FOOTNOTES:

[Pg 43][1] Modern nomenclature in the description of ore-deposits is so impregnated with modern views of their origin, that we have considered it desirable in many instances to adopt the Latin terms used by the author, for we believe this method will allow the reader greater freedom of judgment as to the author's views. The Latin names retained are usually expressive even to the non-Latin student. In a general way, a vena profunda is a fissure vein, a vena dilatata is a bedded deposit, and a vena cumulata an impregnation, or a replacement or a stockwerk. The canales, as will appear from the following footnote, were ore channels. "The seams of the rocks" (commissurae saxorum) are very puzzling. The author states, as appears in the following note, that they are of two kinds,—contemporaneous with the formation of the rocks, and also of the nature of veinlets. However, as to their supposed relation to the strike of veins, we can offer no explanation. There are passages in this chapter where if the word "ore-shoot" were introduced for "seams in the rocks" the text would be intelligible. That is, it is possible to conceive the view that the determination of whether an east-west vein ran east or ran west was dependent on the dip of the ore-shoot along the strike. This view, however, is utterly impossible to reconcile with the description and illustration of commissurae saxorum given on page [54], where they are defined as the finest stringers. The following passage from the Nützliche Bergbüchlin (see [Appendix]), reads very much as though the dip of ore-shoots was understood at this time in relation to the direction of veins. "Every vein (gang) has two (outcrops) ausgehen, one of the ausgehen is toward daylight along the whole length of the vein, which is called the ausgehen of the whole vein. The other ausgehen is contrary to or toward the strike (streichen) of the vein, according to its rock (gestein), that is called the gesteins ausgehen; for instance, every vein that has its strike from east to west has its gesteins ausgehen to the east, and vice-versa."

Agricola's classification of ore-deposits, after the general distinction between alluvial and in situ deposits, is based entirely upon form, as will be seen in the quotation below relating to the origin of canales. The German equivalents in the Glossary are as follows:—

Fissure vein (vena profunda)Gang.
Bedded deposit (vena dilatata)Schwebender gang oder fletze.
Stockwerk or impregnation (vena cumulata)Geschute oder stock.
Stringer (fibra)Klufft.
Seams or joints (commissurae saxorum)Absetzen des gesteins.

It is interesting to note that in De Natura Fossilium he describes coal and salt, and later in De Re Metallica he describes the Mannsfeld copper schists, as all being venae dilatatae. This nomenclature and classification is not original with Agricola. Pliny (XXXIII, 21) uses the term vena with no explanations, and while Agricola coined the Latin terms for various kinds of veins, they are his transliteration of German terms already in use. The Nützliche Bergbüchlin gives this same classification.

Historical Note on the Theory of Ore Deposits. Prior to Agricola there were three schools of explanation of the phenomena of ore deposits, the orthodox followers of the Genesis, the Greek Philosophers, and the Alchemists. The geology of the Genesis—the contemporaneous formation of everything—needs no comment other than that for anyone to have proposed an alternative to the dogma of the orthodox during the Middle Ages, required much [Pg 44]independence of mind. Of the Greek views—which are meagre enough—that of the Peripatetics greatly dominated thought on natural phenomena down to the 17th century. Aristotle's views may be summarized: The elements are earth, water, air, and fire; they are transmutable and never found pure, and are endowed with certain fundamental properties which acted as an "efficient" force upon the material cause—the elements. These properties were dryness and dampness and heat and cold, the latter being active, the former passive. Further, the elements were possessed of weight and lightness, for instance earth was absolutely heavy, fire absolutely light. The active and passive properties existed in binary combinations, one of which is characteristic, i.e., "earth" is cold and dry, water damp and cold, fire hot and dry, air hot and wet; transmutation took place, for instance, by removing the cold from water, when air resulted (really steam), and by removing the dampness from water, when "earth" resulted (really any dissolved substance). The transmutation of the elements in the earth (meaning the globe) produces two "exhalations," the one fiery (probably meaning gases), the other damp (probably meaning steam). The former produces stones, the latter the metals. Theophrastus (On Stones, I to VII.) elaborates the views of Aristotle on the origin of stones, metals, etc.: "Of things formed in the earth some have their origin from water, others from earth. Water is the basis of metals, silver, gold, and the rest; 'earth' of stones, as well the more precious as the common.... All these are formed by solidification of matter pure and equal in its constituent parts, which has been brought together in that state by mere afflux or by means of some kind of percolation, or separated.... The solidification is in some of these substances due to heat and in others to cold." (Based on Hill's Trans., pp. 3-11). That is, the metals inasmuch as they become liquid when heated must be in a large part water, and, like water, they solidify with cold. Therefore, the "metals are cold and damp." Stones, on the other hand, solidify with heat and do not liquefy, therefore, they are "dry and hot" and partake largely of "earth." This "earth" was something indefinite, but purer and more pristine than common clay. In discussing the ancient beliefs with regard to the origin of deposits, we must not overlook the import of the use of the word "vein" (vena) by various ancient authors including Pliny (XXXIII, 21), although he offers no explanation of the term.

During the Middle Ages there arose the horde of Alchemists and Astrologers, a review of the development of whose muddled views is but barren reading. In the main they held more or less to the Peripatetic view, with additions of their own. Geber (13th (?) century, see [Appendix B]) propounded the conception that all metals were composed of varying proportions of "spiritual" sulphur and quicksilver, and to these Albertus Magnus added salt. The Astrologers contributed the idea that the immediate cause of the metals were the various planets. The only work devoted to description of ore-deposits prior to Agricola was the Bergbüchlin (about 1520, see [Appendix B]), and this little book exhibits the absolute apogee of muddled thought derived from the Peripatetics, the Alchemists, and the Astrologers. We believe it is of interest to reproduce the following statement, if for no other reason than to indicate the great advance in thought shown by Agricola.

"The first chapter or first part; on the common origin of ore, whether silver, gold, tin, copper, iron, or lead ore, in which they all appear together, and are called by the common name of metallic ore. It must be noticed that for the washing or smelting of metallic ore, there must be the one who works and the thing that is worked upon, or the material upon which the work is expended. The general worker (efficient force) on the ore and on all things that are born, is the heavens, its movement, its light and influences, as the philosophers say. The influence of the heavens is multiplied by the movement of the firmaments and the movements of the seven planets. Therefore, every metallic ore receives a special influence from its own particular planet, due to the properties of the planet and of the ore, also due to properties of heat, cold, dampness, and dryness. Thus gold is of the Sun or its influence, silver of the Moon, tin of Jupiter, copper of Venus, iron of Mars, lead of Saturn, and quicksilver of Mercury. Therefore, metals are often called by these names by hermits and other philosophers. Thus gold is called the Sun, in Latin Sol, silver is called the Moon, in Latin Luna, as is clearly stated in the special chapters on each metal. Thus briefly have we spoken of the 'common worker' of metal and ore. But the thing worked upon, or the common material of all metals, according to the opinion of the learned, is sulphur and quicksilver, which through the movement and influence of the heavens must have become united and hardened into one metallic body or one ore. Certain others hold that through the movement and the influence of the heavens, vapours or braden, called mineral exhalations, are drawn up from the depths of the earth, from sulphur and quicksilver, and the rising fumes pass into the veins and stringers and are [Pg 46]united through the effect of the planets and made into ore. Certain others hold that metal is not formed from quicksilver, because in many places metallic ore is found and no quicksilver. But instead of quicksilver they maintain a damp and cold and slimy material is set up on all sulphur which is drawn out from the earth, like your perspiration, and from that mixed with sulphur all metals are formed. Now each of these opinions is correct according to a good understanding and right interpretation; the ore or metal is formed from the fattiness of the earth as the material of the first degree (primary element), also the vapours or braden on the one part and the materials on the other part, both of which are called quicksilver. Likewise in the mingling or union of the quicksilver and the sulphur in the ore, the sulphur is counted the male and quicksilver the female, as in the bearing or conception of a child. Also the sulphur is a special worker in ore or metal.

"The second chapter or part deals with the general capacity of the mountain. Although the influence of the heavens and the fitness of the material are necessary to the formation of ore or metal, yet these are not enough thereto. But there must be adaptability of the natural vessel in which the ore is formed, such are the veins, namely steinendegange, flachgange, schargange, creutzgange, or as these may be termed in provincial names. Also the mineral force must have easy access to the natural vessel such as through the kluffte (stringers), namely hengkluft, querklufte, flachekluffte, creutzklufft, and other occasional flotzwerk, according to their various local names. Also there must be a suitable place in the mountain which the veins and stringers can traverse."

Agricola's Views on the Origin of Ore Deposits. Agricola rejected absolutely the Biblical view which, he says, was the opinion of the vulgar; further, he repudiates the alchemistic and astrological view with great vigour. There can be no doubt, however, that he was greatly influenced by the Peripatetic philosophy. He accepted absolutely the four elements—earth, fire, water, and air, and their "binary" properties, and the theory that every substance had a material cause operated upon by an efficient force. Beyond this he did not go, and a large portion of De Ortu et Causis is devoted to disproof of the origin of metals and stones from the Peripatetic "exhalations."

No one should conclude that Agricola's theories are set out with the clarity of Darwin or Lyell. However, the matter is of such importance in the history of the theory of ore-deposits, and has been either so ignored or so coloured by the preconceptions of narrators, that we consider it justifiable to devote the space necessary to a reproduction of his own statements in De Ortu et Causis and other works. Before doing so we believe it will be of service to readers to summarize these views, and in giving quotations from the Author's other works, to group them under special headings, following the outline of his theory given below. His theory was:—

(1) Openings in the earth (canales) were formed by the erosion of subterranean waters.

(2) These ground waters were due (a) to the infiltration of the surface waters, rain, river, and sea water; (b) to the condensation of steam (halitus) arising from the penetration of the surface waters to greater depths,—the production of this halitus being due to subterranean heat, which in his view was in turn due in the main to burning bitumen (a comprehensive genera which embraced coal).

(3) The filling of these canales is composed of "earth," "solidified juices," "stone," metals, and "compounds," all deposited from water and "juices" circulating in the canales. (See also [note 4, page 1]).

"Earth" comprises clay, mud, ochre, marl, and "peculiar earths" generally. The origin of these "earths" was from rocks, due to erosion, transportation, and deposition by water. "Solidified juices" (succi concreti) comprised salt, soda, vitriol, bitumen, etc., being generally those substances which he conceived were soluble in and deposited from water. "Stones" comprised precious, semi-precious, and unusual stones, such as quartz, fluor-spar, etc., as distinguished from country rock; the origin of these he attributed in minor proportion to transportation of fragments of rock, but in the main to deposits from ordinary mineral juice and from "stone juice" (succus lapidescens). Metals comprised the seven traditional metals; the "compounds" comprised the metallic minerals; and both were due to deposition from juices, the compounds being due to a mixture of juices. The "juices" play the most important part in Agricola's theory. Each substance had its own particular juice, and in his theory every substance had a material and an efficient cause, the first being the juice, the second being heat or cold. Owing to the latter the juices fell into two categories—those solidified by heat (i.e., by evaporation, such as salt), and those solidified by cold, (i.e., because metals melt and flow by heat, therefore their solidification was due to cold, and the juice underwent similar treatment). As to the origin of these juices, some were generated by the solution of their own particular substance, but in the [Pg 47]main their origin was due to the combination of "dry things," such as "earth," with water, the mixture being heated, and the resultant metals depended upon the proportions of "earth" and water. In some cases we have been inclined to translate succus (juice) as "solution," but in other cases it embraced substances to which this would not apply, and we feared implying in the text a chemical understanding not warranted prior to the atomic theory. In order to distinguish between earths, (clays, etc.,) the Peripatetic "earth" (a pure element) and the earth (the globe) we have given the two former in quotation marks. There is no doubt some confusion between earth (clays, etc.) and the Peripatetic "earth," as the latter was a pure substance not found in its pristine form in nature; it is, however, difficult to distinguish between the two.

Origin of Canales (De Ortu, p. 35). "I now come to the canales in the earth. These are veins, veinlets, and what are called 'seams in the rocks.' These serve as vessels or receptacles for the material from which minerals (res fossiles) are formed. The term vena is most frequently given to what is contained in the canales, but likewise the same name is applied to the canales themselves. The term vein is borrowed from that used for animals, for just as their veins are distributed through all parts of the body, and just as by means of the veins blood is diffused from the liver throughout the whole body, so also the veins traverse the whole globe, and more particularly the mountainous districts; and water runs and flows through them. With regard to veinlets or stringers and 'seams in the rocks,' which are the thinnest stringers, the following is the mode of their arrangement. Veins in the earth, just like the veins of an animal, have certain veinlets of their own, but in a contrary way. For the larger veins of animals pour blood into the veinlets, while in the earth the humours are usually poured from the veinlets into the larger veins, and rarely flow from the larger into the smaller ones. As for the seams in the rocks (commissurae saxorum) we consider that they are produced by two methods: by the first, which is peculiar to themselves, they are formed at the same time as the rocks, for the heat bakes the refractory material into stone and the non-refractory material similarly heated exhales its humours and is made into 'earth,' generally friable. The other method is common also to veins and veinlets, when water is collected into one place it softens the rock by its liquid nature, and by its weight and pressure breaks and divides it. Now, if the rock is hard, it makes seams in the rocks and veinlets, and if it is not too hard it makes veins. However, if the rocks are not hard, seams and veinlets are created as well as veins. If these do not carry a very large quantity of water, or if they are pressed by a great volume of it, they soon discharge themselves into the nearest veins. The following appears to be the reason why some veinlets or stringers and veins are profundae and others dilatatae. The force of the water crushes and splits the brittle rocks; and when they are broken and split, it forces its way through them and passes on, at one time in a downward direction, making small and large venae profundae, at another time in a lateral direction, in which way venae dilatatae are formed. Now since in each class there are found some which are straight, some inclined, and some crooked, it should be explained that the water makes the vena profunda straight when it runs straight downward, inclined when it runs in an inclined direction; and that it makes a vena dilatata straight when it runs horizontally to the right or left, and in a similar way inclined when it runs in a sloping direction. Stringers and large veins of the profunda sort, extending for considerable lengths, become crooked from two causes. In one case when narrow veins are intersected by wide ones, then the latter bend or drag the former a little. In the other case, when the water runs against very hard rock, being unable to break through, it goes around the nearest way, and the stringers and veins are formed bent and crooked. This last is also the reason we sometimes see crooked small and large venae dilatatae, not unlike the gentle rise and fall of flowing water. Next, venae profundae are wide, either because of abundant water or because the rock is fragile. On the other hand, they are narrow, either because but little water flows and trickles through them, or because the rock is very hard. The venae dilatatae, too, for the same reasons, are either thin or thick. There are other differences, too, in stringers and veins, which I will explain in my work De Re Metallica.... There is also a third kind of vein which, as it cannot be described as a wide vena profunda, nor as a thick vena dilatata, we will call a vena cumulata. These are nothing else than places where some species of mineral is accumulated; sometimes exceeding in depth and also in length and breadth 600 feet; sometimes, or rather generally, not so deep nor so long, nor so wide. These are created when water has broken away the rock for such a length, breadth, and thickness, and has flung aside and ejected the stones and sand from the great cavern which is thus made; and afterward when the mouth is obstructed and closed up, the whole cavern is filled with material from which there is in time produced some one or more minerals. Now I have stated [Pg 48]when discoursing on the origin of subterranean humours, that water erodes away substances inside the earth, just as it does those on the surface, and least of all does it shun minerals; for which reason we may daily see veinlets and veins sometimes filled with air and water, but void and empty of mining products, and sometimes full of these same materials. Even those which are empty of minerals become finally obstructed, and when the rock is broken through at some other point the water gushes out. It is certain that old springs are closed up in some way and new ones opened in others. In the same manner, but much more easily and quickly than in the solid rock, water produces stringers and veins in surface material, whether it be in plains, hills, or mountains. Of this kind are the stringers in the banks of rivers which produce gold, and the veins which produce peculiar earth. So in this manner in the earth are made canales which bear minerals."

Origin of Ground Waters. (De Ortu p. 5). "... Besides rain there is another kind of water by which the interior of the earth is soaked, so that being heated it can continually give off halitus, from which arises a great and abundant force of waters." In description of the modus operandi of halitum, he says (p. 6): "... Halitus rises to the upper parts of the canales, where the congealing cold turns it into water, which by its gravity and weight again runs down to the lowest parts and increases the flow of water if there is any. If any finds its way through a canales dilatata the same thing happens, but it is carried a long way from its place of origin. The first phase of distillation teaches us how this water is produced, for when that which is put into the ampulla is warmed it evaporates (expirare), and this halitus rising into the operculum is converted by cold into water, which drips through the spout. In this way water is being continually created underground." (De Ortu, p. 7): "And so we know from all this that of the waters which are under the earth, some are collected from rain, some arise from halitus (steam), some from river-water, some from sea-water; and we know that the halitum is produced within the earth partly from rain-water, partly from river-water, and partly from sea-water." It would require too much space to set out Agricola's views upon the origin of the subterranean heat which produced this steam. It is an involved theory embracing clashing winds, burning bitumen, coal, etc., and is fully set out in the latter part of Book II, De Ortu et Causis.

Origin of Gangue Minerals. It is necessary to bear in mind that Agricola divided minerals (res fossiles—"Things dug up," see [note 4, p. 1]) into "earths," "solidified juices," "stones," "metals," and "compounds;" and, further, to bear in mind that in his conception of the origin of things generally, he was a disciple of the Peripatetic logic of a "material substance" and an "efficient force," as mentioned above.

As to the origin of "earths," he says (De Ortu, p. 38): "Pure and simple 'earth' originates in the canales in the following way: rain water, which is absorbed by the surface of the earth, first of all penetrates and passes into the inner parts of the earth and mixes with it; next, it is collected from all sides into stringers and veins, where it, and sometimes water of other origin, erodes the 'earth' away,—a great quantity of it if the stringers and veins are in 'earth,' a small quantity if they are in rock. The softer the rock is, the more the water wears away particles by its continual movement. To this class of rock belongs limestone, from which we see chalk, clay, and marl, and other unctuous 'earths' made; also sandstone, from which are made those barren 'earths' which we may see in ravines and on bare rocks. For the rain softens limestone or sandstone and carries particles away with it, and the sediment collects together and forms mud, which afterward solidifies into some kind of 'earth.' In a similar way under the ground the power of water softens the rock and dissolves the coarser fragments of stone. This is clearly shown by the following circumstance, that frequently the powder of rock or marble is found in a soft state and as if partly dissolved. Now, the water carries this mixture into the course of some underground canalis, or dragging it into narrow places, filters away. And in each case the water flows away and a pure and uniform material is left from which 'earth' is made.... Particles of rock, however, are only by force of long time so softened by water as to become similar to particles of 'earth.' It is possible to see 'earth' being made in this way in underground canales in the earth, when drifts or tunnels are driven into the mountains, or when shafts are sunk, for then the canales are laid bare; also it can be seen above ground in ravines, as I have said, or otherwise disclosed. For in both cases it is clear to the eye that they are made out of the 'earth' or rocks, which are often of the same colour. And in just the same way they are made in the springs which the veins discharge. Since all those things which we see with our eyes and which are perceived with our senses, are more clearly understood than if they were learnt by means of reasoning, we deem it sufficient to explain by this argument our view of the origin of 'earth.' In the manner which I have described, 'earths' originate in veins and veinlets, seams in the rocks, springs, ravines, and other openings, therefore all 'earths' are made in this way. [Pg 49]As to those that are found in underground canales which do not appear to have been derived from the earth or rock adjoining, these have undoubtedly been carried by the water for a greater distance from their place of origin; which may be made clear to anyone who seeks their source."

On the origin of solidified juices he states (De Ortu, p. 43): "I will now speak of solidified juices (succi concreti). I give this name to those minerals which are without difficulty resolved into liquids (humore). Some stones and metals, even though they are themselves composed of juices, have been compressed so solidly by the cold that they can only be dissolved with difficulty or not at all.... For juices, as I said above, are either made when dry substances immersed in moisture are cooked by heat, or else they are made when water flows over 'earth,' or when the surrounding moisture corrodes metallic material; or else they are forced out of the ground by the power of heat alone. Therefore, solidified juices originate from liquid juices, which either heat or cold have condensed. But that which heat has dried, fire reduces to dust, and moisture dissolves. Not only does warm or cold water dissolve certain solidified juices, but also humid air; and a juice which the cold has condensed is liquefied by fire and warm water. A salty juice is condensed into salt; a bitter one into soda; an astringent and sharp one into alum or into vitriol. Skilled workmen in a similar way to nature, evaporate water which contains juices of this kind until it is condensed; from salty ones they make salt, from aluminous ones alum, from one which contains vitriol they make vitriol. These workmen imitate nature in condensing liquid juices with heat, but they cannot imitate nature in condensing them by cold. From an astringent juice not only is alum made and vitriol, but also sory, chalcitis, and misy, which appears to be the 'flower' of vitriol, just as melanteria is of sory. (See note on p. [573] for these minerals.) When humour corrodes pyrites so that it is friable, an astringent juice of this kind is obtained."

On the Origin of Stones (De Ortu, p. 50), he states: "It is now necessary to review in a few words what I have said as to all of the material from which stones are made; there is first of all mud; next juice which is solidified by severe cold; then fragments of rock; afterward stone juice (succus lapidescens), which also turns to stone when it comes out into the air; and lastly, everything which has pores capable of receiving a stony juice." As to an "efficient force," he states (p. 54): "But it is now necessary that I should explain my own view, omitting the first and antecedent causes. Thus the [Pg 51]immediate causes are heat and cold; next in some way a stony juice. For we know that stones which water has dissolved, are solidified when dried by heat; and on the contrary, we know that stones which melt by fire, such as quartz, solidify by cold. For solidification and the conditions which are opposite thereto, namely, dissolving and liquefying, spring from causes which are the opposite to each other. Heat, driving the water (humorem) out of a substance, makes it hard; and cold, by withdrawing the air, solidifies the same stone firmly. But if a stony juice, either alone or mixed with water, finds its way into the pores either of plants or animals ... it creates stones.... If stony juice is obtained in certain stony places and flows through the veins, for this reason certain springs, brooks, streams, and lakes, have the power of turning things to stone."

On the Origin of Metals, he says (De Ortu, p. 71): "Having now refuted the opinions of others, I must explain what it really is from which metals are produced. The best proof that there is water in their materials is the fact that they flow when melted, whereas they are again solidified by the cold of air or water. This, however, must be understood in the sense that there is more water in them and less 'earth'; for it is not simply water that is their substance but water mixed with 'earth.' And such a proportion of 'earth' is in the mixture as may obscure the transparency of the water, but not remove the brilliance which is frequently in unpolished things. Again, the purer the mixture, the more precious the metal which is made from it, and the greater its resistance to fire. But what proportion of 'earth' is in each liquid from which a metal is made no mortal can ever ascertain, or still less explain, but the one God has known it, Who has given certain sure and fixed laws to nature for mixing and blending things together. It is a juice (succus) then, from which metals are formed; and this juice is created by various operations. Of these operations the first is a flow of water which softens the 'earth' or carries the 'earth' along with it, thus there is a mixture of 'earth' and water, then the power of heat works upon the mixtures so as to produce that kind of a juice. We have spoken of the substance of metals; we must now speak of their efficient cause.... (p. 75): We do not deny the statement of Albertus Magnus that the mixture of 'earth' and water is baked by subterranean heat to a certain denseness, but it is our opinion that the juice so obtained is afterward solidified by cold so as to become a metal.... We grant, indeed, that heat is the efficient cause of a good mixture of elements, and also cooks this same mixture into a juice, but until this juice is solidified by cold it is not a metal.... (p. 76): This view of Aristotle is the true one. For metals melt through the heat and somehow become softened; but those which have become softened through heat are again solidified by the influence of cold, and, on the contrary, those which become softened by moisture are solidified by heat."

On the Origin of Compounds, he states (De Ortu, p. 80): "There now remain for our consideration the compound minerals (mistae), that is to say, minerals which contain either solidified juice (succus concretus) and 'stone,' or else metal or metals and 'stone,' or else metal-coloured 'earth,' of which two or more have so grown together by the action of cold that one body has been created. By this sign they are distinguished from mixed minerals (composita), for the latter have not one body. For example, pyrites, galena, and ruby silver are reckoned in the category of compound minerals, whereas we say that metallic 'earths' or stony 'earths' or 'earths' mingled with juices, are mixed minerals; or similarly, stones in which metal or solidified juices adhere, or which contain 'earth.' But of both these classes I will treat more fully in my book De Natura Fossilium. I will now discuss their origin in a few words. A compound mineral is produced when either a juice from which some metal is obtained, or a humour and some other juice from which stone is obtained, are solidified by cold, or when two or more juices of different metals mixed with the juice from which stone is made, are condensed by the same cold, or when a metallic juice is mixed with 'earth' whose whole mass is stained with its colour, and in this way they form one body. To the first class belongs galena, composed of lead juice and of that material which forms the substance of opaque stone. Similarly, transparent ruby silver is made out of silver juice and the juice which forms the [Pg 52]substance of transparent stone; when it is smelted into pure silver, since from it is separated the transparent juice, it is no longer transparent. Then too, there is pyrites, or lapis fissilis, from which sulphur is melted. To the second kind belongs that kind of pyrites which contains not only copper and stone, but sometimes copper, silver, and stone; sometimes copper, silver, gold, and stone; sometimes silver, lead, tin, copper and silver glance. That compound minerals consist of stone and metal is sufficiently proved by their hardness; that some are made of 'earth' and metal is proved from brass, which is composed of copper and calamine; and also proved from white brass, which is coloured by artificial white arsenic. Sometimes the heat bakes some of them to such an extent that they appear to have flowed out of blazing furnaces, which we may see in the case of cadmia and pyrites. A metallic substance is produced out of 'earth' when a metallic juice impregnating the 'earth' solidifies with cold, the 'earth' not being changed. A stony substance is produced when viscous and non-viscous 'earth' are accumulated in one place and baked by heat; for then the viscous part turns into stone and the non-viscous is only dried up."

The Origin of Juices. The portion of Agricola's theory surrounding this subject is by no means easy to follow in detail, especially as it is difficult to adjust one's point of view to the Peripatetic elements, fire, water, earth, and air, instead of to those of the atomic theory which so dominates our every modern conception. That Agricola's 'juice' was in most cases a solution is indicated by the statement (De Ortu, p. 48): "Nor is juice anything but water, which on the other hand has absorbed 'earth' or has corroded or touched metal and somehow become heated." That he realized the difference between mechanical suspension and solution is evident from (De Ortu, p. 50): "A stony juice differs from water which has abraded something from rock, either because it has more of that which deposits, or because heat, by cooking water of that kind, has thickened it, or because there is something in it which has powerful astringent properties." Much of the author's notion of juices has already been given in the quotations regarding various minerals, but his most general statement on the subject is as follows:—(De Ortu, p. 9): "Juices, however, are distinguished from water by their density (crassitudo), and are generated in various ways—either when dry things are soaked with moisture and the mixture is heated, in which way by far the greatest part of juices arise, not only inside the earth, but outside it; or when water running over the earth is made rather dense, in which way, for the most part the juice becomes salty and bitter; or when the moisture stands upon metal, especially copper, and corrodes it, and in this way is produced the juice from which chrysocolla originates. Similarly, when the moisture corrodes friable cupriferous pyrites an acrid juice is made from which is produced vitriol and sometimes alum; or, finally, juices are pressed out by the very force of the heat from the earth. If the force is great the juice flows like pitch from burning pine ... in this way we know a kind of bitumen is made in the earth. In the same way different kinds of moisture are generated in living bodies, so also the earth produces waters differing in quality, and in the same way juices."

Conclusion. If we strip his theory of the necessary influence of the state of knowledge of his time, and of his own deep classical learning, we find two propositions original with Agricola, which still to-day are fundamentals:

(1) That ore channels were of origin subsequent to their containing rocks; (2) That ores were deposited from solutions circulating in these openings. A scientist's work must be judged by the advancement he gave to his science, and with this gauge one can say unhesitatingly that the theory which we have set out above represents a much greater step from what had gone before than that of almost any single observer since. Moreover, apart from any tangible proposition laid down, the deduction of these views from actual observation instead of from fruitless speculation was a contribution to the very foundation of natural science. Agricola was wrong in attributing the creation of ore channels to erosion alone, and it was not until Von Oppel (Anleitung zur Markscheidekunst, Dresden, 1749 and other essays), two centuries after Agricola, that the positive proposition that ore channels were due to fissuring was brought forward. Von Oppel, however, in neglecting channels due to erosion (and in this term we include solution) was not altogether sound. Nor was it until late in the 18th century that the filling of ore channels by deposition from solutions was generally accepted. In the meantime, Agricola's successors in the study of ore deposits exhibited positive retrogression from the true fundamentals advocated by him. Gesner, Utman, Meier, Lohneys, Barba, [Pg 53]Rössler, Becher, Stahl, Henckel, and Zimmerman, all fail to grasp the double essentials. Other writers of this period often enough merely quote Agricola, some not even acknowledging the source, as, for instance, Pryce (Mineralogia Cornubiensis, London, 1778) and Williams (Natural History of the Mineral Kingdom, London, 1789). After Von Oppel, the two fundamental principles mentioned were generally accepted, but then arose the complicated and acrimonious discussion of the origin of solutions, and nothing in Agricola's view was so absurd as Werner's contention (Neue Theorie von der Entstehung der Gänge, Freiberg, 1791) of the universal chemical deluge which penetrated fissures open at the surface. While it is not the purpose of these notes to pursue the history of these subjects subsequent to the author's time, it is due to him and to the current beliefs as to the history of the theory of ore deposits, to call the attention of students to the perverse representation of Agricola's views by Werner (op. cit.) upon which most writers have apparently relied. Why this author should be (as, for instance, by Posepny, Amer. Inst. Mining Engineers, 1901) so generally considered the father of our modern theory, can only be explained by a general lack of knowledge of the work of previous writers on ore deposition. Not one of the propositions original with Werner still holds good, while his rejection of the origin of solutions within the earth itself halted the march of advance in thought on these subjects for half a century. It is our hope to discuss exhaustively at some future time the development of the history of this, one of the most far-reaching of geologic hypotheses.

[2] The Latin vena, "vein," is also used by the author for ore; hence this descriptive warning as to its intended double use.

[Pg 56][3] The endeavour to discover the origin of the compass with the Chinese, Arabs, or other Orientals having now generally ceased, together with the idea that the knowledge of the lodestone involved any acquaintance with the compass, it is permissible to take a rational [Pg 57]view of the subject. The lodestone was well known even before Plato and Aristotle, and is described by Theophrastus (see [Note 10, p. 115].) The first authentic and specific mention of the compass appears to be by Alexander Neckam (an Englishman who died in 1217), in his works De Utensilibus and De Naturis Rerum. The first tangible description of the instrument was in a letter to Petrus Peregrinus de Maricourt, written in 1269, a translation of which was published by Sir Sylvanus Thompson (London, 1902). His circle was divided into four quadrants and these quarters divided into 90 degrees each. The first mention of a compass in connection with mines so far as we know is in the Nützlich Bergbüchlin, a review of which will be found in [Appendix B]. This book, which dates from 1500, gives a compass much like the one described above by Agricola. It is divided in like manner into two halves of 12 divisions each. The four cardinal points being marked Mitternacht, Morgen, Mittag, and Abend. Thus the directions read were referred to as II. after midnight, etc. According to Joseph Carne (Trans. Roy. Geol. Socy. of Cornwall, Vol. II, 1814), the Cornish miners formerly referred to North-South veins as 12 o'clock veins; South-East North-West veins as 9 o'clock veins, etc.

[Pg 65][4] Crudariis. Pliny (XXXIII., 31), says:—"Argenti vena in summo reperta crudaria appellatur." "Silver veins discovered at the surface are called crudaria." The German translator of Agricola uses the term sylber gang—silver vein, obviously misunderstanding the author's meaning.

[Pg 68][5] It might be considered that the term "outcrop" could be used for "head," but it will be noticed that a vena dilatata would thus be stated to have no outcrop.

[Pg 70][6] It is possible that "veinlets" would be preferred by purists, but the word "stringer" has become fixed in the nomenclature of miners and we have adopted it. The old English term was "stringe," and appears in Edward Manlove's "Rhymed Chronicle," London, 1653; Pryce's, Mineralogia Cornubiensis, London, 1778, pp. 103 and 329; Mawe's "Mineralogy of Devonshire," London, 1802, p. 210, etc., etc.

[7] Subdialis. "In the open air." The Glossary gives the meaning as Ein tag klufft oder tag gehenge—a surface stringer.

[Pg 73][8] The following from Chapter IV of the Nützlich Bergbüchlin (see [Appendix B]) may indicate the source of the theory which Agricola here discards:—"As to those veins which are most profitable to work, it must be remarked that the most suitable location for the vein is on the slope of the mountain facing south, so its strike is from VII or VI east to VI or VII west. According to the above-mentioned directions, the outcrop of the whole vein should face north, its gesteins ausgang toward the east, its hangingwall toward the south, and its footwall toward the north, for in such mountains and veins the influence of the planets is conveniently received to prepare the matter out of which the silver is to be made or formed.... The other strikes of veins from between east and south to the region between west and north are esteemed more or less valuable, according to whether they are nearer or further away from the above-mentioned strikes, but with the same hangingwall, footwall, and outcrops. But the veins having their strike from north to south, their hangingwall toward the west, their footwall and their outcrops toward the east, are better to work than veins which extend from south to north, whose hangingwalls are toward the east, and footwalls and outcrops toward the west. Although the latter veins sometimes yield solid and good silver ore, still it is not sure and certain, because the whole mineral force is completely scattered and dispersed through the outcrop, etc."

[Pg 74][9] The names in the Latin are given as Donum Divinum—"God's Gift," and Coelestis Exercitus—"Heavenly Host." The names given in the text are from the German Translation. The former of these mines was located in the valley of Joachim, where Agricola spent many years as the town physician at Joachimsthal. It is of further interest, as Agricola obtained an income from it as a shareholder. He gives the history of the mine (De Veteribus et Novis Metallis, Book I.), as follows:—"The mines at Abertham were discovered, partly by chance, partly by science. In the eleventh year of Charles V. (1530), on the 18th of February, a poor miner, but one skilled in the art of mining, dwelt in the middle of the forest in a solitary hut, and there tended the cattle of his employer. While digging a little trench in which to store milk, he opened a vein. At once he washed some in a bowl and saw particles of the purest silver settled at the bottom. Overcome with joy he informed his employer, and went to the Bergmeister and petitioned that official to give him a head mining lease, which in the language of our people he called Gottsgaab. Then he proceeded to dig the vein, and found more fragments of silver, and the miners were inspired with great hopes as to the richness of the vein. Although such hopes were not frustrated, still a whole year was spent before they received any profits from the mine; whereby many became discouraged and did not persevere in paying expenses, but sold their shares in the mine; and for this reason, when at last an abundance of silver was being drawn out, a great change had taken place in the ownership of the mine; nay, even the first finder of the vein was not in possession of any share in it, and had spent nearly all the money which he had obtained from the selling of his shares. Then this mine yielded such a quantity of pure silver as no other mine that has existed within our own or our fathers' memories, with the exception of the St. George at Schneeberg. We, as a shareholder, through the goodness of God, have enjoyed the proceeds of this 'God's Gift' since the very time when the mine began first to bestow such riches." Later on in the [Pg 75]same book he gives the following further information with regard to these mines:—"Now if all the individual mines which have proved fruitful in our own times are weighed in the balance, the one at Annaberg, which is known as the Himmelsch hoz, surpasses all others. For the value of the silver which has been dug out has been estimated at 420,000 Rhenish gulden. Next to this comes the lead mine in Joachimsthal, whose name is the Sternen, from which as much silver has been dug as would be equivalent to 350,000 Rhenish gulden; from the Gottsgaab at Abertham, explained before, the equivalent of 300,000. But far before all others within our fathers' memory stands the St. George of Schneeberg, whose silver has been estimated as being equal to two million Rhenish gulden." A Rhenish gulden was about 6.9 shillings, or, say, $1.66. However, the ratio value of silver to gold at this period was about 11.5 to one, or in other words an ounce of silver was worth about a gulden, so that, for purposes of rough calculation, one might say that the silver product mentioned in gulden is practically of the same number of ounces of silver. Moreover, it must be remembered that the purchasing power of money was vastly greater then.

[10] The following passage occurs in the Nützlich Bergbüchlin (Chap. V.), which is interesting on account of the great similarity to Agricola's quotation:—"The best position of the stream is when it has a cliff beside it on the north and level ground on the south, but its current should be from east to west—that is the most suitable. The next best after this is from west to east, with the same position of the rocks as already stated. The third in order is when the stream flows from north to south with rocks toward the east, but the worst flow of water for the preparation of gold is from south to north if a rock or hill rises toward the west." Calbus was probably the author of this booklet.

[Pg 76][11] Albertus Magnus.


BOOK IV.

he third book has explained the various and manifold varieties of veins and stringers. This fourth book will deal with mining areas and the method of delimiting them, and will then pass on to the officials who are connected with mining affairs[1].

Now the miner, if the vein he has uncovered is to his liking, first of all goes to the Bergmeister to request to be granted a right to mine, this official's special function and office being to adjudicate in respect of the mines. And so to the first man who has discovered the vein the Bergmeister awards the head meer, and to others the remaining meers, in the order in which each makes his application. The size of a meer is measured by fathoms, which for miners are reckoned at six feet each. The length, in fact, is that of a man's extended arms and hands measured across his chest; but different peoples assign to it different lengths, for among the Greeks, who called it an ὀργυιά, it was six feet, among the Romans five feet. So this measure which is used by miners seems to have come down to the Germans in accordance with the Greek mode of reckoning. A miner's foot approaches very nearly to the length of a Greek foot, for it exceeds it by only three-quarters of a Greek digit, but like that of the Romans it is divided into twelve unciae[2].

Now we call that part of the vein which is first discovered and mined, the head-meer, because all the other meers run from it, just as the nerves from the head. The Bergmeister begins his measurements from it, and the reason why he apportions a larger area to the head-meer than to the others, is that he may give a suitable reward to the one who first found the vein and may encourage others to search for veins. Since meers often reach to a torrent, or river, or stream, if the last meer cannot be completed it is called a fraction[3]. If it is the size of a double measure, the Bergmeister grants the right of mining it to him who makes the first application, but if it is the size of a single measure or a little over, he divides it between the nearest meers on either side of it. It is the custom among miners that the first meer beyond a stream on that part of the vein on the opposite side is a new head-meer, and they call it the "opposite,"[4] while the other meers beyond are only ordinary meers.

Every ancient meer was formed of a single measure, that is to say, it was seven fathoms in length and width, and was therefore square. In memory of which miners even now call the width of every meer which is located on a vena profunda a "square"[5]. The following was formerly the usual method of delimiting a vein: as soon as the miner found metal, he gave information to the Bergmeister and the tithe-gatherer, who either proceeded personally from the town to the mountains, or sent thither men of good repute, at least two in number, to inspect the metal-bearing vein. Thereupon, if they thought it of sufficient importance to survey, the Bergmeister again having gone forth on an appointed day, thus questioned him who first found the vein, concerning the vein and the diggings: "Which is your vein?" "Which digging carried metal?" Then the discoverer, pointing his finger to his vein and diggings, indicated them, and next the Bergmeister ordered him to approach the windlass and place two fingers of his right hand upon his head, and swear this oath in a clear voice: "I swear by God and all the Saints, and I call them all to witness, that this is my vein; and moreover if it is not mine, may neither this my head nor these my hands henceforth perform their functions." Then the Bergmeister, having started from the centre of the windlass, proceeded to measure the vein with a cord, and to give the measured portion to the discoverer,—in the first instance a half and then three full measures; afterward one to the King or Prince, another to his Consort, a third to the Master of the Horse, a fourth to the Cup-bearer, a fifth to the Groom of the Chamber, a sixth to himself. Then, starting from the other side of the windlass, he proceeded to measure the vein in a similar manner. Thus the discoverer of the vein obtained the head-meer, that is, seven single measures; but the King or Ruler, his Consort, the leading dignitaries, and lastly, the Bergmeister, obtained two measures each, or two ancient meers. This is the reason there are to be found at Freiberg in Meissen so many shafts with so many intercommunications on a single vein—which are to a great extent destroyed by age. If, however, the Bergmeister had already fixed the boundaries of the meers on one side of the shaft for the benefit of some other discoverer, then for those dignitaries I have just mentioned, as many meers as he was unable to award on that side he duplicated on the other. But if on both sides of the shaft he had already defined the boundaries of meers, he proceeded to measure out only that part of the vein which remained free, and thus it sometimes happened that some of those persons I have mentioned obtained no meer at all. To-day, though that old-established custom is observed, the method of allotting the vein and granting title has been changed. As I have explained above, the head-meer consists of three double measures, and each other meer of two measures, and the Bergmeister grants one each of the meers to him who makes the first application. The King or Prince, since all metal is taxed, is himself content with that, which is usually one-tenth.

Of the width of every meer, whether old or new, one-half lies on the footwall side of a vena profunda and one half on the hangingwall side. If the vein descends vertically into the earth, the boundaries similarly descend vertically; but if the vein inclines, the boundaries likewise will be inclined. The owner always holds the mining right for the width of the meer, however far the vein descends into the depth of the earth.[6] Further, the Bergmeister, on application being made to him, grants to one owner or company a right over not only the head meer, or another meer, but also the head meer and the next meer or two adjoining meers. So much for the shape of meers and their dimensions in the case of a vena profunda.

I now come to the case of venae dilatatae. The boundaries of the areas on such veins are not all measured by one method. For in some places the Bergmeister gives them shapes similar to the shapes of the meers on venae profundae, in which case the head-meer is composed of three double measures, and the area of every other mine of two measures, as I have explained more fully above. In this case, however, he measures the meers with a cord, not only forward and backward from the ends of the head-meer, as he is wont to do in the case where the owner of a vena profunda has a meer granted him, but also from the sides. In this way meers are marked out when a torrent or some other force of Nature has laid open a vena dilatata in a valley, so that it appears either on the slope of a mountain or hill or on a plain.

Elsewhere every meer, whether a head-meer or other meer, comprises forty-two fathoms in width and as many in length.

In other places the Bergmeister gives the owner or company all of some locality defined by rivers or little valleys as boundaries. But the boundaries of every such area of whatsoever shape it be, descend vertically into the earth; so the owner of that area has a right over that part of any vena dilatata which lies beneath the first one, just as the owner of the meer on a vena profunda has a right over so great a part of all other venae profundae as lies within the boundaries of his meer; for just as wherever one vena profunda is found, another is found not far away, so wherever one vena dilatata is found, others are found beneath it.

Finally, the Bergmeister divides vena cumulata areas in different ways, for in some localities the head-meer is composed of three measures, doubled in such a way that it is fourteen fathoms wide and twenty-one long; and every other meer consists of two measures doubled, and is square, that is, fourteen fathoms wide and as many long.

Each other meer consists of one double measure. In some places the head-meer is given the shape of a double measure, and every other meer that of a single measure. Lastly, in other places the owner or a company is given a right over some complete specified locality bounded by little streams, valleys, or other limits. Furthermore, all meers on venae cumulatae, as in the case of dilatatae, descend vertically into the depths of the earth, and each meer has the boundaries so determined as to prevent disputes arising between the owners of neighbouring mines.

The boundary marks in use among miners formerly consisted only of stones, and from this their name was derived, for now the marks of a boundary are called "boundary stones." To-day a row of posts, made either of oak or pine, and strengthened at the top with iron rings to prevent them from being damaged, is fixed beside the boundary stones to make them more conspicuous. By this method in former times the boundaries of the fields were marked by stones or posts, not only as written of in the book "De Limitibus Agrorum,"[7] but also as testified to by the songs of the poets. Such then is the shape of the meers, varying in accordance with the different kinds of veins.

Now tunnels are of two sorts, one kind having no right of property, the other kind having some limited right. For when a miner in some particular locality is unable to open a vein on account of a great quantity of water, he runs a wide ditch, open at the top and three feet deep, starting on the slope and running up to the place where the vein is found. Through it the water flows off, so that the place is made dry and fit for digging. But if it is not sufficiently dried by this open ditch, or if a shaft which he has now for the first time begun to sink is suffering from overmuch water, he goes to the Bergmeister and asks that official to give him the right for a tunnel. Having obtained leave, he drives the tunnel, and into its drains all the water is diverted, so that the place or shaft is made fit for digging. If it is not seven fathoms from the surface of the earth to the bottom of this kind of tunnel, the owner possesses no rights except this one: namely, that the owners of the mines, from whose leases the owner of the tunnel extracts gold or silver, themselves pay him the sum he expends within their meer in driving the tunnel through it.

To a depth or height of three and a half fathoms above and below the mouth of the tunnel, no one is allowed to begin another tunnel. The reason for this is that this kind of a tunnel is liable to be changed into the other kind which has a complete right of property, when it drains the meers to a depth of seven fathoms, or to ten, according as the old custom in each place acquires the force of law. In such case this second kind of tunnel has the following right; in the first place, whatever metal the owner, or company owning it, finds in any meer through which it is driven, all belongs to the tunnel owner within a height or depth of one and a quarter fathoms. In the years which are not long passed, the owner of a tunnel possessed all the metal which a miner standing at the bottom of the tunnel touched with a bar, whose handle did not exceed the customary length; but nowadays a certain prescribed height and width is allowed to the owner of the tunnel, lest the owners of the mines be damaged, if the length of the bar be longer than usual. Further, every metal-yielding mine which is drained and supplied with ventilation by a tunnel, is taxed in the proportion of one-ninth for the benefit of the owner of the tunnel. But if several tunnels of this kind are driven through one mining area which is yielding metals, and all drain it and supply it with ventilation, then of the metal which is dug out from above the bottom of each tunnel, one-ninth is given to the owner of that tunnel; of that which is dug out below the bottom of each tunnel, one-ninth is in each case given to the owner of the tunnel which follows next in order below. But if the lower tunnel does not yet drain the shaft of that meer nor supply it with ventilation, then of the metal which is dug out below the bottom of the higher tunnel, one-ninth part is given to the owner of such upper tunnel. Moreover, no one tunnel deprives another of its right to one-ninth part, unless it be a lower one, from the bottom of which to the bottom of the one above must not be less than seven or ten fathoms, according as the king or prince has decreed. Further, of all the money which the owner of the tunnel has spent on his tunnel while driving it through a meer, the owner of that meer pays one-fourth part. If he does not do so he is not allowed to make use of the drains.

Finally, with regard to whatever veins are discovered by the owner at whose expense the tunnel is driven, the right of which has not been already awarded to anyone, on the application of such owner the Bergmeister grants him a right of a head-meer, or of a head-meer together with the next meer. Ancient custom gives the right for a tunnel to be driven in any direction for an unlimited length. Further, to-day he who commences a tunnel is given, on his application, not only the right over the tunnel, but even the head and sometimes the next meer also. In former days the owner of the tunnel obtained only so much ground as an arrow shot from the bow might cover, and he was allowed to pasture cattle therein. In a case where the shafts of several meers on some vein could not be worked on account of the great quantity of water, ancient custom also allowed the Bergmeister to grant the right of a large meer to anyone who would drive a tunnel. When, however, he had driven a tunnel as far as the old shafts and had found metal, he used to return to the Bergmeister and request him to bound and mark off the extent of his right to a meer.

But each of these early customs has been changed, and we now employ the new method.

I have spoken of tunnels; I will now speak about the division of ownership in mines and tunnels. One owner is allowed to possess and to work one, two, three, or more whole meers, or similarly one or more separate tunnels, provided he conforms to the decrees of the laws relating to metals, and to the orders of the Bergmeister. And because he alone provides the expenditure of money on the mines, if they yield metal he alone obtains the product from them. But when large and frequent expenditures are necessary in mining, he to whom the Bergmeister first gave the right often admits others to share with him, and they join with him in forming a company, and they each lay out a part of the expense and share with him the profit or loss of the mine. But the title of the mines or tunnels remains undivided, although for the purpose of dividing the expense and profit it may be said each mine or tunnel is divided into parts[8].

This division is made in various ways. A mine, and the same thing must be understood with regard to a tunnel, may be divided into two halves, that is into two similar portions, by which method two owners spend an equal amount on it and draw an equal profit from it, for each possesses one half. Sometimes it is divided into four shares, by which compact four persons can be owners, so that each possesses one-fourth, or also two persons, so that one possesses three-fourths, and the other only one-fourth; or three owners, so that the first has two-fourths, and the second and third one-fourth each. Sometimes it is divided into eight shares, by which plan there may be eight owners, so that each is possessor of one-eighth; sometimes there are two owners, so that one has five-sixths[9] together with one twenty-fourth, and the other one-eighth; or there may be three owners, in which one has three-quarters and the second and third each one-eighth; or it may be divided so that one owner has seven-twelfths, together with one twenty-fourth, a second owner has one-quarter, and a third owner has one-eighth; or so that the first has one-half, the second one-third and one twenty-fourth, and the third one-eighth; or so that the first has one-half, as before, and the second and third each one-quarter; or so that the first and second each have one-third and one twenty-fourth, and the third one-quarter; and in the same way the divisions may be adjusted in all the other proportions. The different ways of dividing the shares originate from the different proportions of ownership. Sometimes a mine is divided into sixteen parts, each of which is a twenty-fourth and a forty-eighth; or it may be divided into thirty-two parts, each of which is a forty-eighth and half a seventy-second and a two hundred and eighty-eighth; or into sixty-four parts of which each share is one seventy-second and one five hundred and seventy-sixth; or finally, into one hundred and twenty-eight parts, any one of which is half a seventy-second and half of one five hundred and seventy-sixth.

Now an iron mine either remains undivided or is divided into two, four, or occasionally more shares, which depends on the excellence of the veins. But a lead, bismuth, or tin mine, and likewise one of copper or even quicksilver, is also divided into eight shares, or into sixteen or thirty-two, and less commonly into sixty-four. The number of the divisions of the silver mines at Freiberg in Meissen did not formerly progress beyond this; but within the memory of our fathers, miners have divided a silver mine, and similarly the tunnel at Schneeberg, first of all into one hundred and twenty-eight shares, of which one hundred and twenty-six are the property of private owners in the mines or tunnels, one belongs to the State and one to the Church; while in Joachimsthal only one hundred and twenty-two shares of the mines or tunnels are the property of private owners, four are proprietary shares, and the State and Church each have one in the same way. To these there has lately been added in some places one share for the most needy of the population, which makes one hundred and twenty-nine shares. It is only the private owners of mines who pay contributions. A proprietary holder, though he holds as many as four shares such as I have described, does not pay contributions, but gratuitiously supplies the owners of the mines with sufficient wood from his forests for timbering, machinery, buildings, and smelting; nor do those belonging to the State, Church, and the poor pay contributions, but the proceeds are used to build or repair public works and sacred buildings, and to support the most needy with the profits which they draw from the mines. Furthermore, in our State, the one hundred and twenty-eighth share has begun to be divided into two, four, or eight parts, or even into three, six, twelve, or smaller parts. This is done when one mine is created out of two, for then the owner who formerly possessed one-half becomes owner of one-fourth; he who possessed one-fourth, of one-eighth; he who possessed one-third, of one-sixth; he who possessed one-sixth, of one-twelfth. Since our countrymen call a mine a symposium, that is, a drinking bout, we are accustomed to call the money which the owners subscribe a symbolum, or a contribution[10]. For, just as those who go to a banquet (symposium) give contributions (symbola), so those who purpose making large profits from mining are accustomed to contribute toward the expenditure. However, the manager of the mine assesses the contributions of the owners annually, or for the most part quarterly, and as often he renders an account of receipts and expenses. At Freiberg in Meissen the old practice was for the manager to exact a contribution from the owners every week, and every week to distribute among them the profits of the mines, but this practice during almost the last fifteen years has been so far changed that contribution and distribution are made four[11] times each year. Large or small contributions are imposed according to the number of workmen which the mine or tunnel requires; as a result, those who possess many shares provide many contributions. Four times a year the owners contribute to the cost, and four times during the year the profits of the mines are distributed among them; these are sometimes large, sometimes small, according as there is more or less gold or silver or other metal dug out. Indeed, from the St. George mine in Schneeberg the miners extracted so much silver in a quarter of a year that silver cakes, which were worth 1,100 Rhenish guldens, were distributed to each one hundred and twenty-eighth share. From the Annaberg mine which is known as the Himmelisch Höz, they had a dole of eight hundred thaler; from a mine in Joachimsthal which is named the Sternen, three hundred thaler; from the head mine at Abertham, which is called St. Lorentz, two hundred and twenty-five thaler[12]. The more shares of which any individual is owner the more profits he takes.

I will now explain how the owners may lose or obtain the right over a mine, or a tunnel, or a share. Formerly, if anyone was able to prove by witnesses that the owners had failed to send miners for three continuous shifts[13], the Bergmeister deprived them of their right over the mine, and gave the right over it to the informer, if he desired it. But although miners preserve this custom to-day, still mining share owners who have paid their contributions do not lose their right over their mines against their will. Formerly, if water which had not been drawn off from the higher shaft of some mine percolated through a vein or stringer into the shaft of another mine and impeded their work, then the owners of the mine which suffered the damage went to the Bergmeister and complained of the loss, and he sent to the shafts two Jurors. If they found that matters were as claimed, the right over the mine which caused the injury was given to the owners who suffered the injury. But this custom in certain places has been changed, for the Bergmeister, if he finds this condition of things proved in the case of two shafts, orders the owners of the shaft which causes the injury to contribute part of the expense to the owners of the shaft which receives the injury; if they fail to do so, he then deprives them of their right over their mine; on the other hand, if the owners send men to the workings to dig and draw off the water from the shafts, they keep their right over their mine. Formerly owners used to obtain a right over any tunnel, firstly, if in its bottom they made drains and cleansed them of mud and sand so that the water might flow out without any hindrance, and restored those drains which had been damaged; secondly, if they provided shafts or openings to supply the miners with air, and restored those which had fallen in; and finally, if three miners were employed continuously in driving the tunnel. But the principal reason for losing the title to a tunnel was that for a period of eight days no miner was employed upon it; therefore, when anyone was able to prove by witnesses that the owners of a tunnel had not done these things, he brought his accusation before the Bergmeister, who, after going out from the town to the tunnel and inspecting the drains and the ventilating machines and everything else, and finding the charge to be true, placed the witness under oath, and asked him: "Whose tunnel is this at the present time?" The witness would reply: "The King's" or "The Prince's." Thereupon the Bergmeister gave the right over the tunnel to the first applicant. This was the severe rule under which the owners at one time lost their rights over a tunnel; but its severity is now considerably mitigated, for the owners do not now forthwith lose their right over a tunnel through not having cleaned out the drains and restored the shafts or ventilation holes which have suffered damage; but the Bergmeister orders the tunnel manager to do it, and if he does not obey, the authorities fine the tunnel. Also it is sufficient for one miner to be engaged in driving the tunnel. Moreover, if the owner of a tunnel sets boundaries at a fixed spot in the rocks and stops driving the tunnel, he may obtain a right over it so far as he has gone, provided the drains are cleaned out and ventilation holes are kept in repair. But any other owner is allowed to start from the established mark and drive the tunnel further, if he pays the former owners of the tunnel as much money every three months as the Bergmeister decides ought to be paid.

There remain for discussion, the shares in the mines and tunnels. Formerly if anybody conveyed these shares to anyone else, and the latter had once paid his contribution, the seller[14] was bound to stand by his bargain, and this custom to-day has the force of law. But if the seller denied that the contribution had been paid, while the buyer of the shares declared that he could prove by witnesses that he had paid his contribution to the other proprietors, and a case arose for trial, then the evidence of the other proprietors carried more weight than the oath of the seller. To-day the buyer of the shares proves that he has paid his contribution by a document which the mine or tunnel manager always gives each one; if the buyer has contributed no money there is no obligation on the seller to keep his bargain. Formerly, as I have said above, the proprietors used to contribute money weekly, but now contributions are paid four times each year. To-day, if for the space of a month anyone does not take proceedings against the seller of the shares for the contribution, the right of taking proceedings is lost. But when the Clerk has already entered on the register the shares which had been conveyed or bought, none of the owners loses his right over the share unless the money is not contributed which the manager of the mine or tunnel has demanded from the owner or his agent. Formerly, if on the application of the manager the owner or his agent did not pay, the matter was referred to the Bergmeister, who ordered the owner or his agent to make his contribution; then if he failed to contribute for three successive weeks, the Bergmeister gave the right to his shares to the first applicant. To-day this custom is unchanged, for if owners fail for the space of a month to pay the contributions which the manager of the mine has imposed on them, on a stated day their names are proclaimed aloud and struck off the list of owners, in the presence of the Bergmeister, the Jurors, the Mining Clerk, and the Share Clerk, and each of such shares is entered on the proscribed list. If, however, on the third, or at latest the fourth day, they pay their contributions to the manager of the mine or tunnel, and pay the money which is due from them to the Share Clerk, he removes their shares from the proscribed list. They are not thereupon restored to their former position unless the other owners consent; in which respect the custom now in use differs from the old practice, for to-day if the owners of shares constituting anything over half the mine consent to the restoration of those who have been proscribed, the others are obliged to consent whether they wish to or not. Formerly, unless such restoration had been sanctioned by the approval of the owners of one hundred shares, those who had been proscribed were not restored to their former position.

The procedure in suits relating to shares was formerly as follows: he who instituted a suit and took legal proceedings against another in respect of the shares, used to make a formal charge against the accused possessor before the Bergmeister. This was done either at his house or in some public place or at the mines, once each day for three days if the shares belonged to an old mine, and three times in eight days if they belonged to a head-meer. But if he could not find the possessor of the shares in these places, it was valid and effectual to make the accusation against him at the house of the Bergmeister. When, however, he made the charge for the third time, he used to bring with him a notary, whom the Bergmeister would interrogate: "Have I earned the fee?" and who would respond: "You have earned it"; thereupon the Bergmeister would give the right over the shares to him who made the accusation, and the accuser in turn would pay down the customary fee to the Bergmeister. After these proceedings, if the man whom the Bergmeister had deprived of his shares dwelt in the city, one of the proprietors of the mine or of the head-mine was sent to him to acquaint him with the facts, but if he dwelt elsewhere proclamation was made in some public place, or at the mine, openly and in a loud voice in the hearing of numbers of miners. Nowadays a date is defined for the one who is answerable for the debt of shares or money, and information is given the accused by an official if he is near at hand, or if he is absent, a letter is sent him; nor is the right over his shares taken from anyone for the space of one and a half months. So much for these matters.

Now, before I deal with the methods which must be employed in working, I will speak of the duties of the Mining Prefect, the Bergmeister, the Jurors, the Mining Clerk, the Share Clerk, the manager of the mine or tunnel, the foreman of the mine or tunnel, and the workmen.

To the Mining Prefect, whom the King or Prince appoints as his deputy, all men of all races, ages, and rank, give obedience and submission. He governs and regulates everything at his discretion, ordering those things which are useful and advantageous in mining operations, and prohibiting those which are to the contrary. He levies penalties and punishes offenders; he arranges disputes which the Bergmeister has been unable to settle, and if even he cannot arrange them, he allows the owners who are at variance over some point to proceed to litigation; he even lays down the law, gives orders as a magistrate, or bids them leave their rights in abeyance, and he determines the pay of persons who hold any post or office. He is present in person when the mine managers present their quarterly accounts of profits and expenses, and generally represents the King or Prince and upholds his dignity. The Athenians in this way set Thucydides, the famous historian, over the mines of Thasos[15].

Next in power to the Mining Prefect comes the Bergmeister, since he has jurisdiction over all who are connected with mines, with a few exceptions, which are the Tithe Gatherer, the Cashier, the Silver Refiner, the Master of the Mint, and the Coiners themselves. Fraudulent, negligent, or dissolute men he either throws into prison, or deprives of promotion, or fines; of these fines, part is given as a tribute to those in power. When the mine owners have a dispute over boundaries he arbitrates it; or if he cannot settle the dispute, he pronounces judgment jointly with the Jurors; from them, however, an appeal lies to the Mining Prefect. He transcribes his decrees in a book and sets up the records in public. It is also his duty to grant the right over the mines to those who apply, and to confirm their rights; he also must measure the mines, and fix their boundaries, and see that the mine workings are not allowed to become dangerous. Some of these duties he observes on fixed days; for on Wednesday in the presence of the Jurors he confirms the rights over the mines which he has granted, settles disputes about boundaries, and pronounces judgments. On Mondays, Tuesdays, Thursdays, and Fridays, he rides up to the mines, and dismounting at some of them explains what is required to be done, or considers the boundaries which are under controversy. On Saturday all the mine managers and mine foremen render an account of the money which they have spent on the mines during the preceding week, and the Mining Clerk transcribes this account into the register of expenses. Formerly, for one Principality there was one Bergmeister, who used to create all the judges and exercise jurisdiction and control over them; for every mine had its own judge, just as to-day each locality has a Bergmeister in his place, the name alone being changed. To this ancient Bergmeister, who used to dwell at Freiberg in Meissen, disputes were referred; hence right up to the present time the one at Freiberg still has the power of pronouncing judgment when mine owners who are engaged in disputes among themselves appeal to him. The old Bergmeister could try everything which was presented to him in any mine whatsoever; whereas the judge could only try the things which were done in his own district, in the same way that every modern Bergmeister can.

To each Bergmeister is attached a clerk, who writes out a schedule signifying to the applicant for a right over a mine, the day and hour on which the right is granted, the name of the applicant, and the location of the mine. He also affixes at the entrance to the mine, quarterly, at the appointed time, a sheet of paper on which is shown how much contribution must be paid to the manager of the mine. These notices are prepared jointly with the Mining Clerk, and in common they receive the fee rendered by the foremen of the separate mines.

I now come to the Jurors, who are men experienced in mining matters and of good repute. Their number is greater or less as there are few or more mines; thus if there are ten mines there will be five pairs of Jurors, like a decemviral college[16]. Into however many divisions the total number of mines has been divided, so many divisions has the body of Jurors; each pair of Jurors usually visits some of the mines whose administration is under their supervision on every day that workmen are employed; it is usually so arranged that they visit all the mines in the space of fourteen days. They inspect and consider all details, and deliberate and consult with the mine foreman on matters relating to the underground workings, machinery, timbering, and everything else. They also jointly with the mine foreman from time to time make the price per fathom to the workmen for mining the ore, fixing it at a high or low price, according to whether the rock is hard or soft; if, however, the contractors find that an unforeseen and unexpected hardness occurs, and for that reason have difficulty and delay in carrying out their work, the Jurors allow them something in excess of the price fixed; while if there is a softness by reason of water, and the work is done more easily and quickly, they deduct something from the price. Further, if the Jurors discover manifest negligence or fraud on the part of any foreman or workman, they first admonish or reprimand him as to his duties and obligations, and if he does not become more diligent and improve, the matter is reported to the Bergmeister, who by right of his authority deprives such persons of their functions and office, or, if they have committed a crime, throws them into prison. Lastly, because the Jurors have been given to the Bergmeister as councillors and advisors, in their absence he does not confirm the right over any mine, nor measure the mines, nor fix their boundaries, nor settle disputes about boundaries, nor pronounce judgment, nor, finally, does he without them listen to any account of profits and expenditure.

Now the Mining Clerk enters each mine in his books, the new mines in one book, the old mines which have been re-opened in another. This is done in the following way: first is written the name of the man who has applied for the right over the mine, then the day and hour on which he made his application, then the vein and the locality in which it is situated, next the conditions on which the right has been given, and lastly, the day on which the Bergmeister confirmed it. A document containing all these particulars is also given to the person whose right over a mine has been confirmed. The Mining Clerk also sets down in another book the names of the owners of each mine over which the right has been confirmed; in another any intermission of work permitted to any person for certain reasons by the Bergmeister; in another the money which one mine supplies to another for drawing off water or making machinery; and in another the decisions of the Bergmeister and the Jurors, and the disputes settled by them as honorary arbitrators. All these matters he enters in the books on Wednesday of every week; if holidays fall on that day he does it on the following Thursday. Every Saturday he enters in another book the total expenses of the preceding week, the account of which the mine manager has rendered; but the total quarterly expenses of each mine manager, he enters in a special book at his own convenience. He enters similarly in another book a list of owners who have been proscribed. Lastly, that no one may be able to bring a charge of falsification against him, all these books are enclosed in a chest with two locks, the key of one of which is kept by the Mining Clerk, and of the other by the Bergmeister.

The Share Clerk enters in a book the owners of each mine whom the first finder of the vein names to him, and from time to time replaces the names of the sellers with those of the buyers of the shares. It sometimes happens that twenty or more owners come into the possession of some particular share. Unless, however, the seller is present, or has sent a letter to the Mining Clerk with his seal, or better still with the seal of the Mayor of the town where he dwells, his name is not replaced by that of anyone else; for if the Share Clerk is not sufficiently cautious, the law requires him to restore the late owner wholly to his former position. He writes out a fresh document, and in this way gives proof of possession. Four times a year, when the accounts of the quarterly expenditure are rendered, he names the new proprietors to the manager of each mine, that the manager may know from whom he should demand contributions and among whom to distribute the profits of the mines. For this work the mine manager pays the Clerk a fixed fee.

I will now speak of the duties of the mine manager. In the case of the owners of every mine which is not yielding metal, the manager announces to the proprietors their contributions in a document which is affixed to the doors of the town hall, such contributions being large or small, according as the Bergmeister and two Jurors determine. If anyone fails to pay these contributions for the space of a month, the manager removes their names from the list of owners, and makes their shares the common property of the other proprietors. And so, whomsoever the mine manager names as not having paid his contribution, that same man the Mining Clerk designates in writing, and so also does the Share Clerk. Of the contribution, the mine manager applies part to the payment of the foreman and workmen, and lays by a part to purchase at the lowest price the necessary things for the mine, such as iron tools, nails, firewood, planks, buckets, drawing-ropes, or grease. But in the case of a mine which is yielding metal, the Tithe-gatherer pays the mine manager week by week as much money as suffices to discharge the workmen's wages and to provide the necessary implements for mining. The mine manager of each mine also, in the presence of its foreman, on Saturday in each week renders an account of his expenses to the Bergmeister and the Jurors, he renders an account of his receipts, whether the money has been contributed by the owners or taken from the Tithe-gatherer; and of his quarterly expenditure in the same way to them and to the Mining Prefect and to the Mining Clerk, four times a year at the appointed time; for just as there are four seasons of the year, namely, Spring, Summer, Autumn, and Winter, so there are fourfold accounts of profits and expenses. In the beginning of the first month of each quarter an account is rendered of the money which the manager has spent on the mine during the previous quarter, then of the profit which he has taken from it during the same period; for example, the account which is rendered at the beginning of spring is an account of all the profits and expenses of each separate week of winter, which have been entered by the Mining Clerk in the book of accounts. If the manager has spent the money of the proprietors advantageously in the mine and has faithfully looked after it, everyone praises him as a diligent and honest man; if through ignorance in these matters he has caused loss, he is generally deprived of his office; if by his carelessness and negligence the owners have suffered loss, the Bergmeister compels him to make good the loss; and finally, if he has been guilty of fraud or theft, he is punished with fine, prison, or death. Further, it is the business of the manager to see that the foreman of the mine is present at the beginning and end of the shifts, that he digs the ore in an advantageous manner, and makes the required timbering, machines, and drains. The manager also makes the deductions from the pay of the workmen whom the foreman has noted as negligent. Next, if the mine is rich in metal, the manager must see that its ore-house is closed on those days on which no work is performed; and if it is a rich vein of gold or silver, he sees that the miners promptly transfer the output from the shaft or tunnel into a chest or into the strong room next to the house where the foreman dwells, that no opportunity for theft may be given to dishonest persons. This duty he shares in common with the foreman, but the one which follows is peculiarly his own. When ore is smelted he is present in person, and watches that the smelting is performed carefully and advantageously. If from it gold or silver is melted out, when it is melted in the cupellation furnace he enters the weight of it in his books and carries it to the Tithe-gatherer, who similarly writes a note of its weight in his books; it is then conveyed to the refiner. When it has been brought back, both the Tithe-gatherer and manager again enter its weight in their books. Why again? Because he looks after the goods of the owners just as if they were his own. Now the laws which relate to mining permit a manager to have charge of more than one mine, but in the case of mines yielding gold or silver, to have charge of only two. If, however, several mines following the head-mine begin to produce metal, he remains in charge of these others until he is freed from the duty of looking after them by the Bergmeister. Last of all, the manager, the Bergmeister, and the two Jurors, in agreement with the owners, settle the remuneration for the labourers. Enough of the duties and occupation of the manager.

I will now leave the manager, and discuss him who controls the workmen of the mine, who is therefore called the foreman, although some call him the watchman. It is he who distributes the work among the labourers, and sees diligently that each faithfully and usefully performs his duties. He also discharges workmen on account of incompetence, or negligence, and supplies others in their places if the two Jurors and manager give their consent. He must be skilful in working wood, that he may timber shafts, place posts, and make underground structures capable of supporting an undermined mountain, lest the rocks from the hangingwall of the veins, not being supported, become detached from the mass of the mountain and overwhelm the workmen with destruction. He must be able to make and lay out the drains in the tunnels, into which the water from the veins, stringers, and seams in the rocks may collect, that it may be properly guided and can flow away. Further, he must be able to recognize veins and stringers, so as to sink shafts to the best advantage, and must be able to discern one kind of material which is mined from another, or to train his subordinates that they may separate the materials correctly. He must also be well acquainted with all methods of washing, so as to teach the washers how the metalliferous earth or sand is washed. He supplies the miners with iron tools when they are about to start to work in the mines, and apportions a certain weight of oil for their lamps, and trains them to dig to the best advantage, and sees that they work faithfully. When their shift is finished, he takes back the oil which has been left. On account of his numerous and important duties and labours, only one mine is entrusted to one foreman, nay, rather sometimes two or three foremen are set over one mine.

Since I have mentioned the shifts, I will briefly explain how these are carried on. The twenty-four hours of a day and night are divided into three shifts, and each shift consists of seven hours. The three remaining hours are intermediate between the shifts, and form an interval during which the workmen enter and leave the mines. The first shift begins at the fourth hour in the morning and lasts till the eleventh hour; the second begins at the twelfth and is finished at the seventh; these two are day shifts in the morning and afternoon. The third is the night shift, and commences at the eighth hour in the evening and finishes at the third in the morning. The Bergmeister does not allow this third shift to be imposed upon the workmen unless necessity demands it. In that case, whether they draw water from the shafts or mine the ore, they keep their vigil by the night lamps, and to prevent themselves falling asleep from the late hours or from fatigue, they lighten their long and arduous labours by singing, which is neither wholly untrained nor unpleasing. In some places one miner is not allowed to undertake two shifts in succession, because it often happens that he either falls asleep in the mine, overcome by exhaustion from too much labour, or arrives too late for his shift, or leaves sooner than he ought. Elsewhere he is allowed to do so, because he cannot subsist on the pay of one shift, especially if provisions grow dearer. The Bergmeister does not, however, forbid an extraordinary shift when he concedes only one ordinary shift. When it is time to go to work the sound of a great bell, which the foreigners call a "campana," gives the workmen warning, and when this is heard they run hither and thither through the streets toward the mines. Similarly, the same sound of the bell warns the foreman that a shift has just been finished; therefore as soon as he hears it, he stamps on the woodwork of the shaft and signals the workmen to come out. Thereupon, the nearest as soon as they hear the signal, strike the rocks with their hammers, and the sound reaches those who are furthest away. Moreover, the lamps show that the shift has come to an end when the oil becomes almost consumed and fails them. The labourers do not work on Saturdays, but buy those things which are necessary to life, nor do they usually work on Sundays or annual festivals, but on these occasions devote the shift to holy things. However, the workmen do not rest and do nothing if necessity demands their labour; for sometimes a rush of water compels them to work, sometimes an impending fall, sometimes something else, and at such times it is not considered irreligious to work on holidays. Moreover, all workmen of this class are strong and used to toil from birth.

The chief kinds of workmen are miners, shovellers, windlass men, carriers, sorters, washers, and smelters, as to whose duties I will speak in the following books, in their proper place. At present it is enough to add this one fact, that if the workmen have been reported by the foreman for negligence, the Bergmeister, or even the foreman himself, jointly with the manager, dismisses them from their work on Saturday, or deprives them of part of their pay; or if for fraud, throws them into prison. However, the owners of works in which the metals are smelted, and the master of the smelter, look after their own men. As to the government and duties of miners, I have now said enough; I will explain them more fully in another work entitled De Jure et Legibus Metallicis[17].

END OF BOOK IV.