Aqueduct of Mount Pila.
This Aqueduct was built by Claudius, who was born at Lyons, to conduct water to the emperor’s palace, situated on the highest part of the city. The sources which supplied it, were in the neighbourhood of Mount Pila, and they were brought into the main Aqueduct by branch aqueducts. The main Aqueduct was forty miles in length; and adding the branches, the length of the Aqueduct was forty-five miles.
There were 13 bridges of stone to support the Aqueduct across valleys or over rivers, two of which were not built up to the plane of the Aqueduct, but were crossed by leaden pipes which descended on one side of the valley and, crossing the bridge, ascended on the opposite side. In another instance the pipes descended and crossed upon a wall of masonry and reached the opposite side of the valley. One instance, where pipes were used, will give an idea of their general form: the bridge was about 40 feet high and the perpendicular height of the Aqueduct above it was 140 feet. Nine leaden pipes of about 8 inches interior diameter and one inch thick were laid upon the inclined planes and across the level part of the bridge; thus communicating with the opposite crests of the valley.
These bridges which were constructed for the support of pipes, were wider in the bottom of the valley and also half way up the inclined plane, than they were for the remainder of the distance; and this form has suggested the idea that the pipes of 8 inches diameter, when they reached half way down the plane, separated, each one into two of 6 inches diameter which crossed the bridge, and converged into one again half way up the opposite plane. But it may be supposed that they continued of the same interior form throughout their length, and that this extra width was made for the purpose of giving an opportunity to fortify the pipes at the place where the pressure to which they were subjected was the greatest.
Construction.
They commenced the construction by making a trench in the ground of sufficient dimensions for the masonry of the Aqueduct: upon the bottom of this trench was laid a mass of masonry 1 foot thick, upon which two walls were built, each 1½ foot thick and 5⅓ feet high, these walls standing 2 feet apart, and surmounted by a semicircular arch of a thickness of 1 foot and generally covered with earth 2 feet deep. The interior had a coat of cement plastering, 6 inches thick on the bottom and 1½ inch thick on the sides. The walls were constructed with small stones from 3 to 6 inches in thickness, bedded in mortar so that no spaces could be found between them. They avoided the use of stones of greater thickness than 6 inches, because the walls built of small stones, well filled with mortar, formed a mass more solid and impervious than with larger stones, on account of the great quantity of mortar used.
No bricks were used in the construction of the channel-way of the Aqueduct.
Ventilators were constructed along the course of the Aqueduct 2 feet square, and rising above the ground 2 or 3 feet. The Aqueduct when it was above the ground, was supported upon a wall of masonry, and the side walls of the channel-way had an increased thickness. When it was elevated 6 or 7 feet above the ground, the foundation wall was six feet thick; but when it had a greater elevation it was supported upon arches and piers, and upon the elevation depended the span of the arch, the thickness and height of the piers. The general declivity in the channel-way, was 1 foot in 640, or about 8¼ feet per mile.
This Aqueduct supplied about 1,200,000 gallons of water in 24 hours. The velocity of the water was about five times that of the water in the Aqueducts of Rome.
This work was constructed at an immense expense, and in substituting the “inverted syphon,” for high structures across valleys, there is evidence of the intelligence and skill of those who had charge of the construction.
A fragment of a pipe forming part of this reversed syphon, is still preserved in the museum at Lyons, and an instance of the Romans having laid pipes across the beds of rivers, is given by M. Gautier, Architect, Engineer, &c., in his work called “Traité de la Construction des Chemins,” published in 1778.
About 70 or 80 years ago, he was directed by Mr. Pontchartrain, Minister of State, to repair to Rochefort, to conduct spring water to the port from the fountains of the city, which were supplied from a source, though quite insufficient for the city, in the neighborhood. In his researches he discovered a good and copious source, at less than half a league, but on the other side of the river, the Charente. Many difficulties were presented, because at low water vessels might ground upon the pipes and injure them.
However, Mr. Gautier proposed to lay down two leaden pipes, to preserve a supply in case of accident to one, and to protect them by wooden frames in an effectual way against injury, should vessels lay upon the defence frames during low water. Mr. Begon, intendant of the Marine, approved the plan, but it was finally rejected.
“Some years after,” says Mr. Gautier, “when I had charge of the roads on the Rhone, and of many other works in the Province of Languedoc, and while at Arles, I heard that a vessel had cast anchor in the Rhone, opposite the city, to take some loading; but when the commander wanted to sail again he could not raise the anchor. This fact attracted much attention, and many people went to witness the singular circumstance. The Captain, unwilling to lose his anchor, sent down a man, to find what was the matter. The diver reported that the anchor was hooked under something round, but he could not tell what it was. A capstan was applied to raise it, which succeeded.
It brought up a leaden conduit pipe from the bottom of the Rhone, which crossed it from the City of Arles, towards Trinquetaillade, over a breadth of about 90 toises (576 feet) in a depth of 6 or 7 toises (about 40 feet,) the deepest part of the Rhone. I saw some pieces of this conduit of lead, 5 or 6 inches in diameter, about 4 lines (one third of an inch) thick, in joints of 1 toise each soldered lengthwise, and covered by a strip or sheet of lead of the same thickness covering the first solder about 2 inches. The conduit was soldered at the joints, 6 feet apart, by the same material, which made a swell at that distance. On each joint were these words in relief C. CANTIUS POIHINUS. F. which was apparently the name of the maker or architect, who laid down the conduit pipe in the time of the Romans. I delayed not to inform Mr. Begon, at Rochefort, of this discovery, because he had always favoured my project of conducting water along the bottom and across the Charente, which would not have been half so difficult as it had no doubt been, to lay one across the Rhone where this was found.
Hence it may be believed, as I think now myself, that many things supposed now-a-days to be new and never to have been previously invented, may have been thought of long before, even in remote ages.” Pp. 129, 130.
Ancient Aqueduct of Metz.
This Aqueduct was built by the Romans when that city was under their dominion; but it is difficult to fix upon the precise era of its construction. It is said in the history of the city of Metz that the Roman legions built roads in the year 70; but there is reason to suppose that the construction of this Aqueduct, as well as that of other important structures built by the Romans at Metz, belongs to a time more remote, and that the date of the reign of the first emperors may be the era when the legions of Cæsar occupied the country of the Gauls.
The total length of the Aqueduct was 14 miles, and the fall for this distance was about 73 feet.
The channel-way was 6⅓ feet high, by 3 feet wide, constructed with stone masonry and having an arch over the top: the interior face of the walls and the bottom was covered with a coat of plastering; 3 inches thick in the bottom, and 2 inches on the sides. From remains of this Aqueduct which are now found at various points along its course, it appears to have required many expensive structures for crossing valleys; in one instance the Aqueduct bridge was 3,600 feet long, and the greatest height was 100 feet. In constructing the Aqueduct over these bridges, they formed it in two channels separated by a wall, and each covered with an arch; thus they insured a supply of water across the bridge by one channel in case the other required repairs.
Aqueduct of Bourgas, near Constantinople.
Three Aqueducts exist in the valley of Bourgas, 8 miles from Constantinople, for conducting water into the city. One of them is remarkable for the beautiful architectural arrangement and the solidity of its construction. It is 115 feet high, and was built under the Emperor Justinian, A. D. 527. It has two ranges of arches, one above the other, and the Aqueduct supported upon the second. These Aqueducts are in some parts unlike those of Rome, which were formed on a continuous line for many miles, with a regular inclination from the source to the city, but are interrupted by reversed syphons. Instead of crossing deep and wide valleys in the usual manner of stone structures, the Aqueduct terminates on one bank in a reservoir or cistern, and a pipe is laid from it down the sloping side of the hill to a stone pier erected at a suitable distance; the pipe rises up the pier to the top where the water is discharged into a small cistern nearly as high as that in the reservoir. From the cistern, another conduit pipe descends to the bottom of the pier, passes along the ground to a second pier at a proper distance and rises to another cistern on the top of it, and so on till it rises on the crest of the opposite bank, where the water resumes its regular motion along the Aqueduct.
This plan was probably adopted with a view to avoid the expense of constructing a bridge which should preserve the general inclination of the channel-way; but it is difficult to imagine any advantage arising from the construction of the piers, instead of laying the pipe along the bottom of the valley.
Modern Rome.
Rome is now supplied with water by three Aqueducts, being three of the ancient works restored in modern times.
First, Aqua Virgini, called by Frontinus, Aqua Virgo, or Virgin Aqueduct.
The trunk of the Aqueduct having been injured, the reparation was began under the Pontificate of Nicholas V. and Sextus IV., and completed under that of Pius IV. in 1568. This water supplies the beautiful fountain Trevi, thus named from the three discharges issuing from it, or from its being placed at the junction of three streets. The water this Aqueduct furnishes is 2,322,762 cubic feet (14,168,848 gallons) daily, discharging through 7 principal conduits, at 13 public and 37 other fountains.
Second, Aqua Felice. This is a part of the ancient water of the Claudian and Marcian Aqueducts united with many others, and collected under Sextus V. The daily quantity it furnishes is 727,161 cubic feet, (4,435,682 gallons,) and supplies 16 public and 11 other fountains. The Moses fountain discharges from this source.
The Pauline Aqueduct, called Aqua Paola, is the third of the ancient works restored. The water is collected within the territories of Arcolo and Bassano, and conducted along the ancient Aqueduct of Alsietina. This was effected under Pope Pius V., and directed by Charles Fontana, an eminent Hydraulic Architect, who constructed the great fountain of S. Pietro-in-Montorio. Additional water was also taken from Lake Bracciano by Fontana in 1694, under Clement X. The whole quantity in 24 hours is 3,325,531 cubic feet, (20,285,739 gallons,) about one third of which goes to feed the fountains of St. Peters, and those of the Pontifical Palace on the Vatican Hill; the rest is distributed among 8 public and 23 other fountains, as well as to 21 work-shops, (usines) in St. Pancras-street.
An evidence of the durability of these old Roman structures is furnished in this junction of water from Lake Bracciano by Cardinal Orsini, under authority of Clement X., upon condition that a part of the water should be used to feed a second fountain about to be built in St. Peter’s Square at Rome, and the rest to be divided between the Apostolic Chamber and the House of Orsini. From the lake the conduit leads to the old Alsietina Aqueduct, in which it flows 20 miles to the city, and it was found to be in so perfect a state when the trial was first made after the restoration, October 13th, 1693, that all the water which entered the old Aqueduct was discharged at Rome without any loss, after its use had been suspended nearly 1000 years.