-flesh or dogs-flesh given them for beef or mutton, are said to have vomited many hours afterwards, when they have been told of the imposition.
I have been told of a person, who had gained a voluntary command over these inverted motions of the stomach and throat, and supported himself by exhibiting this curiosity to the public. At these exhibitions he swallowed a pint of red rough gooseberries, and a pint of white smooth ones, brought them up in small parcels into his mouth, and restored them separately to the spectators, who called for red or white as they pleased, till the whole were redelivered.
[7]. At the same time that these motions of the stomach and throat are stimulated into inversion, some of the other irritative motions, that had acquired more immediate connexions with the stomach, as those of the gastric glands, are excited into stronger action by this association; and some other of these motions, which are more easily excited, as those of the gastric lymphatics, are inverted by their association with the retrograde motions of the stomach, and regurgitate their contents, and thus a greater quantity of mucus, and of lymph, or chyle, is poured into the stomach, and thrown up along with its contents.
[8]. These inversions of the motion of the stomach in vomiting are performed by intervals, for the same reason that many other motions are reciprocally exerted and relaxed; for during the time of exertion the stimulus, or sensation, which caused this exertion, is not perceived; but begins to be perceived again, as soon as the exertion ceases, and is some time in again producing its effect. As explained in Sect. [XXXIV]. on Volition, where it is shewn, that the contractions of the fibres, and the sensation of pain, which occasioned that exertion, cannot exist at the same time. The exertion ceases from another cause also, which is the exhaustion of the sensorial power of the part, and these two causes frequently operate together.
[9]. At the times of these inverted efforts of the stomach not only the lymphatics, which open their mouths into the stomach, but those of the skin also, are for a time inverted; for sweats are sometimes pushed out during the efforts of vomiting without an increase of heat.
[10]. But if by a greater stimulus the motions of the stomach are inverted still more violently or more permanently, the duodenum has its peristaltic motions inverted at the same time by their association with those of the stomach; and the bile and pancreatic juice, which it contains, are by the inverted motions brought up into the stomach, and discharged along with its contents; while a greater quantity of bile and pancreatic juice is poured into this intestine; as the glands, that secrete them, are by their association with the motions of the intestine excited into stronger action than usual.
[11]. The other intestines are by association excited into more powerful action, while the lymphatics, that open their mouths into them, suffer an inversion of their motions corresponding with the lymphatics of the stomach, and duodenum; which with a part of the abundant secretion of bile is carried downwards, and contributes both to stimulate the bowels, and to increase the quantity of the evacuations. This inversion of the motion of the lymphatics appears from the quantity of chyle, which comes away by stools; which is otherwise absorbed as soon as produced, and by the immense quantity of thin fluid, which is evacuated along with it.
[12]. But if the stimulus, which inverts the stomach, be still more powerful, or more permanent, it sometimes happens, that the motions of the biliary glands, and of their excretory ducts, are at the same time inverted, and regurgitate their contained bile into the blood-vessels, as appears by the yellow colour of the skin, and of the urine; and it is probable the pancreatic secretion may suffer an inversion at the same time, though we have yet no mark by which this can be ascertained.
[13]. Mr. —— eat two putrid pigeons out of a cold pigeon-pye, and drank about a pint of beer and ale along with them, and immediately rode about five miles. He was then seized with vomiting, which was after a few periods succeeded by purging; these continued alternately for two hours; and the purging continued by intervals for six or eight hours longer. During this time he could not force himself to drink more than one pint in the whole; this great inability to drink was owing to the nausea, or inverted motions of the stomach, which the voluntary exertion of swallowing could seldom and with difficulty overcome; yet he discharged in the whole at least six quarts; whence came this quantity of liquid? First, the contents of the stomach were emitted, then of the duodenum, gall-bladder, and pancreas, by vomiting. After this the contents of the lower bowels, then the chyle, that was in the lacteal vessels, and in the receptacle of chyle, was regurgitated into the intestines by a retrograde motion of these vessels. And afterwards the mucus deposited in the cellular membrane, and on the surface of all the other membranes, seems to have been absorbed; and with the fluid absorbed from the air to have been carried up their respective lymphatic branches by the increased energy of their natural motions, and down the visceral lymphatics, or lacteals, by the inversion of their motions.
[14]. It may be difficult to invent experiments to demonstrate the truth of this inversion of some branches of the absorbent system, and increased absorption of others, but the analogy of these vessels to the intestinal canal, and the symptoms of many diseases, render this opinion more probable than many other received opinions of the animal œconomy.
In the above instance, after the yellow excrement was voided, the fluid ceased to have any smell, and appeared like curdled milk, and then a thinner fluid, and some mucus, were evacuated; did not these seem to partake of the chyle, of the mucous fluid from all the cells of the body, and lastly, of the atmospheric moisture? All these facts may be easily observed by any one, who takes a brisk purge.
[15]. Where the stimulus on the stomach, or on some other part of the intestinal canal, is still more permanent, not only the lacteal vessels, but the whole canal itself, becomes inverted from its associations: this is the iliac passion, in which all the fluids mentioned above are thrown up by the mouth. At this time the valve in the colon, from the inverted motions of that bowel, and the inverted action of this living valve, does not prevent the regurgitation of its contents.
The structure of this valve may be represented by a flexile leathern pipe standing up from the bottom of a vessel of water: its sides collapse by the pressure of the ambient fluid, as a small part of that fluid passes through it; but if it has a living power, and by its inverted action keeps itself open, it becomes like a rigid pipe, and will admit the whole liquid to pass. See Sect. [XXIX. 2. 5].
In this case the patient is averse to drink, from the constant inversion of the motions of the stomach, and yet many quarts are daily ejected from the stomach, which at length smell of excrement, and at last seem to be only a thin mucilaginous or aqueous liquor.
From whence is it possible, that this great quantity of fluid for many successive days can be supplied, after the cells of the body have given up their fluids, but from the atmosphere? When the cutaneous branch of absorbents acts with unnatural strength, it is probable the intestinal branch has its motions inverted, and thus a fluid is supplied without entering the arterial system. Could oiling or painting the skin give a check to this disease?
So when the stomach has its motions inverted, the lymphatics of the stomach, which are most strictly associated with it, invert their motions at the same time. But the more distant branches of lymphatics, which are less strictly associated with it, act with increased energy; as the cutaneous lymphatics in the cholera, or iliac passion, above described. And other irritative motions become decreased, as the pulsations of the arteries, from the extra-derivation or exhaustion of the sensorial power.
Sometimes when stronger vomiting takes place the more distant branches of the lymphatic system invert their motions with those of the stomach, and loose stools are produced, and cold sweats.
So when the lacteals have their motions inverted, as during the operation of strong purges, the urinary and cutaneous absorbents have their motions increased to supply the want of fluid in the blood, as in great thirst; but after a meal with sufficient potation the urine is pale, that is, the urinary absorbents act weakly, no supply of water being wanted for the blood. And when the intestinal absorbents act too violently, as when too great quantities of fluid have been drank, the urinary absorbents invert their motions to carry off the superfluity, which is a new circumstance of association, and a temporary diabetes supervenes.
[16]. I have had the opportunity of seeing four patients in the iliac passion, where the ejected material smelled and looked like excrement. Two of these were so exhausted at the time I saw them, that more blood could not be taken from them, and as their pain had ceased, and they continued to vomit up every thing which they drank, I suspected that a mortification of the bowel had already taken place, and as they were both women advanced in life, and a mortification is produced with less preceding pain in old and weak people, these both died. The other two, who were both young men, had still pain and strength sufficient for further venesection, and they neither of them had any appearance of hernia, both recovered by repeated bleeding, and a scruple of calomel given to one, and half a dram to the other, in very small pills: the usual means of clysters, and purges joined with opiates, had been in vain attempted. I have thought an ounce or two of crude mercury in less violent diseases of this kind has been of use, by contributing to restore its natural motion to some part of the intestinal canal, either by its weight or stimulus; and that hence the whole tube recovered its usual associations of progressive peristaltic motion. I have in three cases seen crude mercury given in small doses, as one or two ounces twice a day, have great effect in stopping pertinacious vomitings.
[17]. Besides the affections above described, the stomach is liable, like many other membranes of the body, to torpor without consequent inflammation: as happens to the membranes about the head in some cases of hemicrania, or in general head-ach. This torpor of the stomach is attended with indigestion, and consequent flatulency, and with pain, which is usually called the cramp of the stomach, and is relievable by aromatics, essential oils, alcohol, or opium.
The intrusion of a gall-stone into the common bile-duct from the gall-bladder is sometimes mistaken for a pain of the stomach, as neither of them are attended with fever; but in the passage of a gall-stone, the pain is confined to a less space, which is exactly where the common bile-duct enters the duodenum, as explained in Section [XXX. 1. 3]. Whereas in this gastrodynia the pain is diffused over the whole stomach; and, like other diseases from torpor, the pulse is weaker, and the extremities colder, and the general debility greater, than in the passage of a gall-stone; for in the former the debility is the consequence of the pain, in the latter it is the cause of it.
Though the first fits of the gout, I believe, commence with a torpor of the liver; and the ball of the toe becomes inflamed instead of the membranes of the liver in consequence of this torpor, as a coryza or catarrh frequently succeeds a long exposure of the feet to cold, as in snow, or on a moist brick-floor; yet in old or exhausted constitutions, which have been long habituated to its attacks, it sometimes commences with a torpor of the stomach, and is transferable to every membrane of the body. When the gout begins with torpor of the stomach, a painful sensation of cold occurs, which the patient compares to ice, with weak pulse, cold extremities, and sickness; this in its slighter degree is relievable by spice, wine, or opium; in its greater degree it is succeeded by sudden death, which is owing to the sympathy of the stomach with the heart, as explained below.
If the stomach becomes inflamed in consequence of this gouty torpor of it, or in consequence of its sympathy with some other part, the danger is less. A sickness and vomiting continues many days, or even weeks, the stomach rejecting every thing stimulant, even opium or alcohol, together with much viscid mucus; till the inflammation at length ceases, as happens when other membranes, as those of the joints, are the seat of gouty inflammation; as observed in Sect. [XXIV. 2. 8].
The sympathy, or association of motions, between those of the stomach and those of the heart, are evinced in many diseases. First, many people are occasionally affected with an intermission of their pulse for a few days, which then ceases again. In this case there is a stop of the motion of the heart, and at the same time a tendency to eructation from the stomach. As soon as the patient feels a tendency to the intermission of the motion of his heart, if he voluntarily brings up wind from his stomach, the stop of the heart does not occur. From hence I conclude that the stop of digestion is the primary disease; and that air is instantly generated from the aliment, which begins to ferment, if the digestive process is impeded for a moment, (see Sect. [XXIII. 4].); and that the stop of the heart is in consequence of the association of the motions of these viscera, as explained in Sect. [XXXV. 1. 4].; but if the little air, which is instantly generated during the temporary torpor of the stomach, be evacuated, the digestion recommences, and the temporary torpor of the heart does not follow. One patient, whom I lately saw, and who had been five or six days much troubled with this intermission of a pulsation of his heart, and who had hemicrania with some fever, was immediately relieved from them all by losing ten ounces of blood, which had what is termed an inflammatory crust on it.
Another instance of this association between the motions of the stomach and heart is evinced by the exhibition of an over dose of foxglove, which induces an incessant vomiting, which is attended with very slow, and sometimes intermitting pulse.—Which continues in spite of the exhibition of wine and opium for two or three days. To the same association must be ascribed the weak pulse, which constantly attends the exhibition of emetics during their operation. And also the sudden deaths, which have been occasioned in boxing by a blow on the stomach; and lastly, the sudden death of those, who have been long debilitated by the gout, from the torpor of the stomach. See Sect. [XXXV. 1. 4].
SECT. [XXVI].
OF THE CAPILLARY GLANDS AND MEMBRANES.
[I]. [1]. The capillary vessels are glands. [2]. Their excretory ducts. Experiments on the mucus of the intestines, abdomen, cellular membrane, and on the humours of the eye. [3]. Scurf on the head, cough, catarrh, diarrhœa, gonorrhœa. [4]. Rheumatism. Gout. Leprosy. [II]. [1]. The most minute membranes are unorganized. [2]. Larger membranes are composed of the ducts of the capillaries, and the mouths of the absorbents. [3]. Mucilaginous fluid is secreted on their surfaces. [III]. Three kinds of rheumatism.
[I]. [1]. The capillary-vessels are like all the other glands except the absorbent system, inasmuch as they receive blood from the arteries, separate a fluid from it, and return the remainder by the veins.
[2]. This series of glands is of the most extensive use, as their excretory ducts open on the whole external skin forming its perspirative pores, and on the internal surfaces of every cavity of the body. Their secretion on the skin is termed insensible perspiration, which in health is in part reabsorbed by the mouths of the lymphatics, and in part evaporated in the air; the secretion on the membranes, which line the larger cavities of the body, which have external openings, as the mouth and intestinal canal, is termed mucus, but is not however coagulable by heat; and the secretion on the membranes of those cavities of the body, which have no external openings, is called lymph or water, as in the cavities of the cellular membrane, and of the abdomen; this lymph however is coagulable by the heat of boiling water. Some mucus nearly as viscid as the white of egg, which was discharged by stool, did not coagulate, though I evaporated it to one fourth of the quantity, nor did the aqueous and vitreous humours of a sheep's eye coagulate by the like experiment: but the serosity from an anasarcous leg, and that from the abdomen of a dropsical person, and the crystalline humour of a sheep's eye, coagulated in the same heat.
[3]. When any of these capillary glands are stimulated into greater irritative actions, than is natural, they secrete a more copious material; and as the mouths of the absorbent system, which open in their vicinity, are at the same time stimulated into greater action, the thinner and more saline part of the secreted fluid is taken up again; and the remainder is not only more copious but also more viscid than natural. This is more or less troublesome or noxious according to the importance of the functions of the part affected: on the skin and bronchiæ, where this secretion ought naturally to evaporate, it becomes so viscid as to adhere to the membrane; on the tongue it forms a pellicle, which can with difficulty be scraped off; produces the scurf on the heads of many people; and the mucus, which is spit up by others in coughing. On the nostrils and fauces, when the secretion of these capillary glands is increased, it is termed simple catarrh; when in the intestines, a mucous diarrhœa; and in the urethra, or vagina, it has the name of gonorrhœa, or fluor albus.
[4]. When these capillary glands become inflamed, a still more viscid or even cretaceous humour is produced upon the surfaces of the membranes, which is the cause or the effect of rheumatism, gout, leprosy, and of hard tumours of the legs, which are generally termed scorbutic; all which will be treated of hereafter.
[II]. [1]. The whole surface of the body, with all its cavities and contents, are covered with membrane. It lines every vessel, forms every cell, and binds together all the muscular and perhaps the osseous fibres of the body; and is itself therefore probably a simpler substance than those fibres. And as the containing vessels of the body from the largest to the least are thus lined and connected with membranes, it follows that these membranes themselves consisted of unorganized materials.
For however small we may conceive the diameters of the minutest vessels of the body, which escape our eyes and glasses, yet these vessels must consist of coats or sides, which are made up of an unorganized material, and which are probably produced from a gluten, which hardens after its production, like the silk or web of caterpillars and spiders. Of this material consist the membranes, which line the shells of eggs, and the shell itself, both which are unorganized, and are formed from mucus, which hardens after it is formed, either by the absorption of its more fluid part, or by its uniting with some part of the atmosphere. Such is also the production of the shells of snails, and of shell-fish, and I suppose of the enamel of the teeth.
[2]. But though the membranes, that compose the sides of the most minute vessels, are in truth unorganized materials, yet the larger membranes, which are perceptible to the eye, seem to be composed of an intertexture of the mouths of the absorbent system, and of the excretory ducts of the capillaries, with their concomitant arteries, veins, and nerves: and from this construction it is evident, that these membranes must possess great irritability to peculiar stimuli, though they are incapable of any motions, that are visible to the naked eye: and daily experience shews us, that in their inflamed state they have the greatest sensibility to pain, as in the pleurisy and paronychia.
[3]. On all these membranes a mucilaginous or aqueous fluid is secreted, which moistens and lubricates their surfaces, as was explained in Section [XXIII. 2]. Some have doubted, whether this mucus is separated from the blood by an appropriated set of glands, or exudes through the membranes, or is an abrasion or destruction of the surface of the membrane itself, which is continually repaired on the other side of it, but the great analogy between the capillary vessels, and the other glands, countenances the former opinion; and evinces, that these capillaries are the glands, that secrete it; to which we must add, that the blood in passing these capillary vessels undergoes a change in its colour from florid to purple, and gives out a quantity of heat; from whence, as in other glands, we must conclude that something is secreted from it.
[III]. The seat of rheumatism is in the membranes, or upon them; but there are three very distinct diseases, which commonly are confounded under this name. First, when a membrane becomes affected with torpor, or inactivity of the vessels which compose it, pain and coldness succeed, as in the hemicrania, and other head-achs, which are generally termed nervous rheumatism; they exist whether the part be at rest or in motion, and are generally attended with other marks of debility.
Another rheumatism is said to exist, when inflammation and swelling, as well as pain, affect some of the membranes of the joints, as of the ancles, wrists, knees, elbows, and sometimes of the ribs. This is accompanied with fever, is analogous to pleurisy and other inflammations, and is termed the acute rheumatism.
A third disease is called chronic rheumatism, which is distinguished from that first mentioned, as in this the pain only affects the patient during the motion of the part, and from the second kind of rheumatism above described, as it is not attended with quick pulse or inflammation. It is generally believed to succeed the acute rheumatism of the same part, and that some coagulable lymph, or cretaceous, or calculous material, has been left on the membrane; which gives pain, when the muscles move over it, as some extraneous body would do, which was too insoluble to be absorbed. Hence there is an analogy between this chronic rheumatism and the diseases which produce gravel or gout-stones; and it may perhaps receive relief from the same remedies, such as aerated sal soda.
SECT. [XXVII].
OF HÆMORRHAGES.
[I]. The veins are absorbent vessels. [1]. Hæmorrhages from inflammation. Case of hæmorrhage from the kidney cured by cold bathing. Case of hæmorrhage from the nose cured by cold immersion. [II]. Hæmorrhage from venous paralysis. Of Piles. Black stools. Petechiæ. Consumption. Scurvy of the lungs. Blackness of the face and eyes in epileptic fits. Cure of hæmorrhages from venous inability.
[I]. As the imbibing mouths of the absorbent system already described open on the surface, and into the larger cavities of the body, so there is another system of absorbent vessels, which are not commonly esteemed such, I mean the veins, which take up the blood from the various glands and capillaries, after their proper fluids or secretions have been separated from it.
The veins resemble the other absorbent vessels; as the progression of their contents is carried on in the same manner in both, they alike absorb their appropriated fluids, and have valves to prevent its regurgitation by the accidents of mechanical violence. This appears first, because there is no pulsation in the very beginnings of the veins, as is seen by microscopes; which must happen, if the blood was carried into them by the actions of the arteries. For though the concurrence of various venous streams of blood from different distances must prevent any pulsation in the larger branches, yet in the very beginnings of all these branches a pulsation must unavoidably exist, if the circulation in them was owing to the intermitted force of the arteries. Secondly, the venous absorption of blood from the penis, and from the teats of female animals after their erection, is still more similar to the lymphatic absorption, as it is previously poured into cells, where all arterial impulse must cease.
There is an experiment, which seems to evince this venous absorption, which consists in the external application of a stimulus to the lips, as of vinegar, by which they become instantly pale; that is, the bibulous mouths of the veins by this stimulus are excited to absorb the blood faster, than it can be supplied by the usual arterial exertion. See Sect. [XXIII. 5].
There are two kinds of hæmorrhages frequent in diseases, one is where the glandular or capillary action is too powerfully exerted, and propels the blood forwards more hastily, than the veins can absorb it; and the other is, where the absorbent power of the veins is diminished, or a branch of them is become totally paralytic.
[1]. The former of these cases is known by the heat of the part, and the general fever or inflammation that accompanies the hæmorrhage. An hæmorrhage from the nose or from the lungs is sometimes a crisis of inflammatory diseases, as of the hepatitis and gout, and generally ceases spontaneously, when the vessels are considerably emptied. Sometimes the hæmorrhage recurs by daily periods accompanying the hot fits of fever, and ceasing in the cold fits, or in the intermissions; this is to be cured by removing the febrile paroxysms, which will be treated of in their place. Otherwise it is cured by venesection, by the internal or external preparations of lead, or by the application of cold, with an abstemious diet, and diluting liquids, like other inflammations. Which by inducing a quiescence on those glandular parts, that are affected, prevents a greater quantity of blood from being protruded forwards, than the veins are capable of absorbing.
Mr. B—— had an hæmorrhage from his kidney, and parted with not less than a pint of blood a day (by conjecture) along with his urine for above a fortnight: venesections, mucilages, balsams, preparations of lead, the bark, alum, and dragon's blood, opiates, with a large blister on his loins, were separately tried, in large doses, to no purpose. He was then directed to bathe in a cold spring up to the middle of his body only, the upper part being covered, and the hæmorrhage diminished at the first, and ceased at the second immersion.
In this case the external capillaries were rendered quiescent by the coldness of the water, and thence a less quantity of blood was circulated through them; and the internal capillaries, or other glands, became quiescent from their irritative associations with the external ones; and the hæmorrhage was stopped a sufficient time for the ruptured vessels to contract their apertures, or for the blood in those apertures to coagulate.
Mrs. K—— had a continued haemorrhage from her nose for some days; the ruptured vessel was not to be reached by plugs up the nostrils, and the sensibility of her fauces was such that nothing could be born behind the uvula. After repeated venesection, and other common applications, she was directed to immerse her whole head into a pail of water, which was made colder by the addition of several handfuls of salt, and the hæmorrhage immediately ceased, and returned no more; but her pulse continued hard, and she was necessitated to lose blood from the arm on the succeeding day.
Query, might not the cold bath instantly stop hæmorrhages from the lungs in inflammatory cases?—for the shortness of breath of those, who go suddenly into cold water, is not owing to the accumulation of blood in the lungs, but to the quiescence of the pulmonary capillaries from association, as explained in Section [XXXII. 3. 2].
[II]. The other kind of hæmorrhage is known from its being attended with a weak pulse, and other symptoms of general debility, and very frequently occurs in those, who have diseased livers, owing to intemperance in the use of fermented liquors. These constitutions are shewn to be liable to paralysis of the lymphatic absorbents, producing the various kinds of dropsies in Section [XXIX. 5]. Now if any branch of the venous system loses its power of absorption, the part swells, and at length bursts and discharges the blood, which the capillaries or other glands circulate through them.
It sometimes happens that the large external veins of the legs burst, and effuse their blood; but this occurs most frequently in the veins of the intestines, as the vena portarum is liable to suffer from a schirrus of the liver opposing the progression of the blood, which is absorbed from the intestines. Hence the piles are a symptom of hepatic obstruction, and hence the copious discharges downwards or upwards of a black material, which has been called melancholia, or black bile; but is no other than the blood, which is probably discharged from the veins of the intestines.
J.F. Meckel, in his Experimenta de Finibus Vasorum, published at Berlin, 1772, mentions his discovery of a communication of a lymphatic vessel with the gastric branch of the vena portarum. It is possible, that when the motion of the lymphatic becomes retrograde in some diseases, that blood may obtain a passage into it, where it anastomoses with the vein, and thus be poured into the intestines. A discharge of blood with the urine sometimes attends diabetes, and may have its source in the same manner.
Mr. A——, who had been a hard drinker, and had the gutta rosacea on his face and breast, after a stroke of the palsy voided near a quart of a black viscid material by stool: on diluting it with water it did not become yellow, as it must have done if it had been inspissated bile, but continued black like the grounds of coffee.
But any other part of the venous system may become quiescent or totally paralytic as well as the veins of the intestines: all which occur more frequently in those who have diseased livers, than in any others. Hence troublesome bleedings of the nose, or from the lungs with a weak pulse; hence hæmorrhages from the kidneys, too great menstruation; and hence the oozing of blood from every part of the body, and the petechiæ in those fevers, which are termed putrid, and which is erroneously ascribed to the thinness of the blood: for the blood in inflammatory diseases is equally fluid before it coagulates in the cold air.
Is not that hereditary consumption, which occurs chiefly in dark-eyed people about the age of twenty, and commences with slight pulmonary hæmorrhages without fever, a disease of this kind?—These hæmorrhages frequently begin during sleep, when the irritability of the lungs is not sufficient in these patients to carry on the circulation without the assistance of volition; for in our waking hours, the motions of the lungs are in part voluntary, especially if any difficulty of breathing renders the efforts of volition necessary. See Class I. 2. 1. 3. and Class III. 2. 1. 12. Another species of pulmonary consumption which seems more certainly of scrophulous origin is described in the next Section, [No. 2.]
I have seen two cases of women, of about forty years of age, both of whom were seized with quick weak pulse, with difficult respiration, and who spit up by coughing much viscid mucus mixed with dark coloured blood. They had both large vibices on their limbs, and petechiæ; in one the feet were in danger of mortification, in the other the legs were œdematous. To relieve the difficult respiration, about six ounces of blood were taken from one of them, which to my surprise was sizy, like inflamed blood: they had both palpitations or unequal pulsations of the heart. They continued four or five weeks with pale and bloated countenances, and did not cease spitting phlegm mixed with black blood, and the pulse seldom slower than 130 or 135 in a minute. This blood, from its dark colour, and from the many vibices and petechiæ, seems to have been venous blood; the quickness of the pulse, and the irregularity of the motion of the heart, are to be ascribed to debility of that part of the system; as the extravasation of blood originated from the defect of venous absorption. The approximation of these two cases to sea-scurvy is peculiar, and may allow them to be called scorbutus pulmonalis. Had these been younger subjects, and the paralysis of the veins had only affected the lungs, it is probable the disease would have been a pulmonary consumption.
Last week I saw a gentleman of Birmingham, who had for ten days laboured under great palpitation of his heart, which was so distinctly felt by the hand, as to discountenance the idea of there being a fluid in the pericardium. He frequently spit up mucus stained with dark coloured blood, his pulse very unequal and very weak, with cold hands and nose. He could not lie down at all, and for about ten days past could not sleep a minute together, but waked perpetually with great uneasiness. Could those symptoms be owing to very extensive adhesions of the lungs? or is this a scorbutus pulmonalis? After a few days he suddenly got so much better as to be able to sleep many hours at a time by the use of one grain of powder of foxglove twice a day, and a grain of opium at night. After a few days longer, the bark was exhibited, and the opium continued with some wine; and the palpitations of his heart became much relieved, and he recovered his usual degree of health, but died suddenly some months afterwards.
In epileptic fits the patients frequently become black in the face, from the temporary paralysis of the venous system of this part. I have known two instances where the blackness has continued many days. M. P——, who had drank intemperately, was seized with the epilepsy when he was in his fortieth year; in one of these fits the white part of his eyes was left totally black with effused blood; which was attended with no pain or heat, and was in a few weeks gradually absorbed, changing colour as is usual with vibices from bruises.
The hæmorrhages produced from the inability of the veins to absorb the refluent blood, is cured by opium, the preparations of steel, lead, the bark, vitriolic acid, and blisters; but these have the effect with much more certainty, if a venesection to a few ounces, and a moderate cathartic with four or six grains of calomel be premised, where the patient is not already too much debilitated; as one great means of promoting the absorption of any fluid consists in previously emptying the vessels, which are to receive it.
SECT. [XXVIII].
OF THE PARALYSIS OF THE ABSORBENT SYSTEM.
[I]. Paralysis of the lacteals, atrophy. Distaste to animal food. [II]. Cause of dropsy. Cause of herpes. Scrophula. Mesenteric consumption. Pulmonary consumption. Why ulcers in the lungs are so difficult to heal.
The term paralysis has generally been used to express the loss of voluntary motion, as in the hemiplagia, but may with equal propriety be applied to express the disobediency of the muscular fibres to the other kinds of stimulus; as to those of irritation or sensation.
[I]. There is a species of atrophy, which has not been well understood; when the absorbent vessels of the stomach and intestines have been long inured to the stimulus of too much spirituous liquor, they at length, either by the too sudden omission of fermented or spirituous potation, or from the gradual decay of nature, become in a certain degree paralytic; now it is observed in the larger muscles of the body, when one side is paralytic, the other is more frequently in motion, owing to the less expenditure of sensorial power in the paralytic limbs; so in this case the other part of the absorbent system acts with greater force, or with greater perseverance, in consequence of the paralysis of the lacteals; and the body becomes greatly emaciated in a small time.
I have seen several patients in this disease, of which the following are the circumstances. 1. They were men about fifty years of age, and had lived freely in respect to fermented liquors. 2. They lost their appetite to animal food. 3. They became suddenly emaciated to a great degree. 4. Their skins were dry and rough. 5. They coughed and expectorated with difficulty a viscid phlegm. 6. The membrane of the tongue was dry and red, and liable to become ulcerous.
The inability to digest animal food, and the consequent distaste to it, generally precedes the dropsy, and other diseases, which originate from spirituous potation. I suppose when the stomach becomes inirritable, that there is at the same time a deficiency of gastric acid; hence milk seldom agrees with these patients, unless it be previously curdled, as they have not sufficient gastric acid to curdle it; and hence vegetable food, which is itself acescent, will agree with their stomachs longer than animal food, which requires more of the gastric acid for its digestion.
In this disease the skin is dry from the increased absorption of the cutaneous lymphatics, the fat is absorbed from the increased absorption of the cellular lymphatics, the mucus of the lungs is too viscid to be easily spit up by the increased absorption of the thinner parts of it, the membrana sneideriana becomes dry, covered with hardened mucus, and at length becomes inflamed and full of aphthæ, and either these sloughs, or pulmonary ulcers, terminate the scene.
[II]. The immediate cause of dropsy is the paralysis of some other branches of the absorbent system, which are called lymphatics, and which open into the larger cavities of the body, or into the cells of the cellular membrane; whence those cavities or cells become distended with the fluid, which is hourly secreted into them for the purpose of lubricating their surfaces. As is more fully explained in [No. 5.] of the next Section.
As those lymphatic vessels consist generally of a long neck or mouth, which drinks up its appropriated fluid, and of a conglobate gland, in which this fluid undergoes some change, it happens, that sometimes the mouth of the lymphatic, and sometimes the belly or glandular part of it, becomes totally or partially paralytic. In the former case, where the mouths of the cutaneous lymphatics become torpid or quiescent, the fluid secreted on the skin ceases to be absorbed, and erodes the skin by its saline acrimony, and produces eruptions termed herpes, the discharge from which is as salt, as the tears, which are secreted too fast to be reabsorbed, as in grief, or when the puncta lacrymalia are obstructed, and which running down the cheek redden and inflame the skin.
When the mouths of the lymphatics, which open on the mucous membrane of the nostrils, become torpid, as on walking into the air in a frosty morning; the mucus, which continues to be secreted, has not its aqueous and saline part reabsorbed, which running over the upper lip inflames it, and has a salt taste, if it falls on the tongue.
When the belly, or glandular part of these lymphatics, becomes torpid, the fluid absorbed by its mouth stagnates, and forms a tumour in the gland. This disease is called the scrophula. If these glands suppurate externally, they gradually heal, as those of the neck; if they suppurate without an opening on the external habit, as the mesenteric glands, a hectic fever ensues, which destroys the patient; if they suppurate in the lungs, a pulmonary consumption ensues, which is believed thus to differ from that described in the preceding Section, in respect to its seat or proximate cause.
It is remarkable, that matter produced by suppuration will lie concealed in the body many weeks, or even months, without producing hectic fever; but as soon as the wound is opened, so as to admit air to the surface of the ulcer, a hectic fever supervenes, even in very few hours, which is probably owing to the azotic part of the atmosphere rather than to the oxygene; because those medicines, which contain much oxygene, as the calces or oxydes of metals, externally applied, greatly contribute to heal ulcers, of these are the solutions of lead and mercury, and copper in acids, or their precipitates.
Hence when wounds are to be healed by the first intention, as it is called, it is necessary carefully to exclude the air from them. Hence we have one cause, which prevents pulmonary ulcers from healing, which is their being perpetually exposed to the air.
Both the dark-eyed patients, which are affected with pulmonary ulcers from deficient venous absorption, as described in Section. [XXVII. 2]. and the light-eyed patients from deficient lymphatic absorption, which we are now treating of, have generally large apertures of the iris; these large pupils of the eyes are a common mark of want of irritability; and it generally happens, that an increase of sensibility, that is, of motions in consequence of sensation, attends these constitutions. See Sect. [XXXI. 2]. Whence inflammations may occur in these from stagnated fluids more frequently than in those constitutions, which possess more irritability and less sensibility.
Great expectations in respect to the cure of consumptions, as well as of many other diseases, are produced by the very ingenious exertions of DR. BEDDOES; who has established an apparatus for breathing various mixtures of airs or gasses, at the hot-wells near Bristol, which well deserves the attention of the public.
DR. BEDDOES very ingeniously concludes, from the florid colour of the blood of consumptive patients, that it abounds in oxygene; and that the redness of their tongues, and lips, and the fine blush of their cheeks shew the presence of the same principle, like flesh reddened by nitre. And adds, that the circumstance of the consumptions of pregnant women being stopped in their progress during pregnancy, at which time their blood may be supposed to be in part deprived of its oxygene, by oxygenating the blood of the fœtus, is a forceable argument in favour of this theory; which must soon be confirmed or confuted by his experiments. See Essay on Scurvy, Consumption, &c. by Dr. Beddoes. Murray. London. Also Letter to Dr. Darwin, by the same. Murray. London.
SECT. [XXIX].
ON THE RETROGRADE MOTIONS OF THE ABSORBENT SYSTEM.
[I]. Account of the absorbent system. [II]. The valves of the absorbent vessels may suffer their fluids to regurgitate in some diseases. [III]. Communication from the alimentary canal to the bladder by means of the absorbent vessels. [IV]. The phenomena of diabetes explained. [V]. [1]. The phenomena of dropsies explained. [2]. Cases of the use of foxglove. [VI]. Of cold sweats. [VII]. Translations of matter, of chyle, of milk, of urine, operation of purging drugs applied externally. [VIII]. Circumstances by which the fluids, that are effused by the retrograde motions of the absorbent vessels, are distinguished. [IX]. Retrograde motions of vegetable juices. [X]. Objections answered. [XI]. The causes, which induce the retrograde motions of animal vessels, and the medicines by which the natural motions are restored.
N.B. The following Section is a translation of a part of a Latin thesis written by the late Mr. Charles Darwin, which was printed with his prize-dissertation on a criterion between matter and mucus in 1780. Sold by Cadell, London.
[I]. Account of the Absorbent System.
[1]. The absorbent system of vessels in animal bodies consists of several branches, differing in respect to their situations, and to the fluids, which they absorb.
The intestinal absorbents open their mouths on the internal surfaces of the intestines; their office is to drink up the chyle and the other fluids from the alimentary canal; and they are termed lacteals, to distinguish them from the other absorbent vessels, which have been termed lymphatics.
Those, whose mouths are dispersed on the external skin, imbibe a great quantity of water from the atmosphere, and a part of the perspirable matter, which does not evaporate, and are termed cutaneous absorbents.
Those, which arise from the internal surface of the bronchia, and which imbibe moisture from the atmosphere, and a part of the bronchial mucus, are called pulmonary absorbents.
Those, which open their innumerable mouths into the cells of the whole cellular membrane; and whose use is to take up the fluid, which is poured into those cells, after it has done its office there; may be called cellular absorbents.
Those, which arise from the internal surfaces of the membranes, which line the larger cavities of the body, as the thorax, abdomen, scrotum, pericardium, take up the mucus poured into those cavities; and are distinguished by the names of their respective cavities.
Whilst those, which arise from the internal surfaces of the urinary bladder, gall-bladder, salivary ducts, or other receptacles of secreted fluids, may take their names from those fluids; the thinner parts of which it is their office to absorb: as urinary, bilious, or salivary absorbents.
[2]. Many of these absorbent vessels, both lacteals and lymphatics, like some of the veins, are replete with valves: which seem designed to assist the progress of their fluids, or at least to prevent their regurgitation; where they are subjected to the intermitted pressure of the muscular, or arterial actions in their neighbourhood.
These valves do not however appear to be necessary to all the absorbents, any more than to all the veins; since they are not found to exist in the absorbent system of fish; according to the discoveries of the ingenious, and much lamented Mr. Hewson. Philos. Trans. v. 59, Enquiries into the Lymph. Syst. p. 94.
[3]. These absorbent vessels are also furnished with glands, which are called conglobate glands; whose use is not at present sufficiently investigated; but it is probable that they resemble the conglomerate glands both in structure and in use, except that their absorbent mouths are for the conveniency of situation placed at a greater distance from the body of the gland. The conglomerate glands open their mouths immediately into the sanguiferous vessels, which bring the blood, from whence they absorb their respective fluids, quite up to the gland: but these conglobate glands collect their adapted fluids from very distant membranes, or cysts, by means of mouths furnished with long necks for this purpose; and which are called lacteals, or lymphatics.
[4]. The fluids, thus collected from various parts of the body, pass by means of the thoracic duct into the left subclavian near the jugular vein; except indeed that those collected from the right side of the head and neck, and from the right arm, are carried into the right subclavian vein: and sometimes even the lymphatics from the right side of the lungs are inserted into the right subclavian vein; whilst those of the left side of the head open but just into the summit of the thoracic duct.
[5]. In the absorbent system there are many anastomoses of the vessels, which seem of great consequence to the preservation of health. These anastomoses are discovered by dissection to be very frequent between the intestinal and urinary lymphatics, as mentioned by Mr. Hewson, (Phil. Trans. v. 58.)
[6]. Nor do all the intestinal absorbents seem to terminate in the thoracic duct, as appears from some curious experiments of D. Munro, who gave madder to some animals, having previously put a ligature on the thoracic duct, and found their bones, and the serum of their blood, coloured red.
[II]. The Valves of the Absorbent System may suffer their Fluids to regurgitate in some Diseases.
[1]. The many valves, which occur in the progress of the lymphatic and lacteal vessels, would seem insuperable obstacles to the regurgitation of their contents. But as these valves are placed in vessels, which are indued with life, and are themselves indued with life also; and are very irritable into those natural motions, which absorb, or propel the fluids they contain; it is possible, in some diseases, where these valves or vessels are stimulated into unnatural exertions, or are become paralytic, that during the diastole of the part of the vessel to which the valve is attached, the valve may not so completely close, as to prevent the relapse of the lymph or chyle. This is rendered more probable, by the experiments of injecting mercury, or water, or suet, or by blowing air down these vessels: all which pass the valves very easily, contrary to the natural course of their fluids, when the vessels are thus a little forcibly dilated, as mentioned by Dr. Haller, Elem. Physiol. t. iii. s. 4.
"The valves of the thoracic duct are few, some assert they are not more than twelve, and that they do not very accurately perform their office, as they do not close the whole area of the duct, and thence may permit chyle to repass them downwards. In living animals, however, though not always, yet more frequently than in the dead, they prevent the chyle from returning. The principal of these valves is that, which presides over the insertion of the thoracic duct, into the subclavian vein; many have believed this also to perform the office of a valve, both to admit the chyle into the vein, and to preclude the blood from entering the duct; but in my opinion it is scarcely sufficient for this purpose." Haller, Elem. Phys. t. vii. p. 226.
[2]. The mouths of the lymphatics seem to admit water to pass through them after death, the inverted way, easier than the natural one; since an inverted bladder readily lets out the water with which it is filled; whence it may be inferred, that there is no obstacle at the mouths of these vessels to prevent the regurgitation of their contained fluids.
I was induced to repeat this experiment, and having accurately tied the ureters and neck of a fresh ox's bladder, I made an opening at the fundus of it; and then, having turned it inside outwards, filled it half full with water, and was surprised to see it empty itself so hastily. I thought the experiment more apposite to my purpose by suspending the bladder with its neck downwards, as the lymphatics are chiefly spread upon this part of it, as shewn by Dr. Watson, Philos. Trans. v. 59. p. 392.
[3]. In some diseases, as in the diabetes and scrophula, it is probable the valves themselves are diseased, and are thence incapable of preventing the return of the fluids they should support. Thus the valves of the aorta itself have frequently been found schirrous, according to the dissections of Mons. Lieutaud, and have given rise to an interrupted pulse, and laborious palpitations, by suffering a return of part of the blood into the heart. Nor are any parts of the body so liable to schirrosity as the lymphatic glands and vessels, insomuch that their schirrosities have acquired a distinct name, and been termed scrophula.
[4]. There are valves in other parts of the body, analogous to those of the absorbent system, and which are liable, when diseased, to regurgitate their contents: thus the upper and lower orifices of the stomach are closed by valves, which, when too great quantities of warm water have been drank with a design to promote vomiting, have sometimes resisted the utmost efforts of the abdominal muscles, and diaphragm: yet, at other times, the upper valve, or cardia, easily permits the evacuation of the contents of the stomach; whilst the inferior valve, or pylorus, permits the bile, and other contents of the duodenum, to regurgitate into the stomach.
[5]. The valve of the colon is well adapted to prevent the retrograde motion of the excrements; yet, as this valve is possessed of a living power, in the iliac passion, either from spasm, or other unnatural exertions, it keeps itself open, and either suffers or promotes the retrograde movements of the contents of the intestines below; as in ruminating animals the mouth of the first stomach seems to be so constructed, as to facilitate or assist the regurgitation of the food; the rings of the œsophagus afterwards contracting themselves in inverted order. De Haeu, by means of a syringe, forced so much water into the rectum intestinum of a dog, that he vomited it in a full stream from his mouth; and in the iliac passion above mentioned, excrements and clyster are often evacuated by the mouth. See Section [XXV. 15].
[6]. The puncta lacrymalia, with the lacrymal sack and nasal duct, compose a complete gland, and much resemble the intestinal canal: the puncta lacrymalia are absorbent mouths, that take up the tears from the eye, when they have done their office there, and convey them into the nostrils; but when the nasal duct is obstructed, and the lacrymal sack distended with its fluid, on pressure with the finger the mouths of this gland (puncta lacrymalia) will readily disgorge the fluid, they had previously absorbed, back into the eye.
[7]. As the capillary vessels receive blood from the arteries, and separating the mucus, or perspirable matter from it, convey the remainder back by the veins; these capillary vessels are a set of glands, in every respect similar to the secretory vessels of the liver, or other large congeries of glands. The beginnings of these capillary vessels have frequent anastomoses into each other, in which circumstance they are resembled by the lacteals; and like the mouths or beginnings of other glands, they are a set of absorbent vessels, which drink up the blood which is brought to them by the arteries, as the chyle is drank up by the lacteals: for the circulation of the blood through the capillaries is proved to be independent of arterial impulse; since in the blush of shame, and in partial inflammations, their action is increased, without any increase of the motion of the heart.
[8]. Yet not only the mouths, or beginnings of these anastomosing capillaries are frequently seen by microscopes, to regurgitate some particles of blood, during the struggles of the animal; but retrograde motion of the blood, in the veins of those animals, from the very heart of the extremity of the limbs, is observable, by intervals, during the distresses of the dying creature. Haller, Elem. Physiol. t. i. p. 216. Now, as the veins have perhaps all of them a valve somewhere between their extremities and the heart, here is ocular demonstration of the fluids in this diseased condition of the animal, repassing through venous valves: and it is hence highly probable, from the strictest analogy, that if the course of the fluids, in the lymphatic vessels, could be subjected to microscopic observation, they would also, in the diseased state of the animal, be seen to repass the valves, and the mouths of those vessels, which had previously absorbed them, or promoted their progression.
[III]. Communication from the Alimentary Canal to the Bladder, by means of the Absorbent Vessels.
Many medical philosophers, both ancient and modern, have suspected that there was a nearer communication between the stomach and the urinary bladder, than that of the circulation: they were led into this opinion from the great expedition with which cold water, when drank to excess, passes off by the bladder; and from the similarity of the urine, when produced in this hasty manner, with the material that was drank.
The former of these circumstances happens perpetually to those who drink abundance of cold water, when they are much heated by exercise, and to many at the beginning of intoxication.
Of the latter, many instances are recorded by Etmuller, t. xi. p. 716. where simple water, wine, and wine with sugar, and emulsions, were returned by urine unchanged.
There are other experiments, that seem to demonstrate the existence of another passage to the bladder, besides that through the kidneys. Thus Dr. Kratzenstein put ligatures on the ureters of a dog, and then emptied the bladder by a catheter; yet in a little time the dog drank greedily, and made a quantity of water, (Disputat. Morbor. Halleri. t. iv. p. 63.) A similar experiment is related in the Philosophical Transactions, with the same event, (No. 65, 67, for the year 1670.)
Add to this, that in some morbid cases the urine has continued to pass, after the suppuration or total destruction of the kidneys; of which many instances are referred to in the Elem. Physiol. t. vii. p. 379. of Dr. Haller.
From all which it must be concluded, that some fluids have passed from the stomach or abdomen, without having gone through the sanguiferous circulation: and as the bladder is supplied with many lymphatics, as described by Dr. Watson, in the Philos. Trans. v. 59. p. 392. and as no other vessels open into it besides these and the ureters, it seems evident, that the unnatural urine, produced as above described, when the ureters were tied, or the kidneys obliterated, was carried into the bladder by the retrograde motions of the urinary branch of the lymphatic system.
The more certainly to ascertain the existence of another communication between the stomach and bladder, besides that of the circulation, the following experiment was made, to which I must beg your patient attention:—A friend of mine (June 14, 1772) on drinking repeatedly of cold small punch, till he began to be intoxicated, made a quantity of colourless urine. He then drank about two drams of nitre dissolved in some of the punch, and eat about twenty stalks of boiled asparagus: on continuing to drink more of the punch, the next urine that he made was quite clear, and without smell; but in a little time another quantity was made, which was not quite so colourless, and had a strong smell of the asparagus: he then lost about four ounces of blood from the arm.
The smell of asparagus was not at all perceptible in the blood, neither when fresh taken, nor the next morning, as myself and two others accurately attended to; yet this smell was strongly perceived in the urine, which was made just before the blood was taken from his arm.
Some bibulous paper, moistened in the serum of this blood, and suffered to dry, shewed no signs of nitre by its manner of burning. But some of the same paper, moistened in the urine, and dried, on being ignited, evidently shewed the presence of nitre. This blood and the urine stood some days exposed to the sun in the open air, till they were evaporated to about a fourth of their original quantity, and began to stink: the paper, which was then moistened with the concentrated urine, shewed the presence of much nitre by its manner of burning; whilst that moistened with the blood shewed no such appearance at all.
Hence it appears, that certain fluids at the beginning of intoxication, find another passage to the bladder besides the long course of the arterial circulation; and as the intestinal absorbents are joined with the urinary lymphatics by frequent anastomoses, as Hewson has demonstrated; and as there is no other road, we may justly conclude, that these fluids pass into the bladder by the urinary branch of the lymphatics, which has its motions inverted during the diseased state of the animal.
A gentleman, who had been some weeks affected with jaundice, and whose urine was in consequence of a very deep yellow, took some cold small punch, in which was dissolved about a dram of nitre; he then took repeated draughts of the punch, and kept himself in a cool room, till on the approach of slight intoxication he made a large quantity of water; this water had a slight yellow tinge, as might be expected from a small admixture of bile secreted from the kidneys; but if the whole of it had passed through the sanguiferous vessels, which were now replete with bile (his whole skin being as yellow as gold) would not this urine also, as well as that he had made for weeks before, have been of a deep yellow? Paper dipped in this water, and dryed, and ignited, shewed evident marks of the presence of nitre, when the flame was blown out.
[IV]. The Phænomena of the Diabetes explained, and of some Diarrhœas.
The phenomena of many diseases are only explicable from the retrograde motions of some of the branches of the lymphatic system; as the great and immediate flow of pale urine in the beginning of drunkenness; in hysteric paroxysms; from being exposed to cold air; or to the influence of fear or anxiety.
Before we endeavour to illustrate this doctrine, by describing the phænomena of these diseases, we must premise one circumstance; that all the branches of the lymphatic system have a certain sympathy with each other, insomuch that when one branch is stimulated into unusual kinds or quantities of motion, some other branch has its motions either increased, or decreased, or inverted at the same time. This kind of sympathy can only be proved by the concurrent testimony of numerous facts, which will be related in the course of the work. I shall only add here, that it is probable, that this sympathy does not depend on any communication of nervous filaments, but on habit; owing to the various branches of this system having frequently been stimulated into action at the same time.
There are a thousand instances of involuntary motions associated in this manner; as in the act of vomiting, while the motions of the stomach and œsophagus are inverted, the pulsations of the arterial system by a certain sympathy become weaker; and when the bowels or kidneys are stimulated by poison, a stone, or inflammation, into more violent action; the stomach and œsophagus by sympathy invert their motions.
[1]. When any one drinks a moderate quantity of vinous spirit, the whole system acts with more energy by consent with the stomach and intestines, as is seen from the glow on the skin, and the increase of strength and activity; but when a greater quantity of this inebriating material is drank, at the same time that the lacteals are excited into greater action to absorb it; it frequently happens, that the urinary branch of absorbents, which is connected with the lacteals by many anastomoses, inverts its motions, and a great quantity of pale unanimalized urine is discharged. By this wise contrivance too much of an unnecessary fluid is prevented from entering the circulation—This may be called the drunken diabetes, to distinguish it from the other temporary diabetes, which occur in hysteric diseases, and from continued fear or anxiety.
[2]. If this idle ingurgitation of too much vinous spirit be daily practised, the urinary branch of absorbents at length gains an habit of inverting its motions, whenever the lacteals are much stimulated; and the whole or a great part of the chyle is thus daily carried to the bladder without entering the circulation, and the body becomes emaciated. This is one kind of chronic diabetes, and may be distinguished from the others by the taste and appearance of the urine; which is sweet, and the colour of whey, and may be termed the chyliferous diabetes.
[3]. Many children have a similar deposition of chyle in their urine, from the irritation of worms in their intestines, which stimulating the mouths of the lacteals into unnatural action, the urinary branch of the absorbents becomes inverted, and carries part of the chyle to the bladder: part of the chyle also has been carried to the iliac and lumbar glands, of which instances are recorded by Haller, t. vii. 225. and which can be explained on no other theory: but the dissections of the lymphatic system of the human body, which have yet been published, are not sufficiently extensive for our purpose; yet if we may reason from comparative anatomy, this translation of chyle to the bladder is much illustrated by the account given of this system of vessels in a turtle, by Mr. Hewson, who observed, "That the lacteals near the root of the mesentery anastomose, so as to form a net-work, from which several large branches go into some considerable lymphatics lying near the spine; and which can be traced almost to the anus, and particularly to the kidneys." Philos. Trans. v. 59. p. 199—Enquiries, p. 74.
[4]. At the same time that the urinary branch of absorbents, in the beginning of diabetes, is excited into inverted action, the cellular branch is excited by the sympathy above mentioned, into more energetic action; and the fat, that was before deposited, is reabsorbed and thrown into the blood vessels; where it floats, and was mistaken for chyle, till the late experiments of the ingenious Mr. Hewson demonstrated it to be fat.
This appearance of what was mistaken for chyle in the blood, which was drawn from these patients, and the obstructed liver, which very frequently accompanies this disease, seems to have led Dr. Mead to suspect the diabetes was owing to a defect of sanguification; and that the schirrosity of the liver was the original cause of it: but as the schirrhus of the liver is most frequently owing to the same causes, that produce the diabetes and dropsies; namely, the great use of fermented liquors; there is no wonder they should exist together, without being the consequence of each other.
[5]. If the cutaneous branch of absorbents gains a habit of being excited into stronger action, and imbibes greater quantities of moisture from the atmosphere, at the same time that the urinary branch has its motions inverted, another kind of diabetes is formed, which may be termed the aqueous diabetes. In this diabetes the cutaneous absorbents frequently imbibe an amazing quantity of atmospheric moisture; insomuch that there are authentic histories, where many gallons a day, for many weeks together, above the quantity that has been drank, have been discharged by urine.
Dr. Keil, in his Medicina Statica, found that he gained eighteen ounces from the moist air of one night; and Dr. Percival affirms, that one of his hands imbibed, after being well chafed, near an ounce and half of water, in a quarter of an hour. (Transact. of the College, London, vol. ii. p. 102.) Home's Medic. Facts, p. 2. sect. 3.
The pale urine in hysterical women, or which is produced by fear or anxiety, is a temporary complaint of this kind; and it would in reality be the same disease, if it was confirmed by habit.
[6]. The purging stools, and pale urine, occasioned by exposing the naked body to cold air, or sprinkling it with cold water, originate from a similar cause; for the mouths of the cutaneous lymphatics being suddenly exposed to cold become torpid, and cease, or nearly cease, to act; whilst, by the sympathy above described, not only the lymphatics of the bladder and intestines cease also to absorb the more aqueous and saline part of the fluids secreted into them; but it is probable that these lymphatics invert their motions, and return the fluids, which were previously absorbed, into the intestines and bladder. At the very instant that the body is exposed naked to the cold air, an unusual movement is felt in the bowels; as is experienced by boys going into the cold bath: this could not occur from an obstruction of the perspirable matter, since there is not time, for that to be returned to the bowels by the course of the circulation.
There is also a chronic aqueous diarrhœa, in which the atmospheric moisture, drank up by the cutaneous and pulmonary lymphatics, is poured into the intestines, by the retrograde motions of the lacteals. This disease is most similar to the aqueous diabetes, and is frequently exchanged for it: a distinct instance of this is recorded by Benningerus, Cent. v. Obs. 98. in which an aqueous diarrhœa succeeded an aqueous diabetes, and destroyed the patient. There is a curious example of this, described by Sympson (De Re Medica)—"A young man (says he) was seized with a fever, upon which a diarrhœa came on, with great stupor; and he refused to drink any thing, though he was parched up with excessive heat: the better to supply him with moisture, I directed his feet to be immersed in cold water; immediately I observed a wonderful decrease of water in the vessel, and then an impetuous stream of a fluid, scarcely coloured, was discharged by stool, like a cataract."
[7]. There is another kind of diarrhœa, which has been called cæliaca; in this disease the chyle, drank up by the lacteals of the small intestines, is probably poured into the large intestines, by the retrograde motions of their lacteals: as in the chyliferous diabetes, the chyle is poured into the bladder, by the retrograde motions of the urinary branch of absorbents.
The chyliferous diabetes, like this chyliferous diarrhœa, produces sudden atrophy; since the nourishment, which ought to supply the hourly waste of the body, is expelled by the bladder, or rectum: whilst the aqueous diabetes, and the aqueous diarrhœa produce excessive thirst; because the moisture, which is obtained from the atmosphere, is not conveyed to the thoracic receptacle, as it ought to be, but to the bladder, or lower intestines; whence the chyle, blood, and whole system of glands, are robbed of their proportion of humidity.
[8]. There is a third species of diabetes, in which the urine is mucilaginous, and appears ropy in pouring it from one vessel into another; and will sometimes coagulate over the fire. This disease appears by intervals, and ceases again, and seems to be occasioned by a previous dropsy in some part of the body. When such a collection is reabsorbed, it is not always returned into the circulation; but the same irritation that stimulates one lymphatic branch to reabsorb the deposited fluid, inverts the urinary branch, and pours it into the bladder. Hence this mucilaginous diabetes is a cure, or the consequence of a cure, of a worse disease, rather than a disease itself.
Dr. Cotunnius gave half an ounce of cream of tartar, every morning, to a patient, who had the anasarca; and he voided a great quantity of urine; a part of which, put over the fire, coagulated, on the evaporation of half of it, so as to look like the white of an egg. De Ischiade Nervos.
This kind of diabetes frequently precedes a dropsy; and has this remarkable circumstance attending it, that it generally happens in the night; as during the recumbent state of the body, the fluid, that was accumulated in the cellular membrane, or in the lungs, is more readily absorbed, as it is less impeded by its gravity. I have seen more than one instance of this disease. Mr. D. a man in the decline of life, who had long accustomed himself to spirituous liquor, had swelled legs, and other symptoms of approaching anasarca; about once in a week, or ten days, for several months, he was seized, on going to bed, with great general uneasiness, which his attendants resembled to an hysteric fit; and which terminated in a great discharge of viscid urine; his legs became less swelled, and he continued in better health for some days afterwards. I had not the opportunity to try if this urine would coagulate over the fire, when part of it was evaporated, which I imagine would be the criterion of this kind of diabetes; as the mucilaginous fluid deposited in the cells and cysts of the body, which have no communication with the external air, seems to acquire, by stagnation, this property of coagulation by heat, which the secreted mucus of the intestines and bladder do not appear to possess; as I have found by experiment: and if any one should suppose this coagulable urine was separated from the blood by the kidneys, he may recollect, that in the most inflammatory diseases, in which the blood is most replete or most ready to part with the coagulable lymph, none of this appears in the urine.
[9]. Different kinds of diabetes require different methods of cure. For the first kind, or chyliferous diabetes, after clearing the stomach and intestines, by ipecacuanha and rhubarb, to evacuate any acid material, which may too powerfully stimulate the mouths of the lacteals, repeated and large doses of tincture of cantharides have been much recommended. The specific stimulus of this medicine, on the neck of the bladder, is likely to excite the numerous absorbent vessels, which are spread on that part, into stronger natural actions, and by that means prevent their retrograde ones; till, by persisting in the use of the medicine, their natural habits of motions might again be established. Another indication of cure, requires such medicines, as by lining the intestines with mucilaginous substances, or with such as consist of smooth particles, or which chemically destroy the acrimony of their contents, may prevent the too great action of the intestinal absorbents. For this purpose, I have found the earth precipitated from a solution of alum, by means of fixed alcali, given in the dose of half a dram every six hours, of great advantage, with a few grains of rhubarb, so as to produce a daily evacuation.
The food should consist of materials that have the least stimulus, with calcareous water, as of Bristol and Matlock; that the mouths of the lacteals may be as little stimulated as is necessary for their proper absorption; lest with their greater exertions, should be connected by sympathy, the inverted motions of the urinary lymphatics.
The same method may be employed with equal advantage in the aqueous diabetes, so great is the sympathy between the skin and the stomach. To which, however, some application to the skin might be usefully added; as rubbing the patient all over with oil, to prevent the too great action of the cutaneous absorbents. I knew an experiment of this kind made upon one patient with apparent advantage.
The mucilaginous diabetes will require the same treatment, which is most efficacious in the dropsy, and will be described below. I must add, that the diet and medicines above mentioned, are strongly recommended by various authors, as by Morgan, Willis, Harris, and Etmuller; but more histories of the successful treatment of these diseases are wanting to fully ascertain the most efficacious methods of cure.
In a letter from Mr. Charles Darwin, dated April 24, 1778, Edinburgh, is the subsequent passage:—"A man who had long laboured under a diabetes died yesterday in the clinical ward. He had for some time drank four, and passed twelve pounds of fluid daily; each pound of urine contained an ounce of sugar. He took, without considerable relief, gum kino, sanguis diaconis melted with alum, tincture of cantharides, isinglass, gum arabic, crabs eyes, spirit of hartshorn, and eat ten or fifteen oysters thrice a day. Dr. Home, having read my thesis, bled him, and found that neither the fresh blood nor the serum tasted sweet. His body was opened this morning—every viscus appeared in a sound and natural state, except that the left kidney had a very small pelvis, and that there was a considerable enlargement of most of the mesenteric lymphatic glands. I intend to insert this in my thesis, as it coincides with the experiment, where some asparagus was eaten at the beginning of intoxication, and its smell perceived in the urine, though not in the blood."
The following case of chyliferous diabetes is extracted from some letters of Mr. Hughes, to whose unremitted care the infirmary at Stafford for many years was much indebted. Dated October 10, 1778.
Richard Davis, aged 33, a whitesmith by trade, had drank hard by intervals; was much troubled with sweating of his hands, which incommoded him in his occupation, but which ceased on his frequently dipping them in lime. About seven months ago he began to make large quantities of water; his legs are œdematous, his belly tense, and he complains of a rising in his throat, like the globus hystericus: he eats twice as much as other people, drinks about fourteen pints of small beer a day, besides a pint of ale, some milk-porridge, and a bason of broth, and he makes about eighteen pints of water a day.
He tried alum, dragon's blood, steel, blue vitriol, and cantharides in large quantities, and duly repeated, under the care of Dr. Underhill, but without any effect; except that on the day after he omitted the cantharides, he made but twelve pints of water, but on the next day this good effect ceased again.
November 21.—He made eighteen pints of water, and he now, at Dr. Darwin's request, took a grain of opium every four hours, and five grains of aloes at night; and had a flannel shirt given him.
22.—Made sixteen pints. 23.—Thirteen pints: drinks less.
24.—Increased the opium to a grain and quarter every four hours: he made twelve pints.
25.—Increased the opium to a grain and half: he now makes ten pints; and drinks eight pints in a day.
The opium was gradually increased during the next fortnight, till he took three grains every four hours, but without any further diminution of his water. During the use of the opium he sweat much in the nights, so as to have large drops stand on his face and all over him. The quantity of opium was then gradually decreased, but not totally omitted, as he continued to take about a grain morning and evening.
January 17.—He makes fourteen pints of water a day. Dr. Underhill now directed him two scruples of common rosin triturated with as much sugar, every six hours; and three grains of opium every night.
19.—Makes fifteen pints of water: sweats at night.
21.—Makes seventeen pints of water; has twitchings of his limbs in a morning, and pains of his legs: he now takes a dram of rosin for a dose, and continues the opium.
23.—Water more coloured, and reduced to sixteen pints, and he thinks has a brackish taste.
26.—Water reduced to fourteen pints.
28.—Water thirteen pints: he continues the opium, and takes four scruples of the rosin for a dose.
February 1.—Water twelve pints.
4.—Water eleven pints: twitchings less; takes five scruples for a dose.
8.—Water ten pints: has had many stools.
12.—Appetite less: purges very much.
After this the rosin either purged him, or would not stay on his stomach; and he gradually relapsed nearly to his former condition, and in a few months sunk under the disease.
October 3, Mr. Hughes evaporated two quarts of the water, and obtained from it four ounces and half of a hard and brittle saccharine mass, like treacle which had been some time boiled. Four ounces of blood, which he took from his arm with design to examine it, had the common appearances, except that the serum resembled cheese-whey; and that on the evidence of four persons, two of whom did not know what it was they tasted, the serum had a saltish taste.
From hence it appears, that the saccharine matter, with which the urine of these patients so much abounds, does not enter the blood-vessels like the nitre and asparagus mentioned above; but that the process of digestion resembles the process of the germination of vegetables, or of making barley into malt; as the vast quantity of sugar found in the urine must be made from the food which he took (which was double that taken by others), and from the fourteen pints of small beer which he drank. And, secondly, as the serum of the blood was not sweet, the chyle appears to have been conveyed to the bladder without entering the circulation of the blood, since so large a quantity of sugar, as was found in the urine, namely, twenty ounces a day, could not have previously existed in the blood without being perceptible to the taste.
November 1. Mr. Hughes dissolved two drams of nitre in a pint of a decoction of the roots of asparagus, and added to it two ounces of tincture of rhubarb: the patient took a fourth part of this mixture every five minutes, till he had taken the whole.—In about half an hour he made eighteen ounces of water, which was very manifestly tinged with the rhubarb; the smell of asparagus was doubtful.
He then lost four ounces of blood, the serum of which was not so opake as that drawn before, but of a yellowish cast, as the serum of the blood usually appears.
Paper, dipped three or four times in the tinged urine and dried again, did not scintillate when it was set on fire; but when the flame was blown out, the fire ran along the paper for half an inch; which, when the same paper was unimpregnated, it would not do; nor when the same paper was dipped in urine made before he took the nitre, and dried in the same manner.
Paper, dipped in the serum of the blood and dried in the same manner as in the urine, did not scintillate when the flame was blown out, but burnt exactly in the same manner as the same paper dipped in the serum of blood drawn from another person.
This experiment, which is copied from a letter of Mr. Hughes, as well as the former, seems to evince the existence of another passage from the intestines to the bladder, in this disease, besides that of the sanguiferous system; and coincides with the curious experiment related in section the third, except that the smell of the asparagus was not here perceived, owing perhaps to the roots having been made use of instead of the heads.
The rising in the throat of this patient, and the twitchings of his limbs, seem to indicate some similarity between the diabetes and the hysteric disease, besides the great flow of pale urine, which is common to them both.
Perhaps if the mesenteric glands were nicely inspected in the dissections of these patients; and if the thoracic duct, and the larger branches of the lacteals, and if the lymphatics, which arise from the bladder, were well examined by injection, or by the knife, the cause of diabetes might be more certainly understood.
The opium alone, and the opium with the rosin, seem much to have served this patient, and might probably have effected a cure, if the disease had been slighter, or the medicine had been exhibited, before it had been confirmed by habit during the seven months it had continued. The increase of the quantity of water on beginning the large doses of rosin was probably owing to his omitting the morning doses of opium.
[V]. The Phænomena of Dropsies explained.
[I]. Some inebriates have their paroxysms of inebriety terminated by much pale urine, or profuse sweats, or vomiting, or stools; others have their paroxysms terminated by stupor, or sleep, without the above evacuations.
The former kind of these inebriates have been observed to be more liable to diabetes and dropsy; and the latter to gout, gravel, and leprosy. Evoe! attend ye bacchanalians! start at this dark train of evils, and, amid your immodest jests, and idiot laughter, recollect,
Quem Deus vult perdere, prius dementat.
In those who are subject to diabetes and dropsy, the absorbent vessels are naturally more irritable than in the latter; and by being frequently disturbed or inverted by violent stimulus, and by their too great sympathy with each other, they become at length either entirely paralytic, or are only susceptible of motion from the stimulus of very acrid materials; as every part of the body, after having been used to great irritations, becomes less affected by smaller ones. Thus we cannot distinguish objects in the night, for some time after we come out of a strong light, though the iris is presently dilated; and the air of a summer evening appears cold, after we have been exposed to the heat of the day.
There are no cells in the body, where dropsy may not be produced, if the lymphatics cease to absorb that mucilaginous fluid, which is perpetually deposited in them, for the purpose of lubricating their surfaces.
If the lymphatic branch, which opens into the cellular membrane, either does its office imperfectly, or not at all; these cells become replete with a mucilaginous fluid, which, after it has stagnated some time in the cells, will coagulate over the fire; and is erroneously called water. Wherever the seat of this disease is, (unless in the lungs or other pendent viscera) the mucilaginous liquid above mentioned will subside to the most depending parts of the body, as the feet and legs, when those are lower than the head and trunk; for all these cells have communications with each other.
When the cellular absorbents are become insensible to their usual irritations, it most frequently happens, but not always, that the cutaneous branch of absorbents, which is strictly associated with them, suffers the like inability. And then, as no water is absorbed from the atmosphere, the urine is not only less diluted at the time of its secretion, and consequently in less quantity and higher coloured: but great thirst is at the same time induced, for as no water is absorbed from the atmosphere to dilute the chyle and blood, the lacteals and other absorbent vessels, which have not lost their powers, are excited into more constant or more violent action, to supply this deficiency; whence the urine becomes still less in quantity, and of a deeper colour, and turbid like the yolk of an egg, owing to a greater absorption of its thinner parts. From this stronger action of those absorbents, which still retain their irritability, the fat is also absorbed, and the whole body becomes emaciated. This increased exertion of some branches of the lymphatics, while others are totally or partially paralytic, is resembled by what constantly occurs in the hemiplagia; when the patient has lost the use of the limbs on one side, he is incessantly moving those of the other; for the moving power, not having access to the paralytic limbs, becomes redundant in those which are not diseased.
The paucity of urine and thirst cannot be explained from a greater quantity of mucilaginous fluid being deposited in the cellular membrane: for though these symptoms have continued many weeks, or even months, this collection frequently does not amount to more than very few pints. Hence also the difficulty of promoting copious sweats in anasarca is accounted for, as well as the great thirst, paucity of urine, and loss of fat; since, when the cutaneous branch of absorbents is paralytic, or nearly so, there is already too small a quantity of aqueous fluid in the blood: nor can these torpid cutaneous lymphatics be readily excited into retrograde motions.
Hence likewise we understand, why in the ascites, and some other dropsies, there is often no thirst, and no paucity of urine; in these cases the cutaneous absorbents continue to do their office.
Some have believed, that dropsies were occasioned by the inability of the kidneys, from having only observed the paucity of urine; and have thence laboured much to obtain diuretic medicines; but it is daily observable, that those who die of a total inability to make water, do not become dropsical in consequence of it: Fernelius mentions one, who laboured under a perfect suppression of urine during twenty days before his death, and yet had no symptoms of dropsy. Pathol. 1. vi. c. 8. From the same idea many physicians have restrained their patients from drinking, though their thirst has been very urgent; and some cases have been published, where this cruel regimen has been thought advantageous: but others of nicer observation are of opinion, that it has always aggravated the distresses of the patient; and though it has abated his swellings, yet by inducing a fever it has hastened his dissolution. See Transactions of the College, London, vol. ii. p. 235. Cases of Dropsy by Dr. G. Baker.
The cure of anasarca, so far as respects the evacuation of the accumulated fluid, coincides with the idea of the retrograde action of the lymphatic system. It is well known that vomits, and other drugs, which induce sickness or nausea; at the same time that they evacuate the stomach, produce a great absorption of the lymph accumulated in the cellular membrane. In the operation of a vomit, not only the motions of the stomach and duodenum become inverted, but also those of the lymphatics and lacteals, which belong to them; whence a great quantity of chyle and lymph is perpetually poured into the stomach and intestines, during the operation, and evacuated by the mouth. Now at the same time, other branches of the lymphatic system, viz. those which open on the cellular membrane, are brought into more energetic action, by the sympathy above mentioned, and an increase of their absorption is produced.
Hence repeated vomits, and cupreous salts, and small doses of squill or foxglove, are so efficacious in this disease. And as drastic purges act also by inverting the motions of the lacteals; and thence the other branches of lymphatics are induced into more powerful natural action, by sympathy, and drink up the fluids from all the cells of the body; and by their anastomoses, pour them into the lacteal branches; which, by their inverted actions, return them into the intestines; and they are thus evacuated from the body:—these purges also are used with success in discharging the accumulated fluid in anasarca.
[II]. The following cases are related with design to ascertain the particular kinds of dropsy in which the digitalis purpurea, or common foxglove, is preferable to squill, or other evacuants, and were first published in 1780, in a pamphlet entitled Experiments on mucilaginous and purulent Matter, &c. Cadell. London. Other cases of dropsy, treated with digitalis, were afterwards published by Dr. Darwin in the Medical Transactions, vol. iii. in which there is a mistake in respect to the dose of the powder of foxglove, which should have been from five grains to one, instead of from five grains to ten.
Anasarca of the Lungs.
1. A lady, between forty and fifty years of age, had been indisposed some time, was then seized with cough and fever, and afterwards expectorated much digested mucus. This expectoration suddenly ceased, and a considerable difficulty of breathing supervened, with a pulse very irregular both in velocity and strength; she was much distressed at first lying down, and at first rising; but after a minute or two bore either of those attitudes with ease. She had no pain or numbness in her arms; she had no hectic fever, nor any cold shiverings, and the urine was in due quantity, and of the natural colour.
The difficulty of breathing was twice considerably relieved by small doses of ipecacuanha, which operated upwards and downwards, but recurred in a few days: she was then directed a decoction of foxglove, (digitalis purpurea) prepared by boiling four ounces of the fresh leaves from two pints of water to one pint; to which was added two ounces of vinous spirit: she took three large spoonfuls of this mixture every two hours, till she had taken it four times; a continued sickness supervened, with frequent vomiting, and a copious flow of urine: these evacuations continued at intervals for two or three days, and relieved the difficulty of breathing—She had some relapses afterwards, which were again relieved by the repetition of the decoction of foxglove.
2. A gentleman, about sixty years of age, who had been addicted to an immoderate use of fermented liquors, and had been very corpulent, gradually lost his strength and flesh, had great difficulty of breathing, with legs somewhat swelled, and a very irregular pulse. He was very much distressed at first lying down, and at first rising from his bed, yet in a minute or two was easy in both those attitudes. He made straw-coloured urine in due quantity, and had no pain or numbness of his arms.
He took a large spoonful of the decoction of foxglove, as above, every hour, for ten or twelve successive hours, had incessant sickness for about two days, and passed a large quantity of urine; upon which his breath became quite easy, and the swelling of his legs subsided; but as his whole constitution was already sinking from the previous intemperance of his life, he did not survive more than three or four months.
Hydrops Pericardii.
3. A gentleman of temperate life and sedulous application to business, between thirty and forty years of age, had long been subject, at intervals, to an irregular pulse: a few months ago he became weak, with difficulty of breathing, and dry cough. In this situation a physician of eminence directed him to abstain from all animal food and fermented liquor, during which regimen all his complaints increased; he now became emaciated, and totally lost his appetite; his pulse very irregular both in velocity and strength; with great difficulty of breathing, and some swelling of his legs; yet he could lie down horizontally in his bed, though he got little sleep, and passed a due quantity of urine, and of the natural colour: no fullness or hardness could be perceived about the region of the liver; and he had no pain or numbness in his arms.
One night he had a most profuse sweat all over his body and limbs, which quite deluged his bed, and for a day or two somewhat relieved his difficulty of breathing, and his pulse became less irregular: this copious sweat recurred three or four times at the intervals of five or six days, and repeatedly alleviated his symptoms.
He was directed one large spoonful of the above decoction of foxglove every hour, till it procured some considerable evacuation: after he had taken it eleven successive hours he had a few liquid stools, attended with a great flow of urine, which last had a dark tinge, as if mixed with a few drops of blood: he continued sick at intervals for two days, but his breath became quite easy, and his pulse quite regular, the swelling of his legs disappeared, and his appetite and sleep returned.
He then took three grains of white vitriol twice a day, with some bitter medicines, and a grain of opium with five grains of rhubarb every night; was advised to eat flesh meat, and spice, as his stomach would bear it, with small beer, and a few glasses of wine; and had issues made in his thighs; and has suffered no relapse.
4. A lady, about fifty years of age, had for some weeks great difficulty of breathing, with very irregular pulse, and considerable general debility: she could lie down in bed, and the urine was in due quantity and of the natural colour, and she had no pain or numbness of her arms.
She took one large spoonful of the above decoction of foxglove every hour, for ten or twelve successive hours; was sick, and made a quantity of pale urine for about two days, and was quite relieved both of the difficulty of breathing, and the irregularity of her pulse. She then took a grain of opium, and five grains of rhubarb, every night, night, for many weeks; with some slight chalybeate and bitter medicines, and has suffered no relapse.
Hydrops Thoracis.
5. A tradesman, about fifty years of age, became weak and short of breath, especially on increase of motion, with pain in one arm, about the insertion of the biceps muscle. He observed he sometimes in the night made an unusual quantity of pale water. He took calomel, alum, and peruvian bark, and all his symptoms increased: his legs began to swell considerably; his breath became more difficult, and he could not lie down in bed; but all this time he made a due quantity of straw-coloured water.
The decoction of foxglove was given as in the preceding cases, which operated chiefly by purging, and seemed to relieve his breath for a day or two; but also seemed to contribute to weaken him.—He became after some weeks universally dropsical, and died comatous.
6. A young lady of delicate constitution, with light eyes and hair, and who had perhaps lived too abstemiously both in respect to the quantity and quality of what she eat and drank, was seized with great difficulty of breathing, so as to threaten immediate death. Her extremities were quite cold, and her breath felt cold to the back of one's hand. She had no sweat, nor could be down for a single moment; and had previously, and at present, complained of great weakness and pain and numbness of both her arms; had no swelling of her legs, no thirst, water in due quantity and colour. Her sister, about a year before, was afflicted with similar symptoms, was repeatedly blooded, and died universally dropsical.
A grain of opium was given immediately, and repeated every six hours with evident and amazing advantage; afterwards a blister, with chalybeates, bitters, and essential oils, were exhibited, but nothing had such eminent effect in relieving the difficulty of breathing and coldness of her extremities as opium, by the use of which in a few weeks she perfectly regained her health, and has suffered no relapse.
Ascites.
7. A young lady of delicate constitution having been exposed to great fear, cold, and fatigue, by the overturn of a chaise in the night, began with pain and tumour in the right hypochondrium: in a few months a fluctuation was felt throughout the whole abdomen, more distinctly perceptible indeed about the region of the stomach; since the integuments of the lower part of the abdomen generally become thickened in this disease by a degree of anasarca. Her legs were not swelled, no thirst, water in due quantity and colour.—She took the foxglove so as to induce sickness and stools, but without abating the swelling, and was obliged at length to submit to the operation of tapping.
8. A man about sixty-seven, who had long been accustomed to spirituous potation, had some time laboured under ascites; his legs somewhat swelled; his breath easy in all attitudes; no appetite; great thirst; urine in exceedingly small quantity, very deep coloured, and turbid; pulse equal. He took the foxglove in such quantity as vomited him, and induced sickness for two days; but procured no flow of urine, or diminution of his swelling; but was thought to leave him considerably weaker.
9. A corpulent man, accustomed to large potation of fermented liquors, had vehement cough, difficult breathing, anasarca of his legs, thighs, and hands, and considerable tumour, with evident fluctuation of his abdomen; his pulse was equal; his urine in small quantity, of deep colour, and turbid. These swellings had been twice considerably abated by drastic cathartics. He took three ounces of a decoction of foxglove (made by boiling one ounce of the fresh leaves in a pint of water) every three hours, for two whole days; it then began to vomit and purge him violently, and promoted a great flow of urine; he was by these evacuations completely emptied in twelve hours. After two or three months all these symptoms returned, and were again relieved by the use of the foxglove; and thus in the space of about three years he was about ten times evacuated, and continued all that time his usual potations: excepting at first, the medicine operated only by urine, and did not appear considerably to weaken him—The last time he took it, it had no effect; and a few weeks afterwards he vomited a great quantity of blood, and expired.