CHAPTER XXII.

SUNDRY ELECTRICAL APPLIANCES—MR. EDISON’S INVENTIONS—THE ELECTRIC LIGHT—THE GYROSCOPE—A NEW ELECTROPHORUS—ELECTRIC TOYS.

The Electro-Motograph—although perhaps even yet scarcely developed—has already proved a very useful invention. The idea of it first occurred to Mr. Edison in 1873, when he was prosecuting some researches in chemical telegraphy. “One day,” says Mr. Fox, in his account of the invention, “as he sat pondering over his work, he happened to take in hand the metallic point through which, as it rested upon the paper, the current was wont to pass. When again he closed the circuit to let the current through the paper, he held the metallic point loosely, and unintentionally allowed it to rest upon the paper. Every time he moved the metallic strip on the paper the latter became wonderfully smooth. Edison was determined to find the reason of this, and he decided that the electricity very much lessened the friction of the metal on the paper. He made many experiments, and brought the subject before the Royal Society in 1874, but nothing came of the idea till 1876, when Edison was perfecting his musical telephone.

“The new appliance is, in fact, the same invention revived and now perfected by the original inventor, and brought to complete practical success under the title of the ‘electro-motograph.’ The action of the ‘electro-motograph’ depends on the fact, discovered during former experiments, and employed imperfectly in the musical telephone, that the friction of moving bodies varies in greater or less degree with their electrical condition. In the electro-motograph a cylinder made of prepared chalk, and saturated with a strong solution of caustic alkali, is set upon supports, so that it can be turned upon its axis. A strip of metal fastened to the mica diaphragm rests on the cylinder, and is pressed so firmly by its spring upon the cylinder that when it is turned by means of the handle the friction of the strip on the cylinder tends to pull the diaphragm out of shape, causing it to bulge inward as long as the cylinder is in motion. If now, while this motion of the cylinder is maintained, an electric current passes through the strip of metal, and then through the chalk cylinder to earth, the amount of this friction is varied or it is destroyed altogether, and the strip slides freely on the cylinder. This was the basis of the former invention. The release from friction by a change in electric condition in the first instrument failed simply from ignorance of some slight matters of detail, that in the electro-motograph are corrected and made practical. In the musical telephone the releasing of the frictional resistance by electric action caused the sounding-board of a guitar to vibrate, and thus set up sonorous vibrations. In the electro-motograph the mica disc takes the place of the guitar, and, by the improved construction of the apparatus, intricate and complex vibrations, such as are produced in speaking, are reproduced in their original or even in greater volume. When the apparatus is at rest the diaphragm is motionless, and electric currents shot through the apparatus produce no effect. In the same manner the mere turning of the cylinder without electric action produces no effect, except to pull the diaphragm slightly out of shape. If while the cylinder is being turned an electric impulse arrives, the pull on the diaphragm, caused by the friction of the strip on the cylinder, is more or less released, and the diaphragm is free to vibrate or spring back into its original condition. If now, the electric impulses follow one another in regular order in correspondence with the sonorous vibrations imparted to the transmitting telephone, the alternate slipping and catching of the metal strip on the cylinder will follow in the same order, and thus the diaphragm will be made to vibrate in unison with the original vibrations, and thus reproduce the original words. As the mica disc is much larger than the disc of the transmitting instrument, the amplitude of its swing may be much greater, and consequently it will repeat the words with greater power. The electro-motograph is practically an apparatus for transforming electric action received from a distance into mechanical work. The amount of electric action has nothing to do with the amount of the mechanical work performed, because the movement of the cylinder is controlled by power independently of the electric action, the electricity merely releasing this power by destroying the friction in greater or less degree. The electric action set up by the sonorous vibrations at the transmitting end of the line may be very slight, while the mechanical action at the distant end may be powerful, and in this manner the amplitude of the vibrations may be increased to an indefinite extent, and a whisper may reappear as a loud shout.

“The electro-motograph is not only a solution of the telephone, making it capable of sounds of every quality and pitch and in greatly increased volume, but by this conversion of electrical action into mechanical work at a distance makes it possible to unite the telephone and phonograph. Telephonic messages by the electro-motograph may be impressed upon a self-acting (clock-work) phonograph, the same current starting and stopping the phonograph after the manner of the stock-reporting machines, and afterward the phonograph may be made to repeat the message impressed upon it.”

[The above extract, which explains the principle fully, has been taken from a long article on the subject which formerly appeared in Scribner’s Magazine.]

The uses to which the electro-motograph may be applied are various. It can produce mechanical motion even at a distance, and is useful to lessen friction by machinery; and in this way its service to railways and other locomotive systems may be estimated. It is a great help to telegraphy by increasing the speed of transmission, and can ascertain the beatings of the heart of the apparently dead. It amplifies sound in a much greater degree than the microphone, by which even a fly can be heard moving. In fact, the limit of the usefulness of this wonderful machine has not been reached.

Another very ingenious apparatus has been developed by Professor Bell. This is for the purpose of ascertaining the position of bullets in the body. The following is condensed from the Times:—

“Two conductors are used, and the ball completes the circuit. Professor Bell inserts a fine needle in the suspected region. It is connected by wire with one of the binding screws of a telephone, which the surgeon holds to his ear; the other binding screw being connected with a metallic mass applied to the skin. When the needle point touches the ball, an electric couple is formed, and the current generates the sound in the telephone. The surgeon may then use his knife with confidence, guided by the needle. He may make several insertions of the needle if necessary without danger, and any pain may be obviated by etherization. This simple method (which should prove useful on the field of battle) was tried with success with a lead ball introduced into a piece of beef. Contact of the needle with bone had no effect, but a very distinct sound was heard each time the ball was reached. A modification consists in inserting a vibrator in the circuit; this gives a musical note in the telephone at each contact of ball and needle. Again, if the circuit include a battery, the telephone sounds may be heard by several persons at once. A sound is heard, in this case, whenever the needle enters the skin; but, on reaching the ball, it is much intensified, owing to lessened resistance. A galvanometer may be used in place of the telephone.”

Mr. C. Vernon Boys has exhibited and described a very ingenious new integrating machine of his invention, and its application as a measurer of the electric energy in the circuit of an electric lamp or a dynamo-electric motor. Mr. Boys’ mechanical integrator belongs to the class termed tangent machines, and consists essentially of a small disc or wheel running along the surface of a drum or cylinder. When the wheel runs straight along the drum parallel to its axis there is no rotation of the latter, but when the wheel is inclined to the axis the drum rotates, and the integral is represented by the amount of rotation. Continuous action is secured in giving the drum a reciprocating motion along its axis, so that when the wheel has travelled to one end of the cylinder it can travel back again. The new integrator is especially adapted for measuring forces which are either delicate or variable. It is applied by causing the varying force to be measured to vary in a corresponding manner the inclination of the wheel to the axis of the rotating cylinder. In this way it can be used to find the work done by a fluid pressure reciprocating engine, or the energy transmitted by a shaft or belt from one part of a factory to another. By making the wheel very small and light, the strength of an electric current may be continuously measured, if the disc is inclined by means of the needle of a galvanometer in circuit. Mr. Boys has constructed on the same principle an electric energy meter, which integrates the product of the strength of current and the difference of potential between two points with respect to time. In it the current is passed through a pair of concentric solenoids or coils of wire, and in the annular space between these is hung a third solenoid, the upper half of which is wound in the opposite direction to its lower half. By the use of what Mr. Boys calls “induction traps” of soft iron, the magnetic force is confined to a small portion of the suspended solenoid, and by this means the attracting force of the fixed solenoids upon it is independent of position. The middle solenoid is hung from the end of a balance beam, and its motion is retarded by a counterweight, which admits of regulating the meter to give standard measure as a clock gives standard time. The motion of the beam is caused to incline the integrating wheel, and the rotation of the cylinder gives the energy expended in foot-pounds by means of an indicator or diagram, as the case may be. The object in giving an equal number of turns in opposite directions to the suspended solenoid is to render the instrument insensible to external magnetic forces.

We have, in a former portion of this work, explained the construction of the telephone and phonograph with other inventions to make sounds audible at a distance, so we need not repeat the explanations here. A brief reference to them will, however, be found in this chapter, in which the electro-magnet and the methods of lighting by magneto-electric machines are treated of. We will proceed to give some particulars concerning the electric light before considering the means by which it is produced, as such an arrangement is more convenient.

The light is very easily produced by uniting and then separating the terminals of a strong battery. The passage of the electric current induces intense heat and a most brilliant light. But if this were continued the wires would melt, and therefore some non-fusible substance is placed at the ends of the wires, which will be at once a conductor and infusible. Now in gas-carbon (the deposited substance found in gas retorts) we have a substance suited to these conditions. The carbon is heated to an intense brightness, and particles of it are passed across the arc of flame almost in a state of fusion. Combustion does not actually take place, because it has been proved that the wires will give out light under water, and in the vacuum of an air-pump the light is even increased, so that had the oxygen of the air any part in the production of the light it would not remain unaffected under these conditions. The heat arising from this Voltaic arc is intense, and even platinum may be fused with the assistance of the gas carbon. The carbon points are of course liable to be worn away, and one side more than another. The positive pole is generally more concave than the other, for it sheds its particles in a greater degree, and is the more intensely heated. The electric light first appeared in public at the opera in Paris in 1836, to illustrate a sunrise, but it was not till 1843 that it was experimented upon in the open air. We need not trace it farther at present, for a full account of its origin, rise, and progress is published in a small shilling volume by Messrs. Ward, Lock, & Co. We will proceed to the methods of bringing out the light.

Fig. 267.—The Maxim light.

Fig. 268.—Mechanism of Maxim’s lamp.

There are various lamps, many of which required a regulator in consequence of the wearing away of the carbon points, as already explained. We append two illustrations of the Maxim lamp, the invention of Hiram Maxim, of New York. In both cuts the letters refer to the same portions.

In the first illustration (fig. 267), A and B are the positive and negative carbon-holders respectively, and the carbon points are controlled by an armature, which is, in its turn, adjusted by the screw, D. When it happens that the magnetic force is reduced the spring acts and permits the points to approach again, and the light is rekindled; the carbons are then locked till required to move. The second illustration (fig. 268) shows a section of the lamp with the wheel arrangements for controlling the advance of the carbon points as they waste away.

Fig. 269.—Wallace lamp.

Fig. 270.—Houston lamp.

In the “Brush” light, which is in use in London, and is fitted for large spaces, the carbon points are held by a regulator side by side, and they last eight hours without renewal. The power is generated by an electro-dynamic engine. We give illustrations of the lamps of Wallace and Houston (figs. 269, 270). The current is conveyed through b and the magnet, m. The armature, a, separates the electrodes, and the weakened current is restored by b, and the light continues. The pillar, p, is hollow, with a wire running through it. The positive electrode is supported by J, the negative by C; V is a button which comes in contact with the lever, T, when the carbon points are exhausted, and cuts the lamp out of the circuit by passing it direct through mercury cups.

The Jablochkoff candle and chandelier are also represented (figs. 271, 272). The candles consist of carbons connected at the top, but otherwise insulated, and fixed in a socket. They do not last very long without renewal. The exhibition at the Crystal Palace will be essentially an Electric Light Exhibition, and all the latest forms can be studied there. The great attraction will doubtless be, as at Paris, the varied and numerous inventions of Mr. Edison. The early career of that American “magician” is now tolerably well known; his tremendous energy and application are fully appreciated. With only a few months schooling all his life he has taken a foremost place in the scientific world. In ten years he has invented the phonograph, the electric pen, a system of fast telegraphy, the electro-motograph, the telephone, a tasimeter, and other useful applications of electricity, besides solving the problem of electric light for domestic purposes.

Mr. Edison’s electric light[18] requires something more than a passing notice, and we will therefore endeavour to give a sketch of the general subject. Now that the electric light has been made available for domestic purposes, and the very simple lamp (consisting of an exhausted glass globe, two platinum wires, and a piece of charred paper) can be obtained, people will no doubt soon largely adopt electric lighting in their houses. The light has found a success at the theatre, in the streets, and in the train; there is no reason why it should not be adopted generally, being more economical and more healthy than gas.

Fig. 271. Electric candle.

Fig. 272.—Chandelier.

If we sever an electric wire, and bring the ends, tipped with carbon, into juxtaposition, we obtain a brilliant light. This is the Voltaic arc we have already mentioned, produced by the incandescence of finely-divided matter; it was the first method of illuminating by electricity, and was discovered by Sir Humphrey Davy, who obtained a very brilliant light, but at great expense—about a guinea a minute! But the Daniell and Grove batteries and generators, and modern improvements in 1860, brought the use of the electric light into prominence. Faraday lighted a lighthouse with its assistance.

But when the Gramme Generator was invented the needed impetus was applied. The Jablochkoff candles followed, and now we have the electric light in full operation. So far we have sketched the history of illumination by the Voltaic arc, and descriptions of the various apparatus will be found at the end of this chapter. But the method of lighting with an incandescent solid was introduced in 1845 by Starr and Peabody, who took out a patent for the use of platinum. Later on Drs. Draper and Despretz made experiments with platinum and carbon. The latter gentleman sealed the carbon in an exhausted globe, and then introduced nitrogen in place of the air. But the method died out and was forgotten, and in 1873 a medal was actually given by the Academy of St. Petersburg for the “discovery” to Messrs. Sawyer and Mann.

In 1878 Paris was lighted with the electric candles of Jablochkoff. This application of electricity stirred up our transatlantic cousins, and Mr. Edison was requested—backed up by many influential persons—to make the investigation whether the light could be produced for domestic purposes. The celebrated electrician undertook the commission, and certainly came unprejudiced to the encounter, for he had not at that time even seen an electric light.

He perceived at once that “permanence in the lamp and the subdivision of the light” were the two desiderata. He put the Voltaic arc aside as unsuitable, and addressed himself to the problem of obtaining the desired results from an incandescent solid. The subdivision of the light is really an important point, and a comparison between divided and undivided burners is in favour of the more diffused light in a number of burners. This subdivision Edison worked hard to secure, and, as it is said of him, “With a steadfast faith in the fulness of nature, a profound conviction that if a new substance were demanded for the carrying out of some beneficial project, that substance need only be sought for, he set to work.”

Mr. Edison found difficulties in his way. One was the apparent impossibility of illuminating by means of an incandescent solid, for even platinum will melt at a heat too low for use. But this apparent impossibility was overcome by the inventor’s genius. He, after many trials, found that if he raised the platinum to a white heat in a vacuum he would practically obtain a new metal which would sustain the required heat.

Fig. 273.—Edison’s platinum lamp.

“In making an electric lamp without a regulator,” says Mr. Upton, “two things are essential,—great resistance in the wire, and a small radiating surface. Mr. Edison sought to combine these two essential conditions by using a considerable quantity of insulated platinum wire wound like thread on a spool.” This platinum, as shown in the accompanying cut (fig. 273), was suspended in a glass bulb in vacuo, the air contained in it being expelled by electricity, heating it, and suddenly cooling the platinum, and squeezing out the air by the process. But, after all, the great difficulty of the inventor was to insulate his wires so perfectly that they would not meet and become a conductor. For, to perfect his lamp, this non-conducting principle was a necessity, otherwise the current would flow across instead of going all along the wires. He had previously made many uses of carbon, which we know is infusible. He tried lampblack tar, but it contained air, and would not do.

Thread answered his purpose, but was too fragile and uneven in texture. It suddenly occurred to him that paper—charred paper—cut into a thread-like form would satisfy all his conditions.

The problem was solved—the lamp was a fact. But how can paper, so easily burned, answer? We will endeavour to explain. “A piece of charred paper, cut into horse-shoe shape, so delicate that it looked like a fine wire firmly clamped to the two ends of the conducting and discharging wires, so as to form part of the electric circuit, proved to be the long-sought combination.”

We will now explain the construction of this little lamp, which is shown in the illustration (fig. 274) one-half of its actual size. The illuminating is equal to ten or twelve ordinary gas jets.

Fig. 274.—Edison’s electric lamp.

The manner in which the paper is prepared is, like many other very important inventions, extremely simple, and, we may add, almost costless. Cardboard will furnish us with the loops, and these “horseshoes” are placed in layers in an iron box with tissue paper between each. The box is then hermetically sealed, and made red hot. The carbonized paper remains till all the air has been got rid of, and although it will burn freely to ashes in atmospheric air, in the vacuum prepared for it it is never consumed. That is the plain fact—the secret of the Edison lamp.

A vacuum can now be produced almost perfect. It is of course impossible to extract every tiny particle of air from the globes, but by the Sprengel pump, in which mercury is employed, excellent vacuums are obtained. Several very curious phenomena have been observed in these vacuums, and the Royal Society has been engaged upon their consideration. Another advantage of the vacuum, as applied by Edison, is that little or no heat is generated. The electricity is all, or very nearly all, converted into light. Thus the glass globes remain almost unheated, and are unbroken.

The electric current passes along the wire, W, and at a certain place marked B, the copper is soldered to a platinum wire, which enters at C, and so by platinum clamps into the horse-shoe, L. The return wire is similarly arranged; the carbon is enclosed in a glass bulb, GG, and all the air is extracted by the pumps; the end is then sealed up by melting it at F.

The world is now in possession of a lamp for household use, and we are surprised that it is not more extensively adopted in England. There are some Swan lamps used in parts of the British Museum, and when we have explained the application of the light, and the uses to which the motive power can be applied, we shall, we believe, convince the most conservative gas bill advocate that Edison’s lamp is cheaper, safer, and far better in illuminating power than gas, if the success of the electric lamp can be assured.

We need not dwell upon the construction of the “pumping station,” for that is virtually what the magneto-electric generator is. Several of these stations can be established in various parts of the city, and each station will supply a district with electricity. The wires are laid in a tight box along the street, beneath the footpath, or other convenient position, and we are informed that the frost rather improves their electrical condition. Here is one advantage over gas.

From the main wires smaller ones enter the houses, and are carried through a “meter” containing a safety valve. There are two wires—a distributing wire and a waste—coloured, one red and the other green, which communicate respectively with the main supply and return wires to the “pumping station” or generator. The electricity is admitted between carbon points and flows round a magnet, the armature of which is held above it by a spring. If too much force be put on and any danger incurred, the magnet will attract the armature, and the current will cease. A snap connected by a small wire will then be closed by the electricity, and melting from the heat will cut off all the current. In ordinary circumstances the electricity passes through regulators (wire wound on spools) and on to a copper plate, “through a solution of copper salt.” Thus for every unit of current a certain quantity of copper is deposited. A certain standard amount represents five cubic feet, and the bills, based on the accumulation of copper, are made out like gas bills.

When the lamp is required a small handle is turned, and is instantly lighted; the reverse motion cuts off the current. “By touching a knob in the bedroom the whole house can be simultaneously lighted up” if desirable. No matches are necessary, as the lamps light themselves.

By adding a small electro-motor to the furniture of the house, and turning a handle, the sewing-machine can be worked by electricity, or lathes turned; and any business operations, such as lifting by cranes, etc., can be easily carried on.

The Swan electric lamps, which, with Mr. Edison’s, were exhibited in Paris, and will be found at Sydenham, give about twelve candle-power light. Edison’s lamps are made in two sizes, and vary accordingly. The Swan lamps give a very soft light, and are as easily manipulated as Edison’s. The Siemens system of lighting was also well seen in Paris, and the Faure storage system enables our trains to be lighted instantaneously by simply turning a handle. A full description of the Faure battery was given in the Times by Sir William Thomson, and in his address to the British Association at York in September last. He pointed out that in the accumulators of M. Faure,—which can be seen at 446, West Strand, London,—by means of a large battery it is quite easy to draw off electricity and to apply it as Edison proposed to do, in lighting our houses and do any little service. The electricity thus stored would be always ready for use, and would be supplied and paid for. It can be applied to any purpose, and locomotion by its means will ere long become more general. In Paris Dr. Siemens exhibited his electric tramway. This was an improvement upon the first Berlin tramway, for in it the horses frequently received shocks which they resented. In the later application the current comes from the generator by metal rods carried above the heads of the passengers alongside the line. Little rollers upon these are united with an electric machine in the tram-car. The current is sent along the wires, and reconverted into mechanical energy in the second machine, turns the wheels of the cars. In this way, as the car proceeds, the rollers overhead or alongside the track are kept moving by the car, and the connection is never broken.

But this is a digression. The electric light as applied to lighthouses was also exhibited, and any reader desirous to obtain full information upon the subject of lights and lighthouses will find it in a very pleasantly-written work by Mr. Thomas Stevenson, in which the various systems of lighting by electricity and otherwise are fully recounted, the conclusion being in favour of electricity, which is employed and has been used for years in France and in some English beacons. If its penetrative power can be finally established,—for some authorities maintain that the electric is more easily absorbed by fog than other light,—there is no doubt about its being universally adopted.

It is very interesting to watch the uses to which the electric light is being put. The latest experiment has been made by an Austrian, Doctor Mikerliez. Almost incredible as it may seem, the interior of the human stomach can now be illuminated by means of a wonderful little instrument called the Gastroscope, which is said to be actually in use and to have been favourably reported upon by the medical faculty of Vienna. There is at the end of a jointed flexible tube (which can be passed down the gullet) a miniature lamp, far more marvellous and mysterious than that of Aladdin, in which a strip of platinum is fixed and connected with fine wires conducting the electricity from a small battery. When contact is made, and the “light turned on,” the cavernous interior of the stomach is lit up. Still more extraordinary is the fact that the tube can be made to revolve, and the light reflected from the walls of the stomach and directed to the eye of the observer. There is necessarily a bend in the instrument, so that the light has literally to turn a corner before it reaches the surgeon’s eye; here the inventor’s skill and thorough knowledge of the laws of optics are brought into requisition. The reflected rays of light fall upon a sort of window situated a little above the lantern, and by means of prisms and a series of lenses, the light is twisted and turned about until it arrives at the eye-piece. No sensation of heat is to be feared, the little lamp being kept constantly cool by a reservoir of water.

Several contrivances have been invented within the last few years for examining the interior of the body, but they are very costly; the Gastroscope is likely to render great service to medical science.

The term “magneto-electric machine” is given to a collection of parts of mechanism intended to create or gather together induced electric currents. The invention of the magneto-electric machine was by no means a sudden inspiration, but the gradual result of a series of experiments and discoveries, the first of which, dating from 1820, may be said to be Œrsted’s observation, that a magnetised needle is deflected by the approach of an electric current as well as by that of a magnet, clearly proving that magnetism and electricity have some relation to one another. In the same year Arago discovered that a coil of insulated wire wound round a core of soft iron, converts it into a powerful magnet (i.e., an electro-magnet) when a current passes through the coil. It was in 1830, however, that our countryman Faraday proved the creation of a current by the action of a magnet on a coil of wire, and his experiment proved shortly as follows:—If a coil of wire be wound on a hollow core, and a permanent bar magnet be introduced into the hollow core, whilst introducing it a current may be proved (by a galvanometer), to be induced in the coil flowing in a certain direction, A B, which ceases as soon as the magnet is at rest in the centre of coil. On the withdrawal of the magnet a second current is induced flowing in the opposite direction, B A. Therefore it is clear that if a magnet be incessantly approached to and withdrawn from a coil of wire a constant succession of currents will be produced, and if a charged coil (i.e., a coil connected with the poles of a voltaic battery) take the place of the magnet a precisely similar result will be obtained. Now it will have been noticed that two opposite currents are constantly being formed, and as the object is to obtain a continuous flow of electricity in one given direction, or, in fact, divert or reverse the current instantly on its formation to make it practically the same current, for this purpose a commutator is used, and as for most purposes a commutator is one of the essentials of a magneto-electric machine, we will here give a description thereof. (See fig. 275.) The machine is composed of a cylinder, consisting of two metallic conducting halves, separated by a non-conducting layer. Whilst it is at rest the alternating currents, from being connected with the halves by the current, will pass to the two contact springs, and thence through the circuit. Now if (as is the case) the current is constantly changing, as has been noticed, the inverse current will at the first change pass through the same channels, but in another direction; but if at the instant of the reversal of the current the cylinder be revolved, the current flowing the reverse way will be guided through other channels respectively, instead of the original channels, and the direction of the current being changed at the same moment as the current itself, the two inversions neutralize themselves, and one constant current is produced. In a magneto-electric machine the commutator revolves identically with the magnet or armature, and the point at which sparks are being constantly produced is where the contact is being continually broken and made by the passage of the friction springs from over the non-conducting layer. The first machine formed on the basis of Faraday’s experiments was Pixii’s. It was composed of two uprights and a cross bar, to which is attached, hanging poles downwards, an electro-magnet; underneath this, the poles upwards, revolves a magnet. The commutator is fixed on the same axle and revolves with the permanent magnet. Saxton, and subsequently Clarke, made the obvious improvement of making the magnet less cumbrous and fixed, and causing the bobbins of the electro-magnet to revolve before or rather beside its poles; the commutator was fixed at the end of the axle on which the revolving bobbins (or armature) are fixed. Niaudat formed a compound Clarke machine, by setting two horse-shoe magnets a short distance apart. The armature revolves between them, and consists of twelve coils set between two plates; the coils are set alternately and connected,—i.e., the poles of the electro-magnets are set beside one another,—N. to S., S. to N., and so on, so that the N. pole receding produces a current; but the N. pole receding makes the S. pole approach, and produces another current, A B; in fact, a continuation of the same, for the approach of a N. pole naturally produces the same current as the recession of a S. pole; then as the S. pole in turn recedes it produces an inverse current, B A, which is in turn kept up by the approach of the next N. pole, and so on. Each coil is attached to a radiating metal bar, which conveys the current to be redirected to the commutator, which is affixed to the axle of the revolving armature as in Clarke’s machine. In 1854 Siemens completed his machine, the chief peculiarity of which was its cylindrical bobbin; the core is grooved deeply, parallel with its axis, and the wire is wound on cylindrically and covered with plates of brass; one end of the coil is fixed to the metal axis, the other to an insulated ferule at the end of the axis, where is also situate the commutator. This armature revolves between the poles by which it is closely embraced. One of the most celebrated of the magneto-electrical machines is that known as the “Alliance,” invented by Nollet, and perfected by Van Malderen. It is composed of four or six bronze discs, revolving on an axle, round the external circumference of each of which are set sixteen bobbins. This rotating compound armature revolves between four to six sets of horse-shoe magnets, which, being fixed radially to the centre, present in each set sixteen poles to the sixteen bobbins. It will be readily understood that this immense quantity of poles and bobbins produces a highly concentrated current, the ends of which proceed from the axle and an insulated ferule at its extremity.

Fig. 275.—The Wallace Machine.

In 1869 Mr. Holmes perfected his machine, which differs from all previous ones (except Pixii’s), in that the electro-magnets revolve in front of the coils instead of vice versâ; and besides magnetising his electro-magnets with part of the self-produced electricity, his bobbins are so disposed as to be able to keep several independent lights going at once. The Wylde machine consists, as it were, of two Siemens machines, one on the top of the other, the lower and larger of which is worked by an electro-magnet, which is magnetised by the action of the upper or smaller one, consisting in the ordinary way of a permanent magnet apparatus, which is termed “the exciting machine.” The longitudinal bobbin revolved between these permanent poles produces alternating currents, which are commutated (or redirected), and pass to work the larger and lower electro-magnet, which is composed of two large sheets of iron connected by a plate (on which stands the exciter). Its poles are two masses of iron separated by a layer of copper, and in this armature revolves the larger longitudinal bobbin. This lower machine is called the generator. Both bobbins are simultaneously revolved, and an intense current of electricity is thereby generated. Almost simultaneously with this one Mr. Ladd invented his machine, which is distinguished from all hitherto described by being composed of two parallel bar electro-magnets, between the extremities of which are placed two Siemens armatures, one smaller than the other; both being revolved, the smaller excites the electro-magnets, and the larger generates the electricity required. The wire is wound round the magnets so that the N. and S. poles face each other at each end. The chief advantage of the Ladd machine is the conversion of dynamic force into electricity, there always being just sufficient magnetism in an iron bar (by induction from terrestrial magnetism and other causes) to produce a very feeble current in the Siemens bobbin, and the bobbin taking it up and returning it to the electro-magnet, and the electro-magnet at once giving it back to the bobbin, the current gradually increases till the maximum is reached. And when we take into consideration this modicum of utilisable terrestrial magnetism, we may truly say in the words of M. Hippolyte Fontaine, “The mind is lost in contemplation of the succession of discoveries completing one another, and showing that with apparatus of small dimensions an infinite source of electricity could be produced if matter could withstand infinite velocities.” The Lontin machine, which supplied the current for the electric light which used to make night bright outside the Gaiety, is also composed of two parts, one dividing, the other generating the electricity produced. The principle of the dividing machine is somewhat similar to the alliance, excepting that a number of electro-magnets arranged radially round a core, revolve close to a corresponding number of bobbins fixed inside an iron cylinder, outside which is the collecting and dividing apparatus. The Maxim machine is constructed on the principle of sets of coils rotating between powerful electro-magnets. The Wallace machine was invented by the inventor of the Wallace-Farmer lamp. It consists of two horse-shoe electro-magnets placed side by side, the opposing poles facing each other. Each magnet has a rotating armature of twenty-five bobbins, on which the wire is wound quadruply, and the current generated by these coils is conducted away, passing through and exciting the electro-magnets, thus utilizing the residual and terrestrial magnetism before mentioned in connection with the Ladd machine; otherwise it partakes of the nature of the Niaudet machine.

Fig. 276.—The Gramme Machine.

We now come to what is perhaps the most perfect magneto-electric machine, which was first constructed by M. Gramme, a Parisian, in 1872, and differs in principle and construction from all those hitherto noticed. Its essential characteristic is a soft iron ring, round which is coiled one single continuous wire (i.e., the two ends are joined). Round the exterior surface of the wire coil a band is bared, and on this bared part two friction springs act. If the ring and coil be placed before the poles of a magnet, the ring will have two poles, S. and N., induced opposite the opposing poles N. and S. of the magnet; and if the ring revolve the poles will remain stationary, and as the coil revolves each coil of the wire will pass this induced pole, and as naturally half the coil will be inducted with one current, the other half (acted on by the other pole) will be charged with another or opposite current, which two kinds of electricity are carried away by the friction springs before mentioned. In the machine, as actually constructed, the soft iron ring is composed like the magnet or wire bundle of an induction coil, and the coils are set upon it side by side. Inside the ring are radially set insulated pieces, to each of which is attached the issuing end of one and the entering end of another bobbin; these answer the same purpose as the denudation of the external layer of wire. These pieces are bent so as to come out of the centre of the ring at right angles, and lay side by side (insulated) round a small cylinder. These, as they revolve, are touched by friction springs, which draw off the electricity induced in the coils in one continuous current. No sparks are produced at the contact of the friction springs, and there is no tendency to become heated. To obviate the inconvenience of the secondary or inverted current produced by the stopping of the machine, the inventor has contrived a circuit breaker on the principle of the electro-magnet, the magnets holding the circuit breaker in contact so long as the machine is working; but the decrease of velocity lessening the attractive power of the magnet, the circuit breaker opens by its own weight (or a counter-weight), and all danger of a reverse current is obviated. Experimental machines are manufactured by Bréquet & Cie (Paris), composed of Jamin’s magnets, and turned with a handle, and produce a force of eight Bunsen cells.

A great revolution, or rather the beginning of a new era in the history of electricity, may be said to have commenced with the perfection of M. Faure’s accumulators. These are troughs containing eleven lead plates, each coated with oxide of lead and wrapped in felt, the fluid being dilute sulphuric acid. The application of them to the electric light is one of their most valuable features; at the depôt in the Strand, where they may be seen at work, there are thirty such elements, each weighing about 50 lbs. It takes a two-horse-power engine working an Edison or Gramme machine six to eight hours to charge them, and when charged they will keep almost any number of lamps of sixteen-candle-power going some eight hours. They are used on the Brighton and South Coast Railway, and seem peculiarly adapted to lighting by incandescence, by Swan, or Edison’s lamp. The elements fully charged may be carried any distance without losing their electric power. And the stored force may be used for charging the accumulators themselves afresh from the machine. These accumulators may be seen any day at 446, Strand, and are well worth a visit.

The Gyroscope, though now an instrument common and familiar to all students, is none the less the subject of a problem, the solution of which is still to seek. It has indeed been entitled the paradox of mechanics; for though it depends on gravitation, gravitation yet appears indifferent to it. In order to render the operation of the Gyroscope as continuous as possible, so as to facilitate the profound study of its working, and also to unite another influence with those of the ordinary Gyroscope, producing phenomena of which this instrument affords us the spectacle, a learned American has employed electricity as a motive power.

Fig. 277.—The Gyroscope.

The Gyroscope, shown in fig. 277, has a large, heavy pedestal, with a pointed column, which supports the instrument itself. The frame, of which the electro-magnets form a part, is connected with a rod, having at one end a hollow cavity which rests on the point of the vertical column. One of the extremities of the magnetic spool is attached to this cavity, the other end communicating with the bar which unites the two magnets. Over this bar is a spring which breaks the current, supported by an insulator in hard india-rubber; it is adjusted so that it touches a small cylinder on the axis of the wheel twice during every rotation of the latter. The wheel’s plane of rotation is at right angles with the magnets, and it carries an armature of soft iron, which rotates close to the magnet without touching it. The armature is so placed in relation to the surface of contact with the cylinder that breaks the current, that twice during each rotation, as the armature approaches the magnets, it is attracted; but immediately afterwards, as the armature comes directly in front of the magnets, the current is broken, and the acquired impulsion is sufficient to move the wheel until the armature comes again under the influence of the magnet. The spring which interrupts the current is connected with a thin copper wire, which stretches back as far as the point of the column, entwining it several times to render it flexible, finally bending down and plunging into some mercury enclosed in a round vulcanite cup placed on the column near the pedestal. The pedestal also bears two small stakes for receiving the wires of the battery, one connected with the column, and the other communicating by a small wire with the mercury contained in the vulcanite vessel. The magnets, the wheel, and all the connected parts can move in any direction round the point of the column. When two large Bunsen cells, or four small ones, are connected with the Gyroscope, the wheel turns with great rapidity, and allowing the magnets to operate, it not only sustains itself, but also the magnets and the other objects which are between it and the point of the column in opposition to the laws of gravitation. The wheel, besides turning rapidly round its axis, also effects a slow rotation round the column in the direction of the movement experienced by the lower part of the wheel. By placing the arm and the counterpoise of the machine as shown in fig. 277, so that the wheel and the magnets balance exactly on the pointed column, the whole machine rests stationary; but if we give the preponderance to the wheel and the magnets, the apparatus begins to rotate in a direction contrary to or following that of the upper part of the wheel.

The Gyroscope exemplifies very clearly the persistence with which a body undergoing a movement of rotation maintains itself in the plane of its rotation in spite of gravitation. It shows also the result of the combined action of two forces tending to produce rotations round two axes which are separate, but situated in the same plane. The rotation of the wheel round its axis, produced, in the present instance, by the electro-magnet, and the tendency of the wheel to fall or turn in a vertical plane, parallel to its axis, produce, as a result, the rotation of the entire instrument round a new axis which coincides with the column.

Peiffer’s Electrophorus.

It will now perhaps interest our readers to describe a charming little plaything which is a great favourite with children, and which has the incontestable merit of early initiating them into all the principal phenomena of the statics of electricity, and teaching them the science of physics in an amusing form.

It is a small electrophorus invented by M. J. Peiffer, and reduced to such a point of simplicity, that it consists merely of a thin plate of ebonite, about the size of a large sheet of letter paper. The tinned wooden disc of the electrophorus which is found described in most treatises on physics, is replaced by a small sheet of tin, about the size of a playing-card, fastened on to the surface of the ebonite. The ebonite electrophorus produces electricity with remarkable facility. It must be placed flat on a wooden table, and thoroughly rubbed with the hand; if it is then lifted, and the sheet of tin lightly touched, a spark is elicited from ¼ inch to ½ inch in length. The electrophorus is completed by the addition of a number of small accessories in the shape of small dolls made of elder-wood, which exhibit in a very amusing manner the phenomena of attraction and repulsion. After the board has been charged with electricity, place the three little figures on the sheet of tin, and lift up the apparatus, so as to isolate it from any support. You will then see one little doll extending its arms, another with its silky hair standing on end, and a third, lighter than the others, leaping like a clown, and displacing as he does so the two small balls of elder-wood which have been placed on each side of him. We have given an illustration of the three figures performing at once (fig. 278), but they are generally used separately. M. Peiffer has indeed collected every known accessory for an electric machine, such as Geissler’s tube, the electric carillon, etc. These different experiments are all reduced to their simplest form, and, with their appliances, are all contained in a cardboard box. They are placed beside the electrophorus, which thus takes the place of an unwieldy electric machine. M. J. Peiffer accompanies this little portable cabinet with an exhaustive pamphlet, which is a valuable guide to the young physicist in studying the first principles of electricity.

Fig. 278.—M. J. Peiffer’s electrophorus with dolls.

“It is easy to discover in the education of children,” says M. Peiffer in his preface, “how to turn their budding faculties to the best account. Would you utilize them in a satisfactory manner?—Then put in their hands playthings which, in an attractive form, serve to familiarize them at an early age with those sciences, a knowledge of which will be at a later period absolutely indispensable to them; and they will be much more amused than with ordinary commonplace toys.”

These are sensible words, in which we heartily concur. Yes! Science properly taught, and properly understood, can indeed be brought within the range of children; it should give a lasting interest to all amusements, and form a part of the culture of the youthful mind, as at a later period it will contribute to the perfect development of the grown man.

Magic Fish.

An ingenious physicist, M. de. Combettes, who is a civil engineer at Paris, has devoted himself to constructing a number of playthings and scientific appliances for young people, among which we will describe the very curious one represented in fig. 279. A jar is filled with water, holding in suspension some fish made of tin, similar to those which children put in water and attract with a magnet. In this case, however, the mechanism is hidden, and the operator can turn the fish first in one direction and then in the other at pleasure. The secret of this experiment is easily explained by examining the illustration (fig. 279). In the wooden stand which supports the jar there is concealed a small electro-magnet which acts on the soft iron contained in the floating fish. When the current passes the small magnet turns round and attracts the little fish swimming in the water. This gyratory movement can be changed at pleasure by means of a regulator.

Fig. 279.—Experiment of magic fish set in motion by electricity.

Fig. 280.—An electric toy.

We will give an illustration of a few electric toys which M. Trouvé has found for us. In the picture (fig. 281) we see three different objects,—a rabbit beating a small bell, a representation of a bird with outstretched wings, and a pin surmounted by a skull. All these are capable of having movement imparted to them by means of electricity, although made and intended for ordinary use in the form of scarf-pin or other ornament.

Let us take the “death’s head” pin first. It is in gold, and enamelled with diamond eyes and articulated jaws. The rabbit is also gold, and carries two small drumsticks, with which he can play a tiny bell. This device also can be worn as a scarf-pin.

Fig. 281.—Magic toys.

A conducting wire leads from the pin into the waistcoat pocket, where a small “pile,” about the size of a cigarette, is hidden away. If any one particularly admires the scarf-pin, all you have to do is to insinuate your fingers into your pocket, and you will, by contact, cause the electric current to act upon the pin in your scarf. The death’s head will at once begin to roll its eyes and grind its teeth, while the rabbit, under similar circumstances, will begin to play its bell with the greatest energy.

The handsome diamond bird represented in the centre of the illustration belongs to Madame de Metternich. When any lady wears it in her hair, she can, by the concealed wire, make it flap its jewelled wings, and by so doing cause much surprise amongst the spectators.

We will now endeavour to give a description of the manner in which these toys play their parts in company with the “hermetic-pile” which M. Trouvé has applied to many specialities that he has supplied to doctors, who use them largely.

This pile is formed by a “couple” of carbon and zinc hermetically enclosed in an ebonite box. The carbon and zinc only occupy one-half of the case. The liquid occupies the other. The sketch (fig. 280) on preceding page will explain the apparatus.

So long as the case is in its normal position the elements are not immersed in the solution, and consequently no electricity is developed. But as soon as the figure is placed in a horizontal or leaning position the force is generated; on readjusting the box the electric current is cut off, and all development ceases. Many curious electrical toys can be seen in Paris. Dolls are made to talk, and many other wonders for children can be easily procured.

Animal and Atmospheric Electricity.

Before concluding the subject of electricity we must devote a few pages to the consideration of the electric influence possessed by certain fishes, and to some of the phenomena of the atmosphere, especially thunderstorms. We have seen how Galvani experimented upon the limbs of frogs, and maintained that they possessed electricity; he attributed the current in the muscles to that cause. This theory Volta denied, but subsequently Nobili, in 1827, proved the existence of a current in the frog by means of a Galvanometer. This was conclusive, and the experiment was performed in the following manner:—He filled two vessels with salt and water, and into one he dipped the crucal muscles of a frog, and in the other the lumbar nerves were immersed. By putting these vessels in communication with his improved Galvanometer, which was extremely sensitive, he perceived a current passing from the feet towards the head of the animal.

It is, however, to Matteucci and Du Bois Reymond that the investigation of the phenomena of the courant propre are due. The former formed a “pile” of the thighs of frogs, and by placing the interior and exterior muscles in contact he formed a current from the inside to the outside muscles. This current is supposed to be occasioned by certain chemical changes which are continually taking place, and it continues longer in the case of a cold-blooded animal than in a warm-blooded one. There are many interesting papers on this subject included amongst the “Philosophical Transactions”; and the “Physical Phenomena of Living Beings” is fully treated in Matteucci’s lectures on that subject. In the “Transactions” for 1848 and subsequent years, other experiments may be perused, but space will not permit us to dilate upon them. The fact has been established, and we are told that muscles and nerves, as well as certain glands of the body, possess certain electrical properties.

The electricity of fishes, and the power possessed by the torpedo—whose name is now chiefly known in connection with warlike appliances—and the gymnotus, have been known for a very long time. This fish, popularly known as the electric eel, inhabits the warm fresh-water lakes of Africa, Asia, and America. A specimen was exhibited at the Polytechnic some years ago. This was the fish experimented on at the Adelaide Gallery by Professor Faraday, who clearly demonstrated the fact that the electricity of the animal and the common electricity are identical. Numerous experiments were made, and the circuit shock and even sparks were obtained from the gymnotus. In fact, the gymnotus is a natural electric machine. The force of the shock given by the electric eel is very great, for Faraday has put on record that a single discharge of the eel is equal to fifteen Leyden jars charged as highly as possible. Its power does not even end there, for having shocked people to that extent, it was capable of a second and occasionally of a third shock of less violence.

Fig. 282.—Electric eel.

The manner in which the gymnotus acts is from a regular battery in the head, the sides of which are filled with a fluid. These cells are something like a honeycomb in appearance. The shock is quite voluntary on the part of the fish. Sometimes it will kill its prey, on other occasions it is merely numbed. Professor Faraday on one occasion placed a live fish in the tub with the gymnotus, which curled itself so as to enclose the unsuspecting one. In a second the prey was struck dead, and floated on the water. The gymnotus immediately devoured it, and went in quest of more. Another, but an injured fish, was then introduced, but the electric eel took no trouble about this one. It did not trouble to give it a shock, seeing it was disabled, it merely swallowed without killing it. It is also on record that on one occasion an electric eel had stunned a fish which, before he began to eat it, gave signs of returning animation; the eel immediately gave it another shock and killed it.

Fig. 283.—Large gymnotus.

There were some other curious peculiarities connected with the electric eel. It appears to be quite capable of discriminating between animate and inanimate touch. For instance, when touched with a glass rod it at first gave signs of electricity, and discharged a shock at the attacking party. But on subsequent occasions, when touched with metal rods or glass, the fish declined to “shock”; nevertheless the Professor succeeded the moment he touched the animal with his hands.

The torpedo is something like the well-known skate; it is sometimes called the electric ray, and is common enough in the Bay of Biscay and in the Mediterranean Sea. It sometimes pays England a visit, or is caught by fishermen and brought in. We have seen one at Plymouth, and a very ugly-looking fish it was. Its electric power is considerable.

Fig. 284.—Ray torpedo.
c, brain; m e, spinal chord; o, eye; e, electric organs; b, gills; np, nl, nerves; n, spinal nerve.

There is yet another fish known as the malapterurus; one species is called the thunder-fish. Professor Wilson has written a paper upon the electric fishes as applied to the remedy of disease, and considers them the “earliest electric machines ever known.”

Humboldt relates that the South-American Indians capture the gymnotus by driving horses into ponds which the electric eels are known to inhabit. The result is that the fish deliver shock after shock upon the unfortunate quadrupeds. Mules and horses have frequently been killed by these powerful eels, and even Faraday experienced a very great shock when he touched the head and tail of the captive gymnotus with either hand.

The malapterurus to which we have referred is an inhabitant of the African rivers, chiefly in the Nile and Senegal. Such a fish has been known with others for some hundreds of years; its electrical powers are not great. There are one or two other species of fish which possess electrical qualities, but none apparently to the same extent as the torpedo and the gymnotus.

Fig. 285.—The Malapterurus.

The electricity of plants also is in some cases very marked. Flashes have been seen to come from some flowers in hot and dry weather. Currents of electricity have been detected, and Wartmann investigated the subject closely. He says the currents in flowers are feeble, but in succulent fruits and some kinds of grain they are very marked. These currents depend upon the season, and are greatest in the spring, when the plant is bathed in sap. These experiences were confirmed by Bequerel in 1850, and he concludes that the rank vegetation in some parts of the world must exercise considerable influence on the electric phenomena of the atmosphere. M. Buff has more recently made experiments in this direction, and he examined plants and trees, and even mushrooms. M. de la Rive, after carefully summing up the various theories, comes to the conclusion that it is to chemical reactions that the traces of electricity are due.

The subject of atmospherical electricity properly belongs to meteorology, and under that heading we will treat of it more fully. But lightning is so identified with electricity, and being the most common form observable to all, we will say something about thunderstorms and the electric discharges accompanying them.

Fig. 286.—Benjamin Franklin.

Before Franklin’s ever-memorable experiment with his kite established the identity of lightning and electricity, the resemblance between the two discharges had been frequently noticed. The Etruscans pretended to bring down lightning from heaven, and Tullus Hostilius, when experimenting or performing certain “ceremonies,” was killed by the electric discharge he desired to attract. But after all, we cannot attribute any knowledge of electric science to the ancients, although they were, of course, familiar with electric phenomena.

It is to Dr. Wall that testimony points as the first person who remarked the analogy between the electric spark and lightning. This was in 1708. Grey and other philosophers supported the theory, but could not establish it. To Franklin, who in June 1752 actually brought down the lightning by his kite and a key, is the actual discovery due. We have already detailed the circumstances (page 206) and need not repeat the account of the experiment.

Of course the American philosopher found numerous imitators, not always with impunity. Professor Richmann was killed by the spirit he was invoking; Lemounier and Beccaria confirmed the theory that the air was full of electricity; while Du Saussure, from his investigations on the Alps, and Volta from the invention of the pile, are most famous in the history of electricity. They applied themselves with much success to the investigation of the electric condition of the atmosphere, of which the disturbances called thunderstorms are the result.

The amount of electricity varies in the atmosphere at different times in the day and night. Towards midday and midnight the development is generally greatest, and this fact will account for the prevalence of storms during our hours of rest. Again, different kinds of clouds have different degrees of electricity, and of different kinds. Under certain conditions these clouds will give forth lightning, and a storm will begin. The more clouds the more globules, and therefore in summer, while there is more production of vapour from solutions of salts, etc., we are more likely to have the storms. We are most of us familiar with the mass of the “thunder cloud” rising in the distance, light at the upper part, very dark below, and throwing out tentacles like the octopus, coming up sometimes—frequently, indeed—“against the wind,” impelled by an upper current, or following the course of a river, which is not unusual. Below, there is perhaps an army of thin dark clouds. The nature and height of clouds have also a great deal to do with the phenomena displayed. In general, storm-clouds are positively electrified.

Fig. 287.—Cirrus cloud.

Clouds are good conductors of electricity, and yet they may be so insulated by the dry air surrounding them that they will accumulate it; and when thus charged, if they encounter other clouds charged with opposite electricity, the opposing masses will attract each other until a discharge takes place. This is what we term lightning, and under such conditions electricity, though very dazzling, is harmless. It is when the cloud comes near to the earth, and a discharge is released, that lightning is so dangerous to persons who remain in the fields. Sometimes the discharge comes from the earth to meet that from the cloud. Sheep are frequently killed by ground lightning, and once, at Malvern, we had an escape from an upward stroke. The back-stroke from a cloud is also dangerous. It may happen that the cloud has discharged itself upon the earth many miles away, but a return discharge takes place at the other end, and if that end be near the earth the consequences may be serious. As a rule, the return stroke is not so violent as the first discharge.

The colour of lightning varies very much. We have the white, the blue, the violet, and red. The colour depends upon the distance and intensity of the lightning, and the more there is of it the whiter the light. We can illustrate the varied hues of the electric “fluid” by passing a spark through the receiver of an air-pump. If the air be rarefied, or there be a vacuum, we shall perceive a blue or violet light. Therefore we may conclude that the blue and violet flashes have birth in high strata of the atmosphere.

Fig. 288.—Cumulus cloud.

We have all heard how dangerous it is to stand under a tree during a thunderstorm, or rather, we should say, when the storm is approaching us nearly. The tree is a conductor, and the lightning having no better one at hand will pass through the tree on its way to the earth, and if we are standing against the tree we shall be included in the course, and die from the shock to the nerves while the lightning is passing through us. The best position in a thunderstorm, if we are in the neighbourhood of trees, is to sit or lie down on the ground some little distance from the base of the nearest tree. If the tree be sixty feet high suppose, and we sit fifty feet or less from the trunk, we shall be pretty safe, because the lightning will reach the tree top before it can reach us. We are protected by it as by a conductor, bad though it be. Standing up in a boat during a storm is not wise. Lightning has an affinity for water, and besides, if no higher objects are near, our body will act as a conductor. Bed is the safest place, as blankets are non-conductors. Cellars are not the safest by any means. Lightning may, and it frequently does, strike the house and descend to the basement. If the air be very full of electricity, and a flash be near, a person running away may conduct the lightning to himself by creating a vacuum into which the flash may dart.

Fig. 289.—Nimbus, or rain cloud.

Arago classified lightning into three kinds: zig-zag, globular, and sheet. The first we call forked lightning, and frequently this kind branches out at the end, so that although there may be only one flash, it may strike out in two or three directions at the same time. This may be accounted for by the unequal power of the air strata to conduct the electricity. The forked flashes are of very great length, extending frequently for miles, and the bifurcations also are often miles apart. The duration of the flash is less than the thousandth part of a second; so instantaneous is it that no motion can be perceived even in a most rapidly-moving wheel, as proved by Professor Wheatstone. We sometimes fancy that the flash lasts longer, but the impression received by the eye quite accounts for the apparently prolonged sight of the lightning.

Sheet lightning, the faint flashes frequently seen upon the horizon, are quite harmless. Sheet lightning is that which is seen reflected behind clouds or from far-distant storms. It is sometimes very beautiful. Ball, or globular lightning, is dangerous, and globes of fire have been seen to descend, and striking the ground, bound onwards for some distance. The descent of these forms of electric discharge has given rise to the popular notion of “thunderbolts.” The “Mariner’s Lights,” or St. Elmo’s fire, is frequently observed in ships. It is usually regarded as a fortunate occurrence. It was noticed by Columbus. One voyager describes the phenomena as follows:—“The sky was suddenly covered with thick clouds.... There were more than thirty of St. Elmo’s fires on the ship. One of them occupied the vane of the mainmast. I sent a sailor to fetch it. When he was aloft he heard a noise like that which is made when moist gunpowder is burned. I ordered him to take off the vane. He had scarcely executed this order, when the fire quitted it and placed itself at the apex of the mainmast, whence it could not possibly be removed.”

Fig. 290.—Thunderstorm.

There have been occasions when the manes and tails of horses, and even the ears of human beings, have shown a phosphorescent light which emitted a hissing noise. Alpine travellers have noticed similar phenomena; and Professor Forbes, when crossing the Theodule Pass into Italy, heard the hissing sound in his alpenstock. The tips of rocks and grass points were all hissing too. The party were in the midst of an electric cloud. When the Professor turned the point of his alpenstock upwards, a vivid flash was emitted, but no thunder followed. They descended as quickly as possible from such a dangerous neighbourhood.

Fig. 291.—St. Elmo’s fire.

It is observable that the properties of lightning and of the electric spark are identical—the faint crackle of the latter being magnified into the loud rolling of the thunder. The disturbance of the atmosphere is the cause of the loud reverberations, and echoes produced from clouds tend to intensify and prolong the peal. The sound rises and falls, and varies accordingly as the cloud is near or far. A smart sharp report or rattle denotes the nearness of the lightning, while the gradual swelling and subsidence, followed, mayhap, by an increasing volume of sound, which in its turn dies away, tells us that the danger is not imminent. The cause o£ this loud rolling, unless it proceeds from echoes from different clouds, has not been satisfactorily explained. Sound travels less quickly than light, and therefore we only hear the thunder some seconds after we have perceived the flash. It is therefore conceivable that we may hear the last reverberations and its echoes first, and the sound of the first disturbance with its echoes last of all. Thus there will be distinct sounds. Firstly, the actual noise we call thunder from the air strata nearest to us; secondly, the echoes of that disturbance from the clouds, of course fainter; then we hear the sound caused by the tearing asunder of the air particles farthest off, and again the echoes of that disturbance. This theory will, we think, account for the swelling peals of thunder, and the successive loud and fainter reverberations. At any rate, in the absence of any other theory, we submit it for consideration. The sound of thunder is seldom or never heard at a distance greater than fifteen miles.

Lightning conductors are such every-day objects that no description is necessary; but the reason the lightning runs along it harmlessly is because the galvanized iron rod is the best conductor in the immediate neighbourhood. Where there is not a good conductor lightning will accept the next best, and so on, any conductor being better than none. The point of the rod cannot contain any electricity, there being no room for it, and the “fluid,” as it is termed, runs down to the ground, to terminate, when possible, in water or charcoal. A great deal of electricity is no doubt carried away from the air by the numerous conductors without any spark passing. Until Sir W. Snow Harris brought forward his lightning conductors for ships, the loss was great at sea. But now we rarely hear of any vessel being disabled by lightning. We owe to Franklin the idea of the lightning conductor.

According to observations made by Mr. Crosse, the following statement shows the tendency of the atmosphere, in certain conditions, to thunderstorms. We may accept the deduction of M. Peltier that grey and slate-colour clouds are charged with negative, and white, rose-colour, and orange clouds with positive electricity. The order of arrangement in the following table places the most likely source of thunderstorms first, and the least likely source at the end, with regular rotation of intermediate probabilities intervening:—

  1. Regular thunder clouds.
  2. Driving fog with small rain.
  3. Fall of snow, or hailstorm.
  4. Smart shower on a hot day.
  5. Smart shower on a cold day.
  6. Hot weather after wet days.
  7. Wet weather after dry days.
  8. Clear frosty weather.
  9. Clear warm weather.
  10. Cloudy days.
  11. “Mackerel” sky.
  12. Sultry weather and hazy clouds.
  13. Cold damp night.
  14. Cold, dry north-east winds.

We have thus briefly touched upon some of the atmospherical phenomena directly attributable to electricity. In our articles upon Meteorology we will consider the aurora and many other interesting facts concerning the atmosphere, and the effects of sound, heat, and light upon the air.

Fig. 292.—Lightning conductor.


CHAPTER XXIII.
AERONAUTICS.

PRESSURE OF AIR IN BODIES—EARLY ATTEMPTS TO FLY IN THE AIR—DISCOVERY OF HYDROGEN—THE MONTGOLFIER BALLOONS—FIRST EXPERIMENTS IN PARIS—NOTED ASCENTS.

In the first part of this volume we entered into the circumstances of air pressure, and in the Chemistry section we shall be told about the atmosphere and its constituents. We know that the air around us is composed principally of two gases, oxygen and nitrogen, with aqueous vapour and some carbonic acid. An enormous quantity of carbonic acid is produced every day, and were it not for the action of vegetation the amount produced would speedily set all animal life at rest. But our friends, the plants, decompose the carbonic acid by assimilating the carbon and setting free the oxygen which animals consume. Thus our atmosphere keeps its balance, so to speak. Nothing is lost in nature.

We have illustrated the pressure of the atmosphere by the Magdeburg hemispheres, and we know that the higher we ascend the pressure is lessened. The weight of the atmosphere is 15 lbs. to the square inch at sea level. This we have seen in the barometer. Now pressure is equal. Any body immersed in a liquid suffers pressure, and we remember Archimedes and the crown. It displaced a certain amount of water when immersed. A body in air displaces it just the same. Therefore when any body is heavier than the air, it will fall just as a stone will fall in water. If it be of equal weight, it will remain balanced in the air, if lighter it will rise, till it attains a height where the weight of the atmosphere and its own are equal; there it will remain till the conditions are altered. Now we will readily understand why balloons float in the air, and why clouds ascend and descend in the atmosphere.

In the following pages we propose to consider the question of ballooning, and the possibility of flying. We all have been anxious concerning the unfortunate balloonist who was lost in the Channel, so some details concerning the science generally, with the experiences of skilled aeronauts, will guide us in our selection of material. We will first give a history of the efforts made by the ancients to fly, and this ambition to soar above the earth has not yet died out.

From a very early period man appears to have been desirous to study the art of flying. The old myths of Dædalus and Icarus show us this, and it is not to be wondered at. When the graceful flight of birds is noticed, we feel envious almost that we cannot rise from the earth and sail away at our pleasure over land and sea. Any one who has watched the flight of the storks around and above Strasburg will feel desirous to emulate that long, swift-sailing flight without apparent motion of wing, and envy the accuracy with which the bird hits the point aimed at on the chimney, however small. It is small wonder that some heathens of old time looked upon birds as deities.

The earliest flying machine that we can trace is that invented by Archytas, of Tarentum, B.C. 400. The historian of the “Brazen Age” tells us how the geometrician, Archytas, made a wooden pigeon which was able to sustain itself in the air for a few minutes, but it came down to the ground after a short time, notwithstanding the mysterious “aura spirit” with which it was supposed to be endowed. The capability of flying has for centuries been regarded as supernatural. Putting angels aside, demons are depicted with wings like bats’ wings, while witches, etc., possessed the faculty of flying up chimneys upon broomsticks. We even read in childish lore of an old woman who “went up in a basket” (perhaps a balloon-car), and attained a most astonishing altitude-an elevation no less than “seventy times as high as the moon!”

But to descend to history. It is undoubtedly true that in the time of Nero, Simon Magus attempted to fly from one house to another by means of some mechanical contrivance, and failing, killed himself. Roger Bacon, the “admirable doctor,” to whom the invention of gunpowder is generally attributed, had distinct notions of flying by means of machines, and “hollow globes,” and “liquid fire.” But he did not succeed, nor did many successive attempts succeed any better in subsequent years. Bishop Wilkins treated of the art of flying, but most, if not all who discussed the subject appear to have been indebted to Roger Bacon for the idea.

When the nature and pressure of the atmosphere by Torricelli’s experiments became better known, Father Lana, a Jesuit priest, constructed a flying machine or balloon of curious shape. He proposed to fix four copper globes, very thin, and about twenty feet in diameter, and to these he fastened a boat or car, looking very much like a basin. His idea was to empty his great copper globes, and that their buoyancy would then bear the weight of the traveller. But he overlooked or was ignorant of the effect of the atmospheric pressure, which would have speedily crushed the thin copper globes when empty. Lana’s suggestion was made in 1670, the barometer had been discovered in 1643.

There were some fairly successful experiments made in flying in 1678 and in 1709. The former attempt was made by Besmir, a locksmith of Sable, who raised himself by means of wings up to the top of a house by leaps, and then succeeded in passing from one house to another lower down by supporting himself in the air for a time. He started from an elevated position, and came down by degrees. Dante, a mathematician, also tried to fly, but without great success. He broke his thigh on one occasion. Laurence de Gusman claimed an invention for flying in 1709, and petitioned for a “patent,” which was granted by the king’s letter. The machine appears to have borne some resemblance to a bird.

It was not till 1782, however, that the true art of aerial navigation was discovered. The knowledge of hydrogen gas possessed by Cavendish in 1766 no doubt led up to it, and in the year following its discovery Professor Black, lecturing in Edinburgh, stated that it was much lighter than the atmosphere, and that any vessel filled with the gas would rise in the air. We now come to the invention of the Balloon (so called from its shape being similar to a vessel used in the laboratory) by the Brothers Montgolfier.

Fig. 293.—Montgolfier balloon.

Stephen and James Montgolfier were paper-makers, and carried on their business at Annonay, near Lyons, but it was partly by accident that the great discovery was made. They had no knowledge of the buoyancy of hydrogen gas. They took their idea of the balloon (inflated) from noticing an ascending column of smoke. It occurred to Stephen that if a paper bag were filled with smoke it would ascend into the air. A large bag was made and some paper burnt beneath it in a room. When the smoke had filled the bag it was released, and immediately ascended to the ceiling. Here was the germ of the Montgolfier or heated air balloon. The experiment was repeated in the open air with even greater success, and a trial upon a larger scale was immediately determined upon. A story is related of Mongolfier when prosecuting his researches, that a widow whose husband had belonged to the printing firm with whom Montgolfier was then connected in business, saw the smoke issuing from the room in which the little balloon was being filled. She entered, and was astonished to see the difficulty experienced by the experimenter in filling the balloon. It swerved aside, and increased the trouble he had to keep it above the chafing dish. Montgolfier was greatly troubled, and seeing his disappointment, the widow said, “Why don’t you fasten the balloon to the chafing dish?” This had not occurred to the experimenter, and the idea was a valuable one. That was the secret of success.

The Montgolfier Brothers determined to exhibit their successful experiment, and accordingly on the 5th of June, 1783, a great concourse assembled to see the wonderful sight. A large canvas or linen balloon was made and suspended over a fire of chopped straw. The heated air quickly filled the balloon, which rose high in the air, and descended more than a mile away. This balloon contained 22,000 cubic feet of heated air, which is lighter than cold air, and of course rising carried the globe with it. As soon as the air began to cool the balloon ceased to rise, and as it got colder descended.

Here was the actual discovery of the science of Aerostatics. The intelligence of the success achieved soon spread from France to other countries. Paris, however, was in advance, and the Brothers Robert applied hydrogen gas to a balloon which was sent up from the Champ de Mars in August 1783. There was some trouble experienced in filling it, but when the balloon was at length released it realized all expectations by remaining in the air nearly an hour. When at length it fell it met with a worse fate than it deserved, for the ignorant and superstitious peasantry at once destroyed it. After this Montgolfier exhibited his experiment next time at Versailles in the presence of the Court. The first aerial travellers appeared on this occasion—viz., a sheep, a cock, and a duck, which were secured in the car. They all descended in safety, and this success encouraged M. Pilatre de Rozier to make an attempt in a “fire balloon.” He went up first in a captive balloon, and at length he and a friend, the Marquis d’Arlandes, ascended from the Bois de Boulogne. The trip was a decided success, and the possibility of navigating the air was fully demonstrated.

Soon after this,—viz., in December 1783,—an Italian Count, named Zambeccari, made an ascent in London, and came down safely at Petworth. MM. Charles and Robert ascended from Paris in December, and in February a balloon crossed the English Channel. We must pass over some time and come to the ascents of Lunardi, which caused great excitement in London. His balloon was a very large one, and was inflated, or rather partially so, at the Artillery ground. Some delay occurred, and fearing a riot, M. Lunardi proposed to go up alone with the partially-filled balloon. A Mr. Biggin who had intended to ascend was left behind. The Prince of Wales was present, with thousands of spectators. Lunardi cast off and ascended rapidly, causing great admiration from the whole metropolis. Judge and jury, sovereign and ministers, all turned out to gaze at the balloon; a guilty prisoner was acquitted hurriedly, so that no time was lost in discussion, and one lady died of excitement. Lunardi was regarded as a hero, and made many other ascents. He died in 1806.

In those earlier days one or two fatal accidents happened. Count Zambeccari and a companion were in a balloon which caught fire, and both occupants of the car leaped from it as they were descending. The Count was killed on the spot, and his companion was much injured. Pilatre de Rozier made an attempt to cross the channel to England in 1785; he had reached three thousand feet when the balloon caught fire, and the unfortunate traveller was precipitated to the ground. His associate only survived him a few minutes.

Fig. 294.—MM. Charles’ and Roberts’ balloon.

Fig. 295.—Blanchard’s balloon.

It is to the celebrated English aeronaut, Mr. Green, that the substitution of carburetted hydrogen or street gas for hydrogen is due, and since his ascent in 1821 no other means of inflation have been used. A great many quite successful and a few unsuccessful ascents have been made for pleasure or profit. Mr. Green, in the Nassau balloon, passed over to Nassau, a distance of five hundred miles, in eighteen hours. This exploit was the cause of the name being bestowed upon the balloon. The Giant of M. Nadar was exhibited in England, and it was an enormous one, being an hundred feet high, and nearly as wide in the widest part. But even this machine was outdone by the Godard “Montgolfier” balloon, which was one hundred and seventeen feet high, and carried a stove. We give illustrations of these celebrated balloons, and will now pass on to the more scientific portion of the subject and the ascents of Mr. Glaisher and other aeronauts for the purpose of making meteorological observations, and the use of balloons for purposes of observation in war.

It appears that the first ascent for scientific investigation was made in the year 1803. The aeronauts were Messrs. Robertson and Lhoest. They ascended from Hamburg and came down at Hanover, and made meantime several experiments with reference to the electrical condition of the atmosphere, its influence upon a magnetic needle, and some experiments with regard to acoustics and heat. The report was presented to the St. Petersburg Academy, and contains the result of their interesting observations. The travellers ascertained that at the elevation to which they attained,—viz., 25,500 feet,—the temperature was on that July day fifty degrees colder, falling to 19·6°, while on the earth the thermometer had shown 68°. They ascertained that glass and wax did not become electric when rubbed, that the Voltaic battery lost much of its power, that the oscillation of a “dipping needle” increased as they mounted into the air, while sound was certainly less easily transmitted at that elevation, and struck them as less powerful in tone. The heat experiment was not a success, owing to the breaking of the thermometer. They wished to find the temperature of boiling water at that elevation, but when the experiment was about to be made Robertson accidentally plunged the instrument into the fire instead of into the water. So the question was not settled.

The effect upon the aeronauts was a sensation of sleepiness, and two birds died. The muscular powers of the voyagers also appear to have been much affected, and similar sensations may be experienced by travellers on high mountains who find their breath very short and a disinclination to exertion oppress them.

MM. Biot and Gay-Lussac made a very interesting ascent in 1804. We will detail their experiences at some length, for the coolness displayed and the value of the observations made are remarkable in the history of scientific ballooning. They started, at 10 o’clock a.m. on the 23rd of August, and when the balloon had carried them up to an altitude of 8,600 feet they commenced their experiments. They had some animals in the car with them, a bee amongst the number, and the insect was let go first. It flew away swiftly, not at all inconvenienced apparently. The sun was very hot at 56° Fahr. Their pulses were beating very fast, but no inconvenience was felt.

When 11,000 feet had been reached a linnet was permitted to go at large, but after a little time the bird returned to the balloon. It remained perched for a few minutes, and then dashed downwards at a tremendous pace. A pigeon was then liberated. It also appeared very uncertain, and wheeled around in circles for a time. At last it gained confidence, and descended, and disappeared in the clouds beneath. They made other experiments, but descended without having obtained as accurate results as had been anticipated.

Fig. 296.—The Nassau balloon.

Fig. 297.—The “Giant” balloon of M. Nadar.

On the next occasion, however, every care was taken, and on the 15th of September the important ascent was made by Gay-Lussac alone. He fixed hanging ropes to the balloon with the view to check the rotating movements, and having provided himself with all necessary apparatus and two vacuum flasks to bring down some of the upper air, the young man started. The barometer marked 30·66°, the thermometer 82° (Fahr.). At an elevation of 12,680 feet Lussac perceived that the variation of the compass was the same as on land. Two hundred feet higher up he ascertained that a key held in the magnetic direction repelled with the lower, and attracted with its upper extremity the north pole of a needle. This experiment was repeated with the same result at an elevation of 20,000 feet, which shows how the earth exercises its magnetic influence. The temperature of the air was found to decrease in proportion as the ascent up to 12,000 feet, where the reading was 47·3". It then increased up to 14,000 feet by 6°, and then regularly diminished again as the balloon rose, till at the greatest elevation reached, 23,000 feet, there was a difference of 67° in the temperature on the earth, for at the maximum height attained the thermometer stood at 14·9°.

But the most important fact ascertained, and one which set many theories at rest, was the composition of the atmosphere in those high altitudes. We mentioned that Gay-Lussac took up two empty flasks from which the air had been taken. The vacuum was almost perfect. When the aeronaut had reached 21,460 feet he opened one flask, and it was quickly filled; he secured it carefully; and when at his highest point,—four miles and a half above the sea-level,—he opened the other flask. The barometer stood at 12.95 inches, and the cold was very great. The voyager felt benumbed, and experienced difficulty of breathing; his throat was parched and dry. So Lussac determined to return, he could go no higher. He dropped gently near Rouen, and soon reached Paris. As soon as possible the air in the flasks was submitted to very delicate tests, and to the satisfaction of the scientists engaged it was found to be in exactly the same proportions as that collected near the earth—two hundred and fifteen parts of oxygen to every thousand of atmospheric air.

Messrs. Banal and Bixio, in 1850, also made some observations, and found the temperature very variable. At 23,000 feet they found the thermometer at minus 38·2° Fahr., which was much below the cold experienced by Gay-Lussac. We may still conclude that the various currents of the atmosphere cause considerable variation, and that it is impossible to lay down anything respecting the degrees of heat and cold likely to be found at certain elevations. We quote Arago’s observations upon this ascent:—

“This discovery” (the ice particles found in the air) “explains how these minute crystals may become the nucleus of large hailstones, for they may condense round them the aqueous vapour contained in the portion of the atmosphere where they exist. They go far to prove the truth of Mariotte’s theory, according to which these crystals of ice suspended in the air are the cause of parahelia—or mock-suns and mock-moons. Moreover, the great extent of so cold a cloud explains very satisfactorily the sudden changes of temperature which occur in our climates.”

M. Flammarion gives in his “Voyages” some very interesting and amusing particulars, as well as many valuable scientific observations. During one ascent he remarked that the shadow of the balloon was white, and at another time dark. When white the surface upon which it fell looked more luminous than any other part of the country! The phenomenon was an anthelion. The absolute silence impressed the voyager very much. He adds, “The silence was so oppressive that we cannot help asking ourselves are we still alive! We appear to appertain no longer to the world below.” M. Flammarion’s observations on the colour of what we term the sky are worth quoting—not because they are novel, but because they put so very clearly before us the appearance we call the “blue vault.” He says,—speaking of the non-existence of the “celestial vault,”—“The air reflects the blue rays of the solar spectrum from every side. The white light of the sun contains every colour, and the air allows all tints to pass through it except the blue. This causes us to suppose the atmosphere is blue. But the air has no such colour, and the tint in question is merely owing to the reflection of light. Planetary space is absolutely black; the higher we rise the thinner the layer of atmosphere that separates us from it, and the darker the sky appears.”

Fig. 298.—The “Eagle” of M. Godard.

Some beautiful effects may be witnessed at night from a balloon, and considering the few accidents there have been in proportion to the number of ascents, we do not wonder at balloon voyages being undertaken for mere pleasure. When science has to be advanced there can be no objection made, for then experience goes hand-in-hand with caution. It is only the ignorant who are rash; the student of Nature learns to respect her, and to attend to her admonitions and warnings in time. The details of the ascents of famous aeronauts give us a great deal of pleasant and profitable reading. The phenomena of the sky and clouds, and of the heavens, are all studied with great advantage from a balloon, or “aerostat,” as it is the fashion to call it. The grand phenomena of “Ulloa’s circles,” or anthelia, which represent the balloon in air, and surrounded by a kind of glory, or aureola, like those represented behind saintly heads, appear, as the name denotes, opposite to the sun.

The various experiments made to ascertain the intensity of sounds have resulted in the conclusion that they can be heard at great distances. For instance, the steam whistle is distinctly audible 10,000 feet up in the air, and human voices are heard at an altitude of 5,000 feet. A man’s voice alone will penetrate more than 3,000 feet into the air; and at that elevation the croaking of frogs is quite distinguishable. This shows that sound ascends with ease, but it meets with great resistance in its downward course, for the aeronaut cannot make himself audible to a listener on the earth at a greater distance than 300 or 400 feet, though the latter can be distinctly heard at an elevation of 1,600 feet. The diminution of temperature noted by M. Flammarion is stated to be 1° Fahr. for every 345 feet on a fine day. On a cloudy day the mean decrease was 1° for every 354 feet of altitude. The temperature of clouds is higher than the air surrounding them, and the decrease is more rapid near the surface, less rapid as the balloon ascends. We may add that at high elevations the cork from a water-bottle will pop out as if from a champagne flask.

We have hitherto referred more to M. Flammarion and other French aeronauts, but we must not be considered in any way oblivious of our countrymen, Messrs. Glaisher, Green, and Coxwell, nor of the American,—one of the most experienced of aerial voyagers,—Mr. Wise. The scientific observations made by the French voyagers confirmed generally Mr. Glaisher’s experiments. This noted air-traveller made twenty-eight ascents in the cause of science, and his experiences related in “Travels in the Air,” and in the “Reports” of the British Association, are both useful and entertaining. For “Sensational ballooning” one wishes to go no farther than his account of his experience with Mr. Coxwell, when (on the 5th of September, 1862) he attained the greatest elevation ever reached, viz., seven miles, or thirty-seven thousand feet.

We condense this exciting narrative for the benefit of those who have not seen it already.

The ascent was made from Wolverhampton. At 1.39 p.m., the balloon was four miles high, the temperature was 8°, and by the time the fifth mile had been reached the mercury was below zero, and up to this time observations had been made without discomfort, though Mr. Coxwell, having exerted himself as aeronaut, found some difficulty in breathing. About 2 o’clock, the balloon still ascending, Mr. Glaisher could not see the mercury in the thermometer, and Mr. Coxwell had just then ascended into the ring above the car to release the valve line which had become twisted. Mr. Glaisher was able to note the barometer, however, and found it marked 10 inches, and was rapidly decreasing. It fell to 9¾ inches, and this indicated an elevation of 29,000 feet! But the idea was to ascend as high as possible, so the upward direction was maintained. “Shortly afterwards,” writes Mr. Glaisher, “I laid my arm upon the table possessed of its full vigour, and on being desirous of using it I found it powerless,—it must have lost power momentarily. I tried to move the other arm, and found it powerless also. I then tried to shake myself, and succeeded in shaking my body. I seemed to have no limbs. I then looked at the barometer, and whilst doing so my head fell on my left shoulder.”

Mr. Glaisher subsequently quite lost consciousness, and “black darkness” came. While powerless he heard Mr. Coxwell speaking, and then the words, “Do try, now do.” Then sight slowly returned, and rousing himself, Mr. Glaisher said, “I have been insensible.” Mr. Coxwell replied, “You have, and I, too, very nearly.” Mr. Coxwell’s hands were black, and his companion had to pour brandy upon them. Mr. Coxwell’s situation was a perilous one. He had lost the use of his hands, which were frozen, and had to hang by his arms to the ring and drop into the car. He then perceived his friend was insensible, and found insensibility coming on himself. There was only one course to pursue—to pull the valve line and let the gas escape, so as to descend. But his hands were powerless! As a last resource he gripped the line with his teeth, and bending down his head, after many attempts succeeded in opening the valve and letting the gas escape. The descent was easily made, and accomplished in safety.

Fig. 299.—A descending balloon.

Some pigeons were taken up on this occasion, and were set free at different altitudes. The first, at three miles, “dropped as a piece of paper”; the second, at four miles, “flew vigorously round and round, apparently taking a dip each time”; a third, a little later, “fell like a stone.” On descending a fourth was thrown out at four miles, and after flying in a circle, “alighted on the top of the balloon.” Of the remaining pair one was dead when the ground was gained, and the other recovered.

The observations noted are too numerous to be included here. Some, we have seen, were confirmed by subsequent aeronauts, and as we have mentioned them in former pages we need not repeat them. The results differed very much under different conditions, and it is almost impossible to decide upon any law. The direction of the wind in the higher and lower regions sometimes differed, sometimes was the same, and so on. The “Reports” of the British Association (1862-1866) will furnish full particulars of all Mr. Glaisher’s experiments.

We have scarcely space left to mention the parachutes or umbrella-like balloons which have occasionally been used. Its invention is traced to very early times; but Garnerin was the first who descended in a parachute, in 1797, and continued to do so in safety on many subsequent occasions. The parachute was suspended to a balloon, and at a certain elevation the voyager let go and came down in safety. He ascended once from London, and let go when 8,000 feet up. The parachute did not expand as usual, and fell at a tremendous rate. At length it opened out, and the occupier of the car came down forcibly, it is true, but safely. The form of the parachute is not unlike an umbrella opened, with cords attaching the car to the extremities of the “ribs,” the top of the basket car being fastened to the “stick” of the umbrella.

Mr. Robert Cocking invented a novel kind of parachute, but when he attempted to descend by it from Mr. Green’s balloon it collapsed, and the unfortunate voyager was dashed to pieces. His remains were found near Lee, in Kent. Mr. Hampton did better on Garnerin’s principle, and made several descents in safety and without injury.

The problem of flying in the air has attracted the notice of the Aeronautical Society, established in 1873, but so far without leading to practical results, though many daring and ingenious suggestions have been put forth in the “Reports.”

It is not within our province to do more than refer to the uses of the balloon for scientific purposes, but we may mention the services it was employed upon during the French war, 1870-71. The investment of Paris by the German army necessitated aerial communication, for no other means were available. Balloon manufactories were established, and a great number were made, and carried millions of letters to the provinces. Carrier-pigeons were used to carry the return messages to the city, and photography was applied to bring the correspondence into the smallest legible compass. The many adventures of the aeronauts are within the recollection of all. A few of the balloons never reappeared; some were carried into Norway, and beyond the French frontier in other directions. The average capacity of these balloons was 70,000 cubic feet.

Of course it will be understood how balloons are enabled to navigate the air. The envelope being partly filled with coal-gas-heated air and hydrogen, is much lighter than the surrounding atmosphere, and rises to a height according as the density of the air strata diminishes. The density is less as we ascend, and the buoyant force also is lessened in proportion. So when the weight of the balloon and its occupants is the same as the power of buoyancy, it will come to a stand, and go no higher. It can also be understood that as the pressure of the outside becomes less, the expansive force of the gas within becomes greater. We know that gas is very compressible, and yet a little gas will fill a large space. Therefore, as the balloon rises, it retains its rounded form, and appears full even at great altitudes; but if the upper part were quite filled before it left the ground, the balloon would inevitably burst at a certain elevation when the external pressure of the air would be removed, unless an escape were provided. This escape is arranged for by a valve at the top of the balloon, and the lower part above the car is also left open very often, so that the gas can escape of itself. When a rapid descent is necessary, the top valve is opened by means of a rope, and the balloon sinks by its own weight. Mr. Glaisher advises for great ascensions a balloon of a capacity of 90,000 cubic feet, and only filled one-third of that capacity with gas. Six hundred pounds of ballast should be taken.

Fig. 300.—Filling a balloon.

A very small quantity of ballast thrown away will make a great difference; a handful will raise the balloon many feet, and a chicken bone cast out occasions a rise of thirty yards. The ballast is carried in small bags, and consists of dry sand, which speedily dissipates in the air as it falls. By throwing out ballast the aeronaut can ascend to a great height—in fact, as high as he can go, the limit apparently for human existence being about seven miles, when cold and rarefied air will speedily put an end to existence.

It is a curious fact, that however rapidly the balloon may be travelling through the air, the occupants are not sensible of the motion. This, in part, arises from the impossibility of comparing it with other objects. We pass nothing stationary which would indicate the pace at which we travel. But the absence of oscillation is also remarkable; even a glass of water may be filled brim-full, and to such a level that the water is above the rim of the glass, and yet not a drop will fall. This experiment was made by M. Flammarion. When the aeronaut has ascended some distance the earth loses its flat appearance, and appears as concave as the firmament above. Guide ropes are usually attached to balloons, and as they rest upon the ground they relieve the balloon of the amount of weight the length trailing would cause. They thus act as a kind of substitute for ballast as the balloon is descending. Most of the danger of aerial travelling lies in the descent; and though in fine weather the aeronaut can calculate to a nicety where he will descend, on a windy day, he must cast a grapnel, which catches with an ugly jerk, and the balloon bounds and strains at her moorings.

Although many attempts have been made to guide balloons through the air, no successful apparatus has ever been completed for use. Paddles, sails, fans, and screws have all been tried, but have failed to achieve the desired end. Whether man will ever be able to fly we cannot of course say. In the present advancing state of science it may not be impossible ere long to supply human beings with an apparatus worked by electricity, perhaps, which will enable them to mount into the air and sustain themselves. But even the bird cannot always fly without previous momentum. A rook will run before it rises, and many other birds have to “get up steam,” as it were, before they can soar in the atmosphere. Eagles and such heavy birds find it very difficult to rise from the ground. We know that vultures when gorged cannot move at all, or certainly cannot fly away; and eagles take up their positions on high rocks, so that they may launch down on their prey, and avoid the difficulty of rising from the ground. They swoop down with tremendous momentum and carry off their booty, but often lose their lives from the initial difficulty of soaring immediately. We fear man’s weight will militate against his ever becoming a flying animal. When we obtain a knowledge of the atmospheric currents we shall no doubt be able to navigate our balloons; but until then—and the information is as yet very limited, and the currents themselves very variable—we must be content to rise and fall in the air, and travel at the will of the wind in the upper regions of the atmosphere.


CHAPTER XXIV.
CHEMISTRY.
INTRODUCTION.

WHAT CHEMISTRY IS—THE ELEMENTS—METALLIC AND NON-METALLIC—ATOMIC WEIGHT—ACIDS—ALKALIS—BASES—SALTS—CHEMICAL COMBINATION AND STUDY.

Chemistry is the science of phenomena which are attended by a change of the objects which produce them. We know that when a candle burns, or when wood is burned, or even a piece of metal becomes what we term “rusty,” that certain chemical changes take place. There is a change by what is termed chemical action. Rust on iron is not iron; it is oxide of iron. The oxygen of the air causes it. So we endeavour, by Chemistry, to find out the nature of various bodies, their changes, and the results.

Fig. 301.—The Laboratory.

In nature we have simple and compound bodies. The former are called Elements. We must not confuse these elements with the so-called elements—earth, air, fire, and water. These are really compound bodies. An element is a substance or a gas which is not composed of more than one constituent; it is itself—a compound of perfectly identical particles. Every “compound” body, therefore, must be made up of some of the elements, of which there are sixty-five. These bodies are divided into non-metallic and metallic elements, and all bodies are composed of them, or are these bodies themselves. The list is as follows. The non-metallic elements are “metalloids.” We have omitted fractions from the weights, on which chemists differ.

TABLE OF ELEMENTS WITH THEIR CHEMICAL SYMBOLS AND COMBINING WEIGHTS.

Name. Symbols.Atomic or
Combining
Weights.
Derivation of Name.
Oxygen O16 Gr. Oxus, acid; gennaō, to make.
HydrogenGaseousH1 Gr. Udor, water; gennaō, to make.
Nitrogen N14 Gr. Natron, nitre; gennaō, to make.
Chlorine Cl35 Gr. Chloros, green.
IodineSolidI127 Gr. Ioeides, violet.
Fluorine F19 Fluor spar, the mineral.
Carbon C12 Lat. Carbo, coal.
Sulphur S32 Lat. Sulphurium.
Phosphorus P31 Gr. Phos, light; pherein, to carry.
Arsenic* As75 Gr. Arsenicon, potent.
Silicon Si28 Gr. Silex, flint.
Boron B11 Gr. Borax, Arab., baraga, to shine.
Selenium Se79 Gr. Selene, the moon.
Tellurium Te129 Lat. Tellus, the earth.
BromineFluid 80 Gr. Bromos, offensive smell.

METALS.

Name.Symbols.Atomic or
Combining
Weights.
Derivation of Name.
AluminiumAl27 Lat. Alumen, alum.
Antimony (Stibium)Sb122 Gr. Anti, against; minos, one.
[Arsenic]As75 (Not known.)
BariumBa137 Gr. Barsù, heavy.
BismuthBi210 Ger. Weissmuth, white matter.
CadmiumCd112 Gr. Cadmeia, calamite.
CæsiumCs133 Lat. Cæsius, sky-blue.
CalciumCa40 Lat. Calx, lime.
CeriumCe141 The planet Ceres.
ChromiumCr52 Gr. Chroma, colour.
CobaltCo58 Ger. Kobald, a sprite.
CopperCu63 Lat. Cuprum (Cyprium), Cyprus.
DidymiumD147 Gr. Didumos, twins.
ErbiumEYtterby in Sweden.
GalliumGa70 (Not known.)
GlucinumGl9 Gr. Glukos, sweet.
GoldAu197 From Hebrew, to shine (doubtful).
IndiumIn113 Indigo colour.
IridiumIr198 Gr. Iris, rainbow.
IronFe56 Hebrew, to meet (doubtful).
LanthanumLa139 Gr. Lanthanein, to lie hid.
LeadPb207 (Plumbum) malubodos (galena).
LithiumLi7 Gr. Lithos, stone.
MagnesiumMg24 Magnesia, Asia Minor.
ManganeseMn55 Mangana, E. I. (or Magnesia).
MercuryHg200 Heathen deity (quick).
MolybdenumMo96 Gr. Molybdena, lead ore, like lead.
NickelNi58 Ger. Kupfer nikel, false copper.
Niobium (Columbium)Nb94 Columbite.
OsmiumOs199 Osme, an odour.
PalladiumPl106 Pallas, Minerva.
PlatinumPt197 Spanish, platina, little silver.
Potassium (Kalium)K39 Potash.
RhodiumRh104 Gr. Roda, rose.
RubidiumRb85 Lat. Rubidus, red.
RutheniumRu104 (Not known.)
Silver (Argentum)Ag108 Hebrew, money.
Sodium (Natrium)Na23 Salsoda plant.
StrontiumSr87 Strontian, N.B.
TantalumTa182 Tantalite mineral.
TerbiumTr(Not known.)
ThalliumTl204 Gr. Thallos, green twig.
ThoriumTh230 Thor, deity.
Tin (Stannum)Sn118 (Not known.)
TitaniumTi50 Titans.
Tungsten (Wolfram)W184 Swedish.
UraniumU240 Urania.
VanadiumV51 Vanadis, a goddess in Sweden, etc.
YttriumY93 (Not known.)
ZincZn65 Ger. Zinken, nails.
ZirconiumZr89 Ger. Zircon, four-cornered (Ceylon).
* Arsenic is sometimes considered a non-metallic and sometimes a metallic substance.

The term “combining weight” requires a little explanation. We are aware that water, for instance, is made up of oxygen and hydrogen in certain proportions. This we will prove by-and-by. The proportions are in eighteen grains or parts of water, sixteen parts (by weight) of oxygen, and two parts (by weight) of hydrogen. These are the weights or proportions in which oxygen and hydrogen combine to form water, and such weights are always the same in these proportions. Chemical combination always occurs for certain substances in certain proportions which never vary in those compounds, and if we wish to extract oxygen from an oxide we must take the aggregate amount of the combining weights of the oxide, and we shall find the proportion of oxygen; for the compound always weighs the same as the sum of the elements that compose it. To return to the illustration of water. The molecule of water is made up of one atom of oxygen and two atoms of hydrogen. One atom of the former weighs sixteen times the atom of the latter. The weights given in the foregoing table are atomic weights, and the law of their proportions is called the Atomic Theory.

An atom in chemistry is usually considered the smallest quantity of matter that exists, and is indivisible. A molecule is supposed to contain two or more atoms, and is the smallest portion of a compound body. The standard atom is hydrogen, which is put down as 1, because we find that when one part by weight of hydrogen is put in combination, it must have many more parts by weight of others to form a compound. Two grains of hydrogen, combining with sixteen of oxygen, makes eighteen of water, as we have already seen.

Take an example so plainly given by Professor Roscoe, remembering that the numbers in our table represent the fixed weight or proportion by weight in which the simple body combines. The red oxide of mercury contains sixteen parts by weight of oxygen to two hundred parts by weight of mercury (we see the same numbers in the table); these combined make two hundred and sixteen parts of oxide. So to obtain 16 lbs. of oxygen we must get 216 lbs. of the powder. It is the same all through, and it will be found by experiment that if any more parts than these fixed proportions be taken to form a compound, some of that element used in excess will remain free. Lime is made up of calcium and oxygen. We find calcium combining weight is forty, oxygen sixteen. Lime is oxide of calcium in these proportions (by weight).

When we wish to express the number of atoms in a compound we write the number underneath when more than one; thus water is H2O. Sulphuric acid H2SO4. As we proceed we will give the various formulæ when considering the chief elements.

In chemistry we have acids, alkalis, and salts, with metallic oxides, termed bases, or bodies, that when combined with acids form salts. Alkalis are bases.

Acids are compounds which possess an acid taste, impart red colour to vegetable blues, but lose their qualities when combined with bases. Hydrogen is present in all acids. There are insoluble acids. Silicic acid, for instance, is not soluble in water, has no sour taste, and will not redden the test litmus paper. On the other hand, there are substances (not acids) which possess the characteristics of acids, and most acids have only one or two of these characteristics.

Thus it has come to pass that the term “acid” has in a measure dropped out from scientific nomenclature, and salt of hydrogen has been substituted by chemists. For popular exposition, however, the term is retained.

Alkalis are bases distinguished by an alkaline taste. The derivation is from Arabic, al-kali. They are characterized by certain properties, and they change vegetable blues to green, and will restore the blue to a substance which has been reddened by acid. They are soluble in water, and the solutions are caustic in their effects. Potash, soda, and ammonia are alkalis, or chemically, the oxides of potassium, sodium, ammonium, lithium, and cæsium are all alkalis. Potash is sometimes called “caustic” potash. There are alkaline earths, such as oxides of barium, strontium, etc. Bases may be defined as the converse of acids.

Acids and alkalis are then evidently opposite in character, and yet they readily combine, and in chemistry we shall find that unlike bodies are very fond of combining (just as opposite electricities attract each other), and the body made by this combination differs in its properties from its constituents.

Salts are composed of acids and bases, and are considered neutral compounds, but there are other bodies not salts, which likewise come under that definition—sugar, for instance. As a rule, when acids and alkalis combine salts are found.

Chemical phenomena are divided into two groups, called inorganic and organic, comprising the simple and compound aspects of the subject, the elementary substances being in the first, and the chemistry of animals or vegetables, or organic substances, in the latter. In the inorganic section we shall become acquainted with the elements and their combinations so often seen as minerals in nature. Chemical preparations are artificially prepared. To consider these elements we must have certain appliances, and indeed a laboratory is needed. Heat, as we have already seen, plays a great part in developing substances, and by means of heat we can do a great deal in the way of chemical decomposition. It expands, and thus diminishes cohesion; it counteracts the chemical attraction. Light and electricity also decompose chemical combinations. But before proceeding it will be as well to notice a few facts showing how Nature has balanced all things.

The earth, and its surrounding envelope, the atmosphere, consist of a number of elements, which in myriad combinations give us everything we possess,—the air we breathe, the water we drink, the fire that warms us, are all made up of certain elements or gases. Water, hydrogen and oxygen; air, oxygen and nitrogen. Fire is combustion evolving light and heat. Chemical union always evolves heat, and when such union proceeds very rapidly fire is the result.

In all these combinations we shall find when we study chemistry that not a particle or atom of matter is ever lost. It may change or combine or be “given off,” but the matter in some shape or way exists still. We may burn things, and rid ourselves, as we think, of them. We do rid ourselves of the compounds, the elements remain somewhere. We only alter the condition. During combustion, as in a candle or a fire, the simple bodies assume gaseous or other forms, such as carbon, but they do not escape far. True they pass beyond our ken, but nature is so nicely balanced that there is a place for everything, and everything is in its place under certain conditions which never alter. We cannot destroy and we cannot create. We may prepare a combination, and science has even succeeded in producing a form like the diamond—a crystal of carbon which looks like that most beautiful of all crystals, but we cannot make a diamond after all. We can only separate the chemical compounds. We can turn diamonds into charcoal it is true, but we cannot create “natural” products. We can take a particle of an element and hide it, or let it pass beyond our ken, and remain incapable of detection, but the particle is there all the time, and when we retrace our steps we shall find it as it was before.

This view of chemistry carries it as a science beyond the mere holiday amusement we frequently take it to be. It is a grand study, a study for a lifetime. Nature is always willing, like a kind, good mother as she is, to render us up her secrets if we inquire respectfully and lovingly. The more we inquire the more we shall find we have to learn. In these and the following pages we can only tell you a few things, but no one need be turned away because he does not find all he wants. We never do get all we want in life, and there are many first-rate men—scientists—who would give “half their kingdom” for a certain bit of knowledge concerning some natural phenomena. There are numerous excellent treatises on chemistry, and exhaustive as they are, at present they do not tell us all. Let these popular pages lead us to the study of nature, and we shall find our labour far from onerous and full of interest, daily increasing to the end, when we shall know no more of earth, or chemistry.

As a preliminary we will put our workshop aside, and show you something of Chemistry without a Laboratory.


CHAPTER XXV.
CHEMISTRY WITHOUT A LABORATORY.

We have already pointed out the possibility of going through a course of physics without any special apparatus, we shall now endeavour to show our readers the method of performing some experiments in chemistry without a laboratory, or at any rate with only a few simple and inexpensive appliances. The preparation of gases, such as hydrogen, carbonic acid, and oxygen, is very easily accomplished, but we shall here point out principally a series of experiments that are not so much known. We will commence, for example, by describing an interesting experiment which often occurs in a course of chemistry. Ammoniacal gas combined with the elements of water is analogous to a metallic oxide which includes a metallic root, ammonium. This hypothetically composed metal may be in a manner perceived, since it is possible to amalgamate it with mercury by operating in the following manner:—We take a porcelain mortar, in which we pour a quantity of mercury, and then cut some thin strips of sodium, which are thrown into the mercury. By stirring it about with the pestle a loud cracking is produced, accompanied by a flame, which bears evidence to the union of the mercury and the sodium, and the formation of an amalgam of sodium. If this amalgam of sodium is put into a slender glass tube containing a concentrated solution of hydrochlorate of ammonia in water, we see the ammonia expand in an extraordinary manner, and spout out from the end of the tube, which is now too small to contain it, in the form of a metallic substance (fig. 302). In this case, the ammonium, the radical which exists in the ammoniacal salts, becomes amalgamated with the mercury, driving out the sodium with which it had previously been combined; the ammonium thus united with the mercury becomes decomposed in ammoniacal gas and hydrogen, the mercury assuming its ordinary form. Phosphate of ammonia is very valuable from its property of rendering the lightest materials, such as gauze or muslin, incombustible. Dip a piece of muslin in a solution of phosphate of ammonia, and dry it in contact with the air; that done, you will find it is impossible to set fire to the material; it will get charred, but you cannot make it burn. It is to be wished that this useful precaution were oftener taken in the matter of ball-dresses, which have so frequently been the cause of serious accidents. There is no danger whatever with a dress that has been soaked in phosphate of ammonia, which is very inexpensive, and easily procured.

Fig. 302.—Experiment with ammonium.

For preparing cool drinks in the summer ammoniacal salts are very useful; some nitrate of ammonia mixed with its weight in water, produces a considerable lowering of the temperature, and is very useful for making ice. Volatile alkali, which is so useful an application for stings from insects, is a solution of ammoniacal gas in water, and sal-volatile, which has such a refreshing and reanimating odour, is a carbonate of ammonia. We often see in chemists’ shops large glass jars, the insides of which are covered with beautiful transparent white crystals, which are formed over a red powder placed at the bottom of the vase. These crystals are the result of a combination of cyanogen and iodine. Nothing is easier than the preparation of iodide of cyanogen, a very volatile body, which possesses a strong tendency to assume a definite crystalline form. We pound in a mortar a mixture of 50 grams of cyanide of mercury, and 100 grams of iodine; under the action of the pestle the powder, which was at first a brownish colour, assumes a shade of bright vermilion red. The cyanogen combines with the iodine, and transforms itself into fumes with great rapidity. If the powder is placed at the bottom of a stoppered glass jar, the fumes of the iodide of cyanogen immediately condense, thereby producing beautiful crystals which often attain considerable size (fig. 303). Cyanogen forms with sulphur a remarkable substance, sulpho-cyanogen, the properties of which we cannot describe without exceeding the limits of our present treatise; we shall therefore confine ourselves to pointing out one of its combinations, which is well known at the present day, owing to its singular properties. This is sulpho-cyanide of mercury, with which small combustible cones are made, generally designated by the pompous title of Pharaoh’s serpents. For making these, some sulpho-cyanide of potassium is poured into a solution of nitrate acid on mercury, which forms a precipitate of sulpho-cyanide of mercury. This is a white, combustible powder, which after passing through a filter, should be transformed into a stiff pulp by means of water containing a solution of gum. The pulp is afterwards mixed with a small quantity of nitrate of potash, and fashioned into cones or cylinders of about an inch and a quarter in length, which should be thoroughly dried. The egg thus obtained can be hatched by the simple application of a lighted match, and gives rise to the phenomenon. The sulpho-cyanide slowly expands, the cylinder increases in length, and changes to a yellowish substance, which dilates and extends to a length of twenty or five-and-twenty inches. It has the appearance of a genuine serpent, which has just started into existence, and stretches out its tortuous coils, endeavouring to escape from its narrow prison (fig. 304). The residue is composed partly of cyanide of mercury and of para-cyanogen; it constitutes a very poisonous substance, which should be immediately thrown away or burned. It can be easily powdered into dust in the fingers. During the decomposition of the sulpho-cyanide of mercury, quantities of sulphurous acid are thrown off, and it is to be regretted that Pharaoh’s serpent should herald his appearance by such a disagreeable, suffocating odour.

Fig. 303.—Iodide of cyanogen.

Fig. 304.—Pharaoh’s serpent.

After these few preliminary experiments, we will endeavour to show the interest afforded by the study of chemistry in relation to the commonest substances of every-day life. We will first consider the nature of a few pinches of salt. We know that kitchen salt, or sea salt, is white or greyish, according to its degree of purity; that it has a peculiar flavour, is soluble in water, and makes a peculiar crackling when thrown in the fire. But though its principal physical properties may be familiar enough, many people are entirely ignorant of its chemical nature and elementary composition. Kitchen salt contains a metal, combined with a gas possessing a very suffocating odour; the metal is sodium, the gas is chlorine. The scientific name for the substance is chloride of sodium (salt).[19] The metal contained in common salt in no way resembles ordinary metals; it is white like silver, but tarnishes immediately in contact with air, and unites with oxygen, thus transforming itself into oxide of sodium. To preserve this singular metal it is necessary to protect it from the action of the atmosphere, and to keep it in a bottle containing oil of naptha. Sodium is soft, and it is possible with a pair of scissors to cut it like a ball of soft bread that has been kneaded in the hand. It is lighter than water, and when placed in a basin of water floats on the top like a piece of cork; only it is disturbed, and takes the form of a small brilliant sphere; great effervescence is also produced as it floats along, for it reduces the water to a common temperature by its contact. By degrees the small metallic ball disappears from view, after blazing into flame (fig. 305).

Fig. 305.—Combustion of sodium in water.

This remarkable experiment is very easy to carry out, and sodium is now easily procured at any shop where chemicals are sold. The combustion of sodium in water can be explained in a very simple manner. Water, as we know, is composed of hydrogen and oxygen. Sodium, by reason of its great affinity for the latter gas, combines with it, and forms a very soluble oxide; the hydrogen is released and thrown off, as we shall perceive by placing a lighted match in the jar, when the combustible gas ignites.

Oxide of sodium has a great affinity for water; it combines with it, and absorbs it in great quantities. It is a solid, white substance, which burns and cauterizes the skin; it is also alkaline, and brings back the blue colour to litmus paper that has been reddened by acids.

Sodium combines easily also with chlorine. If plunged into a jar containing this gas it is transformed into a substance, which is sea salt. If the chlorine is in excess a part of the gas remains free, for simple substances do not mingle in undetermined ratios; they combine, on the contrary, in very definite proportions, and 35·5 gr. of dry chlorine always unites with the same quantity of soda equal to 23 grams. A gram of kitchen salt is formed, therefore, of 0·606 gr. of chlorine, and 0·394 gr. of sodium. Besides sea salt, there are a number of different salts which may be made the object of curious experiments. We know that caustic soda, or oxide of sodium, is an alkaline product possessing very powerful properties; it burns the skin, and destroys organic substances.

Sulphuric acid is endowed with no less powerful properties; if a little is dropped on the hand it produces great pain and a sense of burning; a piece of wood plunged into this acid is almost immediately carbonized. If we mix forty-nine grams of sulphuric acid and thirty-one grams of caustic soda a very intense reaction is produced, accompanied by a considerable elevation of temperature; after it has cooled we have a substance which can be handled with impunity; the acid and alkali have combined, and their properties have been reciprocally destroyed. They have now originated a salt which is sulphate of soda. This substance exercises no influence on litmus paper, and resembles in no way the substances from which it originated.

There are an infinite number of salts which result in like manner from the combination of an acid with an alkali or base. Some, such as sulphate of copper, or chromate of potash, are coloured; others, like sulphate of soda, are colourless. The last-mentioned salt, with a number of others, will take a crystalline form; if dissolved in boiling water, and the solution left to stand, we shall perceive a deposit of transparent prisms of very remarkable appearance. This was discovered by Glauber, and was formerly called Glauber’s salts.

Fig. 306.—Preparation of a solution saturated with sulphate of soda.

Sulphate of soda is very soluble in water, and at a temperature of thirty-three (Centigr.) water can dissolve it in the greatest degree. If we pour a layer of oil on a solution saturated with Glauber’s salts, and let it stand, it will not produce crystals; but if we thrust a glass rod through the oil into contact with the solution, crystallization will be instantaneous. This singular phenomenon becomes even more striking when we put the warm concentrated solution into a slender glass tube, A B, which we close after having driven out the air by the bubbling of the liquid (fig. 306). When the tube has been closed, the crystals of sulphate of soda will not form, even with the temperature at zero; nevertheless the salts, being less soluble cold than hot, are found in the fluid in a proportion ten times larger than they would contain under ordinary conditions. If the end of the tube be broken the salt will crystallize immediately. We will describe another experiment, but little known and very remarkable, which exhibits in a striking manner the process of instantaneous crystallizations. Let one hundred and fifty parts of hyposulphite of soda be dissolved in fifteen parts of water, and the solution slowly poured into a test-glass, previously warmed by means of boiling water, until the vessel is about half-full. One hundred parts of acetate of soda is then dissolved in fifteen parts of water, and poured slowly into the first solution, so that they form two layers perfectly distinct from each other. The two solutions are then covered with a little boiling water, which, however is not represented in our illustration. After it has been left to stand and cool slowly, we have two solutions of hyposulphite of soda and acetate of soda superposed on each other. A thread, at the end of which is fixed a small crystal of hyposulphite of soda, is then lowered into the test-glass; the crystal passes through the solution of acetate without disturbing it, but it has scarcely reached the lower solution of hyposulphite than the salt crystallizes instantaneously. (See the test-glass on the left of fig. 307.) We then lower into the upper solution a crystal of acetate of soda, suspended from another thread. This salt then crystallizes also. (See experiment glass on the right of fig. 307.) This very successful experiment is one of the most remarkable belonging to the subject of instantaneous crystals. The successive appearance of crystals of hyposulphite of soda, which take the form of large, rhomboidal prisms, terminating at the two extremities with an oblique surface, and the crystals of acetate of soda, which have the appearance of rhomboidal, oblique prisms, cannot fail to strike the attention and excite the interest of those who are not initiated into these kinds of experiments.

Fig. 307.—Experiment of instantaneous crystallization.

Another remarkable instantaneous crystallization is that of alum. If we leave standing a solution of this salt it gradually cools, at the same time becoming limpid and clear. When it is perfectly cold, if we plunge into it a small octahedral crystal of alum suspended from a thread, we perceive that crystallization instantly commences on the surface of the small crystal; it rapidly and perceptibly increases in size, until it nearly fills the whole jar.

Common Metals and Precious Metals.

How many invalids have swallowed magnesia without suspecting that this powder contains a metal nearly as white as silver, and is malleable, and capable of burning with so intense a light that it rivals even the electric light in brilliancy! If any of our readers desire to prepare magnesium themselves it can be done in the following manner:—Some white magnesia must be obtained from the chemist, and after having been calcined, must be submitted to the influence of hydrochloric acid and hydrochlorate of ammonia. A clear solution will thus be obtained, which by means of evaporation under the influence of heat, furnishes a double chloride, hydrated and crystallised. This chloride, if heated to redness in an earthenware crucible, leaves as a residue a nacreous product, composed of micaceous, white scales, chloride of anhydrous magnesium.

Fig. 308.—Group of alum crystals.

If six hundred grams of this chloride of magnesium are mixed with one hundred grams of chloride of sodium, or kitchen salt, and the same quantity of fluoride of calcium and metallic sodium in small fragments, and the mixture is put into an earthenware crucible made red-hot, and heated for a quarter of an hour under a closed lid, we shall find on pouring out the fluid on to a handful of earth, that we have obtained instead of scoria, forty-five grams of metallic magnesium. The metal thus obtained is impure, and to remove all foreign substances it must be heated in a charcoal tube, through which passes a current of hydrogen.

Magnesium is now produced in great abundance, and is very inexpensive. It is a metal endowed with a great affinity for oxygen, and it is only necessary to thrust it into the flame of a candle to produce combustion; it burns with a brightness that the eye can scarcely tolerate, and is transformed into a white powder—oxide of magnesium, or magnesia. Combustion is still more active in oxygen, and powder of magnesium placed in a jar filled with this gas produces a perfect shower of fire of very beautiful effect. To give an idea of the lighting power of magnesium, we may add that a wire of this metal, which is 29/100 of a millimetre in diameter, produces by combustion a light equal to that of seventy-four candles.

Fig. 309.—Calcined alum.

The humble earth of the fields—the clay which is used in our potteries, also contains aluminium, that brilliant metal which is as malleable as silver, and unspoilable as gold. When clay is submitted to the influence of sulphuric acid and chloride of potassium, we obtain alum, which is a sulphate of alumina and potash. Alum is a colourless salt, which crystallizes on the surface of water in beautiful octahedrons of striking regularity. Fig. 308 represents a group of alum crystals. This salt is much used in the colouring of fabrics; it is also used for the sizing of papers, and the clarification of tallow. Doctors also use it as an astringent and caustic substance. When alum is submitted to the action of heat in an earthenware crucible, it loses the water of crystallization which it contains, and expands in a singular manner, overflowing from the jar in which it is calcined (fig. 309).

Fig. 310.—Preparation of metallic iron.

Iron, the most important of common metals, rapidly unites with oxygen, and, as we know, when a piece of this metal is exposed to the influence of damp air, it becomes covered with a reddish substance. In the well-known experiment of the formation of rust, the iron gradually oxidises without its temperature rising, but this combination of iron with oxygen is effected much more rapidly under the influence of heat. If, for example, we redden at the fire a nail attached to a wire, and give it a movement of rotation as of a sling, we see flashing out from the metal a thousand bright sparks due to the combination of iron with oxygen, and the formation of an oxide. Particles of iron burn spontaneously in contact with air, and this property for many centuries has been utilized in striking a tinder-box; that is to say, in separating, by striking a flint, small particles of iron, which ignite under the influence of the heat produced by the friction. We can prepare iron in such atoms that it ignites at an ordinary temperature by simple contact with the air. To bring it to this state of extreme tenuity, we reduce its oxalate by hydrogen. We prepare an apparatus for hydrogen as shown in fig. 310, and the gas produced at A is passed through a desiccative tube, B, and finally reaches a glass receptacle, C, in which some oxalate of iron is placed. The latter salt, under the combined influence of hydrogen and heat, is reduced to metallic iron, which assumes the appearance of a fine black powder. When the experiment is completed the glass vessel is closed, and the iron, thus protected from contact with the air, can be preserved indefinitely; but if it is exposed to the air by breaking off the end of the receptacle (fig. 311), it ignites immediately, producing a shower of fire of very beautiful effect. Iron thus prepared is known under the name of pyrophoric iron. Iron is acted upon in a very powerful manner by most acids. If some nitric acid is poured on iron nails, a stream of red, nitrous vapour is let loose, and the oxidised iron is dissolved in the liquid to the condition of nitrate of iron. This experiment is very easy to perform, and it gives an idea of the energy of certain chemical actions. We have endeavoured to represent its appearance in fig. 312. Fuming nitric acid does not act on iron, and prevents it being attacked by ordinary nitric acid. This property has given rise to a very remarkable experiment on passive iron. It consists in placing some nails in a glass, into which some fuming nitric acid is poured, which produces no result; the fuming acid is then taken out, and is replaced by ordinary nitric acid, which no longer acts on the iron rendered passive by the smoking acid. After this, if the nails are touched by a piece of iron, which has not undergone the action of nitric acid, they are immediately acted upon, and a giving off of nitrous vapour is manifested with great energy. Lead is a very soft metal, and can even be scratched by the nails. It is also extremely pliable, and so entirely devoid of elasticity that when bent it has no tendency whatever to return to its primitive form. Lead is heavy, and has a density represented by 11·4; that is to say, the weight of a quart of water being one kilogram, that of the same volume of lead is 11·400 k.

Fig. 311.—Pyrophoric iron.

Fig. 313 represents cylindrical bars of the best known metals, all weighing the same, showing their comparative density.

Fig. 312.—Iron and nitric acid.

Lead, like tin, is capable of taking a beautiful crystalline form when placed in solution by a metal that is less oxydisable. The crystallization of lead, represented in fig. 314, is designated by the name of the Tree of Saturn. This is how the experiment is produced: Thirty grams of acetate of lead are dissolved in a quart of water, and the solution is poured into a vase of a spherical shape. A stopper for this vase is made out of a piece of zinc, to which five or six separate brass wires are attached; these are plunged into the fluid, and we see the wires become immediately covered with brilliant crystallized spangles of lead, which continue increasing in size.

The alchemists, who were familiar with this experiment, believed that it consisted in a transformation of copper into lead, while in reality it only consists in the substitution of one metal for another. The copper is dissolved in the liquid, and is replaced by the lead, but no metamorphosis is brought about. We may vary at will the form of the vase or the arrangement of the wire; thus it is easy to form letters, numbers, or figures, by the crystallization of brilliant spangles.

Fig. 313.—Representation of bars of metal, all of the same weight.

Copper, when it is pure, has a characteristic red colour, which prevents it being confounded with any other metal; it dissolves easily in nitric acid, and with considerable effervescence, giving off vapour very abundantly. This property has been put to good use in engraving with aqua fortis. A copper plate is covered with a layer of varnish, and when it is dry some strokes are made on it by means of a graver; if nitric acid is poured on the plate when thus prepared, the copper is only acted on in the parts that have been exposed by the point of steel. By afterwards removing the varnish, we have an engraved plate, which will serve for printing purposes.

Fig. 314.—Tree of Saturn.

Among experiments that may be attempted with common metals, we may mention that in which salts of tin are employed. Tin has a great tendency to assume a crystalline form, and it will be easy to show this property by an interesting experiment. A concentrated solution of proto-chloride of tin, prepared by dissolving some metallic tin in hydrochloric acid, is placed in a test glass; then a rod of tin is introduced, as shown in fig. 315. Some water is next slowly poured on the rod, so that it gradually trickles down, and prevents the mingling of the proto-chloride of tin. The vessel is then left to stand, and we soon see brilliant crystals starting out from the rod. This crystallization is not effected in the water; it is explained by an electric influence, into the details of which we cannot enter without overstepping our limits; it is known as “Jupiter’s Tree.” It is well known that alchemists, with their strange system of nomenclature, believed there was a certain mysterious relation between the seven metals then known and the seven planets; each metal was dedicated to a planet; tin was called Jupiter; silver, Luna; gold, Sol; lead, Saturn; iron, Mars; quicksilver, Mercury; and copper, Venus. The crystallization of tin may be recognised also by rubbing a piece of this metal with hydrochloric acid; the fragments thus rubbed off exhibit specimens of branching crystals similar to the hoar-frost which we see in severe winter weather. If we bend a rod of tin in our hands the crystals break, with a peculiar rustling sound.

When speaking of precious metals, we may call to mind that the alchemists considered gold as the king of metals, and the other valuable ones as noble metals. This definition is erroneous, if we look upon the useful as the most precious; for, in that case, iron and copper would be placed in the first rank. If gold were found abundantly on the surface of the soil, and iron was extremely rare, we should seek most eagerly for this useful metal, and should despise the former, with which we can neither make a ploughshare nor any other implement of industry. Nevertheless, the scarcity of gold, its beautiful yellow colour, and its unalterability when in contact with air, combine to place it in the first rank in the list of precious metals. Gold is very heavy; its density is represented by the figure 19·5. It is the most malleable and the most ductile of metals, and can be reduced by beating to such thin sheets that ten thousand can be laid, one over the other, to obtain the thickness of a millimetre. With a grain of gold a thread may be manufactured extending a league in length, and so fine that it resembles a spider’s web. When gold is beaten into thin sheets it is no longer opaque; if it is fastened, by means of a solution of gum, on to a sheet of glass, the light passes right through it, and presents a very perceptible green shade. Gold is sometimes found scattered in sand, in a condition of impalpable dust, and, in certain localities, in irregular lumps of varying size, called nuggets. Gold is the least alterable of the metals, and can be exposed, indefinitely, to the contact of humid atmosphere without oxidizing. It is not acted on by the most powerful acids, and only dissolves in a mixture of nitric acid and hydrochloric acid. We can prove that gold resists the influence of acids by the following operation:—

Some gold-leaf is placed in two small phials, the first containing hydrochloric acid, and the second nitric acid. The two vessels are warmed on the stove, and whatever the duration of the ebullition of the acids, the gold-leaf remains intact, and completely resists their action. If we then empty the contents of one phial into the other, the hydrochloric and nitric acids are mixed, and we see the gold-leaf immediately disappear, easily dissolved by the action of the liquid (aqua regia). Gold also changes when in contact with mercury; this is proved by suspending some gold-leaf above the surface of this liquid (fig. 316); it quickly changes, and unites with the fumes of the mercury, becoming of a greyish colour.

Silver is more easily affected than gold, and though so white when fused, tarnishes rapidly in contact with air. It does not oxidize, but sulphurizes under the influence of hydro-sulphuric emanations. Silver does not combine directly with the oxygen of the atmosphere; but under certain conditions it can dissolve great quantities of this gas. If it is fused in a small bone cupel, in contact with the air, and left to cool quickly, it expands in a remarkable manner, and gives off oxygen.

Fig. 315.—Jupiter’s Tree.

Nitric acid dissolves silver very easily, by causing the formation of abundant fumes. When the solution evaporates, we perceive white crystals forming, which are nitrate of silver. This fused nitrate of silver takes the name of lunar caustic, and is employed in medicine. Nitrate of silver is very poisonous; it possesses the singular property of turning black under the action of the sun’s rays, and is used in many curious operations in photography. It is also employed in the manufacture of dyes for the hair; it is applied to white hair with gall-nut, and under the influence of the light it turns black, and gives the hair a very dark shade. Salts of silver in solution with water have the property of forming a precipitate under the influence of chlorides, such as sea salt. If a few grains of common salt are thrown into a solution of nitrate of silver, it forms an abundant precipitate of chloride of silver, which blackens in the light. This precipitate, insoluble in nitric acid, dissolves very easily in ammonia.

Platinum, which is the last of the precious metals that we have to consider, is a greyish-white colour, and like gold is only affected by a mixture of nitric acid and hydrochloric acid. It is the heaviest of all the ordinary metals; its density is 21·50. It is very malleable and ductile, and can be beaten into very thin sheets, and into wires as slender as wires of gold. Platinum wires have even been made so fine that the eye can scarcely perceive them; these are known as Wollaston’s invisible wires. Platinum resists the action of the most intense fire, and we can only fuse it by means of a blow-pipe and hydro-oxide gas. Its inalterability and the resistance it opposes to fire render it very valuable for use in the laboratory. Small crucibles are made of it, which are used by chemists to calcine their precipitates in analytical operations, or to bring about reactions under the influence of a high temperature. Platinum may be reduced to very small particles; it then takes the form of a black powder. In this pulverulent condition it absorbs gases with great rapidity, to such an extent that a cubic centimetre can condense seven hundred and fifty times its own volume of hydrogen gas. It also condenses oxygen, and in a number of cases acts as a powerful agent. Platinum is also obtained in porous masses (“spongy platinum”), which produce phenomena of oxidation.

Fig. 316.—Gold-leaf exposed to the fumes of mercury.

A very ingenious little lamp may be constructed which lights of itself without the help of a flame. It contains a bell of glass, which is filled with hydrogen gas, produced by the action exercised by a foundation of zinc on acidulated water. If the knob on the upper part of the apparatus is pressed, the hydrogen escapes, and comes in contact with a piece of spongy platinum, which, acting by oxidation, becomes ignited. The flame produced sets fire to a small oil lamp, which is opposite the jet of gas. This very ingenious lamp is known under the name of Gay-Lussac’s lamp. Platinum can also produce, by mere contact, a great number of chemical reactions. Place in a test glass an explosive mixture formed of two volumes of hydrogen and one volume of oxygen; in this gas plunge a small piece of spongy platinum, and the combination of the two bodies will be instantly brought about, making a violent explosion. Make a small spiral of platinum red-hot in the flame of a lamp, having suspended it to a card; then plunge it quickly into a glass containing ether, and you will see the metallic spiral remain red for some time, while in the air it would cool immediately. This phenomenon is due to the action of oxidation which the platinum exercises over the fumes of ether. This curious experiment is known under the name of the lamp without a flame. This remarkable oxidizing power of platinum, which has not yet been explained, was formerly designated by the title of catalytic action. But a phrase is not a theory, and it is always preferable to avow one’s ignorance than to simulate an apparent knowledge. Science is powerful enough to be able to express her doubts and uncertainties boldly. In observing nature we find an experience of this, and often meet with facts which may be put to profit, and become useful in application; nevertheless it is often the case that the why and the wherefore will for a long time escape the most penetrating eye and lucid intelligence. It is true the admirable applications of science strike us with the importance of their results, and the wonderful inventions they originate; but if they turn to account the observed facts of nature, what do they teach us as to the first cause of all things, the wherefore of nature?—Almost nothing. We must humbly confess our powerlessness, and say with d’Alembert: “The encyclopædia is very abundant, but what of that if it discourses of what we do not understand?”

Fig. 317.—Discolouration of periwinkles by sulphuric acid.

Artificial Colouring of Flowers.

In a course of chemistry, the action exercised by sulphurous acid on coloured vegetable matter is proved by exposing violets to the influence of this gas, which whitens them instantaneously. Sulphurous acid, by its dis-oxidating properties, destroys the colour of many flowers, such as roses, periwinkles, etc. The experiment succeeds very readily by means of the little apparatus which we give in fig. 317. We dissolve in a small vessel some sulphur, which ignites in contact with air, and gives rise, by its combination with oxygen, to sulphurous acid; the capsule is covered with a conical chimney, made out of a thin sheet of copper, and at the opening at the top the flowers that are to be discoloured are placed. The action is very rapid, and a few seconds only are necessary to render roses, periwinkles, and violets absolutely white.

Fig. 318.—Experiment for turning columbines a green colour with ammoniacal ether.

M. Filpol, a distinguished savant, has exhibited to the members of the Scientific Association, Paris, the results which he obtained by subjecting flowers to the influence of a mixture of sulphuric ether and some drops of ammonia; he has shown that, under the influence of this liquid, a great number of violets or roses turn a deep green. We have recently made on this subject a series of experiments which we will here describe, and which may be easily attempted by those of our readers who are interested in the question. Some common ether is poured into a glass, and to it is added a small quantity of liquid ammonia (about one-tenth of the volume). The flowers with which it is desired to experiment are then plunged into the fluid (fig. 318). A number of flowers, whose natural colour is red or violet, take instantaneously a bright green tint; these are red geranium, violet, periwinkle, lilac, red and pink roses, wall-flower, thyme, small blue campanula, fumeter, myosotis, and heliotrope. Other flowers, whose colours are not of the same shade, take different tints when in contact with ammoniacal ether. The upper petal of the violet sweet-pea becomes dark blue, whilst the lower petal turns a bright green colour. The streaked carnation becomes brown and bright green. White flowers generally turn yellow, such as the white poppy, the variegated snow-dragon, which becomes yellow and dark violet, the white rose, which takes a straw colour, white columbine, camomile, syringa, white daisy, potatoe blossom, white julian, honeysuckle, and white foxglove, which in contact with ammoniacal ether assume more or less deep shades of yellow. White snap-dragon becomes yellow and dark orange. Red geranium turns blue in a very remarkable fashion; with the monkey-flower the ammoniacal ether only affects the red spots, which turn a brownish green; red snap-dragon turns a beautiful brown; valerian takes a shade of grey; and the red corn-poppy assumes a dark violet. Yellow flowers are not changed by ammoniacal ether; buttercups, marigolds, and yellow snap-dragon preserve their natural colour. Leaves of a red colour are instantly turned green when placed in contact with ammoniacal ether. The action of this liquid is so rapid that it is easy to procure green spots by pouring here and there a drop of the solution. In like manner violet flowers, such as periwinkles, can be spotted with white, even without gathering them. We will complete our remarks on this subject with a description of experiments performed by M. Gabba in Italy by means of ammonia acting on flowers. M. Gabba simply used a plate, in which he poured a certain quantity of solution of ammonia. He placed on the plate a funnel turned upside down, in the tube of which he arranged the flowers on which he wished to experiment. He then found that under the influence of the ammonia the blue, violet, and purple flowers became a beautiful green, red flowers black, and white yellow, etc.

The most singular changes of colour are shown by flowers which are composed of different tints, their red streaks turning green, the white yellow, etc. Another curious example is that of red and white fuchsias, which, through the action of ammonia, turn yellow, blue, and green. When flowers have been subjected to these changes of colour, and afterwards plunged into pure water, they preserve their new tint for several hours, after which they gradually return to their natural colour. Another interesting observation, due to M. Gabba, is that asters, which are naturally inodorous, acquire an agreeable aromatic odour under the influence of ammonia. Asters of a violet colour become red when wetted with nitric acid mixed with water. On the other hand, if these same flowers are enclosed in a wooden box, where they are exposed to the fumes of hydrochloric acid, they become, in six hours’ time, a beautiful red colour, which they preserve when placed in a dry, shady place, after having been properly dried. Hydrochloric acid has the effect of making flowers red that have been rendered green by the action of ammonia, and also alters their appearance very sensibly. We may also mention, in conclusion, that ammonia, combined with ether, acts much more promptly than when employed alone.

Phosphorescence.

Artificial flowers are frequently to be seen prepared in a particular manner, which have the property of becoming phosphorescent in darkness, when they have been exposed to the action of a ray of light, solar or electric. These curious chemical objects are connected with some very interesting phenomena and remarkable experiments but little known at the present time, to which we will now draw the reader’s attention.

The faculty possessed by certain bodies of emitting light when placed in certain conditions, is much more general than is usually supposed.

M. Edmond Becquerel, to whom we owe a remarkable work on this subject, divides the phenomena of phosphorescence into five distinct classes:

1. Phosphorescence through elevation of temperature. Among the substances which exhibit this phenomenon in a high degree we may mention certain diamonds, coloured varieties of fluoride of calcium, some minerals; and sulphur, known under the name of artificial phosphorus, when it has previously been exposed to the action of the light.

2. Phosphorescence through mechanical action. This is to be observed when we rub certain bodies together, or against a hard substance. If we rub together two quartz crystals in the dark, we perceive red sparks; and when pounding chalk or sugar, there is also an emission of sparks.

3. Phosphorescence through electricity. This is manifested by the light accompanying disengagement of electricity, and when gases and rarefied vapours transmit electric discharges.

4. Spontaneous Phosphorescence is observed, as every one knows, in connection with several kinds of living creatures,—glow-worms, noctilucids, etc., and similar phosphorescent effects are produced also with organic substances, animal or vegetable, before putrefaction sets in. It is manifested also at the flowering time of certain plants, etc.

5. Phosphorescence through insolation and the action of light. “It consists,” says M. Edmond Becquerel, “in exposing for some instants to the action of the sun, or to that of rays emanating from a powerful luminous source, certain mineral or organic substances, which immediately become luminous, and shine in the dark with a light, the colour and brilliancy of which depend on their nature and physical character; the light gradually diminishes in intensity during a period varying from some seconds to several hours. When these substances are exposed anew to the action of light, the same effect is reproduced. The intensity of the light emitted after insolation is always much less than that of the incidental light.” These phenomena appear to have been first observed with precious stones; then, in 1604, in calcined Bologna stone, and later, in a diamond by Boyle, in 1663; in 1675 it was noticed in Baudoin phosphorus (residuum of the calcination of nitrate of lime), and more recently still in connection with other substances which we will mention. The substances most powerfully influenced by the action of light are sulphates of calcium and barium, sulphate of strontium, certain kinds of diamonds, and that variety of fluoride of calcium, which has received the name of chlorophane.

Fig. 319.—Artificial flower coated with phosphorescent powder, exposed to the light of magnesium wire.

Phosphorescent sulphate of calcium is prepared by calcining in an earthenware crucible a mixture of flowers of sulphur and carbonate of lime. But the preparation only succeeds with carbonate of lime of a particular character. That obtained from the calcination of oyster shells produces very good results. Three parts of this substance is mixed with one part of flowers of sulphur, and is made red-hot in a crucible covered in from contact with the air. The substance thus obtained gives, after its insolation, a yellow light in the dark. The shells of oysters, however, are not always pure, and the result is sometimes not very satisfactory; it is therefore better to make use of some substance whose composition is more to be relied on.

“When we desire to prepare a phosphorescent sulphate with lime, or carbonate of lime,” says M. E. Becquerel, “the most suitable proportions are those which in a hundred parts of the substance are composed of eighty to a hundred of flowers of sulphur in the first case, and forty-eight to a hundred in the second, that is, when we employ the quantity of sulphur which will be necessary for burning with carbonate of lime to produce a monosulphate.[20] It is necessary to have regard to the elevation of the temperature in the preparation. By using lime procured from arragonite, and reducing the temperature below five hundred degrees for a sufficient time for the reaction between the sulphur and lime to take place, the excess of sulphur is eliminated, and we have a feebly luminous mass, of a bluish tint; if this mass is raised to a temperature of eight hundred or nine hundred degrees, it will exhibit a very bright light.”

Sulphate of calcium possesses different phosphorescent properties according to the nature of the salt which has served to produce the carbonate of lime employed. If we transform marble into nitrate of lime, by dissolving it in water and nitric acid, and form a precipitate with carbonate of ammonium, and use the carbonate of lime thus obtained in the preparation of sulphate of calcium, we have a product which gives a phosphorescence of a violet-red colour. If the carbonate of lime used is obtained from chloride of calcium precipitated by carbonate of ammonia, the phosphorescence is yellow. If we submit carbonate of lime, prepared with lime water and carbonic acid, to the influence of sulphur, we obtain a sulphur giving a phosphorescent light of very pure violet. Carbonate of lime obtained by forming a precipitate of crystallized chloride of calcium with different alkaline carbonates also gives satisfactory results.

Luminous sulphates of strontium may be obtained, like those of calcium, by the action of sulphur on strontia or the carbonate of this base, by the reduction of sulphates of strontia with charcoal. Blue and green shades are the most common. Sulphates of barium also present very remarkable phenomena of phosphorescence; but to obtain very luminous intensity a higher temperature is needed than with the other substances mentioned, and we have the same result when we reduce native sulphate of baryta with charcoal; that is to say, when the reaction takes place which produces the phosphorus formerly known as phosphorus of Bologna. Preparations obtained from baryta have a phosphorescence varying from orange-red to green.

The preparation of such substances as we have just enumerated afford an easy explanation of the method of manufacturing the luminous flowers which we described at the commencement of this chapter. We obtain some artificial flowers, cover them with some liquid gum, sprinkle with phosphorescent sulphur, and let them dry. The pulverulent matter then adheres to them securely, and it is only necessary to expose the flowers thus prepared to the light of the sun, or the rays emanating from magnesium wire in a state of combustion (fig. 319), to produce immediate phosphorescent effects. If taken into a dark room (fig. 320) they shine with great brilliancy, and give off very exquisite coloured rays. Phosphorescent sulphates are used also in tracing names or designs on a paper surface, etc., and it can easily be conceived that such experiments may be infinitely varied according to the pleasure of the experimenter.

Fig. 320.—Phosphorescent flower emitting light in a dark room.

But let us ask ourselves if these substances are not capable of being put to more serious uses, and of being classed among useful products. To this we can reply very decidedly in the affirmative. With phosphorescent matter we can obtain luminous faces for clocks placed in dark, obscure spots, and it is not impossible to use it for making sign-boards for shops, or numbers of houses, which can be lit up at night. Professor Norton even goes so far as to propose in the “Journal of the Franklin Institute,” not only coating the walls of rooms with these phosphorescent substances, but also the fronts of houses, when he considers it would be possible to do away entirely with street lights, the house-fronts absorbing sufficient light during the day to remain luminous the whole of the night.

Chemistry Applied to Sleight of Hand.

While physics has provided the species of entertainment called “sleight of hand” with a number of interesting effects, chemistry has only offered it very feeble contributions. Robert Houdin formerly made use of electricity to move the hands of his magic clock, and the electric magnet in making an iron box so heavy instantaneously that no one could lift it. Robin has made use of optics to produce the curious spectacle of the decapitated man, spectres, etc. Those persons who are fond of this kind of amusement may, however, borrow from chemistry some original experiments, which can be easily undertaken, and I will conclude this chapter by describing a juggling feat which I have seen recently executed before a numerous audience by a very clever conjuror.

Fig. 321.—Amusing experiment in chemistry.

The operator took a glass that was perfectly transparent, and placed it on a table, announcing that he should cover the glass with a saucer, and then, retiring to some distance, would fill it with the smoke from a cigarette. And this he carried out exactly, standing smoking his cigarette in the background, while the glass, as though by enchantment, slowly filled with the fumes of the smoke. This trick is easily accomplished. It is only necessary to pour previously into the glass two or three drops of hydrochloric acid, and to moisten the bottom of the saucer with a few drops of ammonia. These two liquids are unperceived by the spectators, but as soon as the saucer is placed over the glass, they unite in forming white fumes of hydrochlorate of ammonia, which bear a complete resemblance to the smoke of tobacco.

This experiment excited the greatest astonishment among the spectators present on the occasion, but understanding something of chemistry myself, I easily guessed at the solution of the mystery. The same result is obtained in a course of chemistry in a more simple manner, and without any attempt at trickery, by placing the opening of a bottle of ammonia against the opening of another bottle containing hydrochloric acid.