PROPAGATING HOUSES.

Cheap and effective propagating and plant houses, for Nurserymen, have become of late years a necessity from the great increase of the trade in flowering plants for the decoration of our gardens and green-houses, and the very extensive demand for the new and superior varieties of the native grape. Peter Henderson, Esq., of Jersey City, long known as an extensive and successful propagator, in an article written for the Horticulturist, thus speaks of his house and management:

"After many years of extensive practice, I have arrived at the conclusion that cuttings of almost every plant cultivated by the florist or nurseryman will readily and uniformly root, if the proper conditions of temperature and moisture are given them. It matters little or nothing how the cutting is made, or what may be the color or texture of the sand or soil in which it is planted; these have little or nothing to do with the formation of roots. But an absolute condition of invariable success is uniformity of temperature and moisture. To attain this uniformity, the structure of the house is of vital importance; and it is owing to the erroneous construction of buildings for this purpose that so many have to deplore their want of success. I will briefly describe the construction of the propagating pit we have in use, and the manner of operations, which will best explain my views on the matter. The pit, which faces north, is 65 feet in length by 8 in width, and 3 feet high at back by 1 in front, the pathway being dug out to give head-room in walking. The front bench is 3 feet wide, walk 2 feet, and back bench 3 feet. All along the front bench run two wooden gutters 9 inches wide by 3 inches deep, the water in which is heated by a small conical boiler connected by two pieces of leaden pipe to the gutters. Three inches above the water in the gutters is placed the slate or flagging, (resting on cross slats of wood,) on which is two inches of sand. By regular firing we keep a temperature in the sand from 55 to 75°; and as the pit has no other means of heating, except that given out by the sand in the bench, the atmosphere of the house at night is only from 40° to 50°, or 25 degrees less than the "bottom heat." In the daytime, (in order as much as possible to keep up this disparity between the "top" and "bottom" heat,) a little air is given, and shading the glass resorted to, to enable us to keep the temperature of the house down. And here let me remark, that when propagation is attempted in green-houses used for growing plants, (such houses facing south or southeast,) the place usually used for the cuttings is the front table; and it being injurious to the plants to shade the whole house, that part over the cuttings alone is shaded; the consequence is, that the sun, acting on the glass, runs the temperature of the house up, perhaps, to 80°, or above that of the bottom heat, the cuttings wilt, and the process of rooting is delayed, if not entirely defeated. All gardeners know the difficulty of rooting cuttings as warm weather comes on. When the thermometer marks 80° in the shade fires are laid aside; and if the rooting of cuttings is attempted, the sand or soil in which they are planted will be 10 or 15 degrees lower than the atmosphere, or the opposite of the condition required for success.

The advantage possessed by the gutter or tank, as a means of bottom heat, over smoke flues or pipes, is in its giving a uniform moisture, cuttings scarcely ever requiring water after being first put in, and then only to settle the sand about them. Still, when this convenience is not to be had, very good success may be attained by closing in the flue or pipes, regularity in watering, and a rigid adherence to these degrees of temperature.

The propagating pit above described is used for the propagation of all kinds of plants grown by florists, such as Camellias, Dahlias, Roses, Verbenas, Fuchsias, Grape Vines, etc. The time required in rooting cuttings of soft or young wood is from seven to ten days. Last season, during the month of February, we took three crops of cuttings from it, numbering in the aggregate forty thousand plants, without a loss of more than one per cent. In fact, by this system we are now so confident of success, that only the number of cuttings are put in corresponding with the number of plants wanted, every cutting put in becoming a plant.

In this narrative of our system of propagating, Mr. Editor, I have not attempted to theorize. I give the plain statement of operations as we practice them, thoroughly believing that the want of success in every case must be owing to a deviation from these rules. Ignoring entirely most of the maxims laid down in the books, such as "use a sharp knife," and "cut at a joint," we use scissors mostly in lieu of a knife, and we never look for a joint, unless it happens to come in the way. We are equally skeptical as to the merits of favorite kinds and colors of sands or other compounds used for the purpose. Of this we have reason to be thankful, for a nicety of knowledge in this particular in the head of a scientific (?) propagator may sometimes become an expensive affair.

A friend of mine, a nurseryman from the far west, deeply impressed with our superior horticultural attainments in the Empire City, hired a propagator at a handsome salary, and duly installed him in his green-house department; but, alas! all his hopes were blighted. John failed—signally failed—to strike a single cutting; and on looking about him for the cause, quickly discovered that the fault lay entirely in the sand! but my gullible friend, to leave no stone unturned, freighted at once two tons of silver sand from New York to Illinois! Need I tell the result, or that John was soon returned to where the sand came from?"

During the past year, Mr. Henderson has erected an extensive range of houses, after the following description and plan:

"I have read and examined from time to time, with much interest, your remarks and sketches of Plant Houses, and it is not to dissent from your views that I now write, although it seems to me that your ideas run all one side of the matter, for your designs and descriptions are almost exclusively of an ornamental character, and adapted only for conservatories or graperies, leaving the uninitiated commercial nurseryman or florist to look in vain for something to suit his case. I have said that your ideas seem to be one-sided, in describing only ornamental erections; they seem also so in your uniformly recommending the fixed roof principle. Now, for the purposes of the florist or nurseryman, I think there is but little doubt that the advantage is with the sash over the fixed roof. The difference in cost is trifling; probably a little in favor of the fixed roof; but balanced against that is, that your house, once erected on your favorite plan, you are emphatically "fixed." It is not portable, (unless made in sections, which is only a bad compromise with the sash plan,) and any alteration requiring to be made, your roof is of but little or no value. But the most serious objection to it is the difficulty with air. I have never yet seen a house built on the fixed roof principle that had means of giving air so that plants could be grown in a proper manner, and I could name dozens who have been induced to build on this plan, that one year's experience has given them much reason to regret.

Fig. 4. a, ground level.—b, bench or table on which to stand plants, 4-1/2 feet wide.—c, 4 inch pipe, 3 in each house.—d, pathway, 2 feet wide.

We are now adopting for plant houses, low, narrow, span-roofed buildings, formed by 6 feet sashes, one on each side, the ends of the houses facing north and south. These we attach three together, on the "ridge and furrow" system, as shown in sketch. This system presents great advantages, and, by using no cap on the ridge piece, air is given in the simplest and safest manner, by the sash being raised by an iron bar 9 or 10 inches long, pierced with holes, which answers the double purpose of giving air and securing the sash, when closed, from being blown off by heavy winds. There is no necessity for the sashes being hinged at the bottom, as might be supposed; all that is required being to nail a cleet along the wall plate, fitted tight to the bottom of each sash. Every alternate sash is nailed down; the other is used in giving air in the manner described.

The advantages of such erections are so obvious, that I need not trespass much on your space to enumerate them. The plan can be adapted to detached buildings already up, by erecting houses of the same length alongside; or, in the erection of new houses, if not more than one is wanted, it may be put up with a view to further extensions. I have had four houses on this plan in operation for nearly two years, and I have never before had so much satisfaction with any thing of the kind. Intending next season to remove my green-houses from their present site, all shall be put up after this style."

Messrs. Parsons & Co., of Flushing have also built several houses similar in design for the propagation of grape vines. These latter are heated by brick flues and have proved very satisfactory. The vines are grown in beds and not staked. Pot culture in the usual manner would require greater height of roof. The only objection that we can see to houses built in this manner is the accumulation of snow in the furrows. Mr. Henderson assures us that this is not an objection of any moment in this latitude, and that the expense attending the removal of snow is too slight to be considered.

DESIGN No. 1.

Figures 5 and 6 are a section and ground plan of a propagating house for growing grape vines, but it might serve as well for other plants. The length of the house is on an east and west line, giving a northern exposure to the roof on one side, the opposite facing the south. A board partition runs through the centre dividing the house into two. This partition might be made movable, so that at any time the house could all be thrown into one. The foundations are of stone projecting 6 inches above the ground. Two and a half feet of vertical boarding, above which is two feet of sash, give a height of four and a half feet above the foundation for the side of the house. The side sashes are hinged for ventilation. Top ventilation is afforded at the ridge by ventilators raised by rods from the inside. The roof is on the fixed principle that is composed of sash bars extending from plate to ridge, in which the glass is set. In the north division a combination of the tank and flue systems of heating is adopted, by which economy of fuel to a considerable extent is effected. The boiler is so set that the back of it and all the connecting pipes are inside of the house, only the fire and ash pit doors project through the brick partition into the boiler pit. Much heat is generally wasted from hot water boilers by the direct connection of the chimney with the outer air, that might be saved by means of a well constructed flue. It will be seen that the smoke from the boiler is carried under the tank, in this instance through 8 inch vitrified drain pipe. To prevent the cracking of the pipe near the boiler the first 6 or 8 feet is laid with cast iron pipe. Wooden tanks built on posts and elevated two feet above the floor furnish bottom heat. These tanks are two feet six inches wide and six inches deep, built of 1-1/4 inch pine, well put together with white lead and securely nailed and screwed. A division through the centre separates the flow and return water. Roofing slate of proper size is used to cover the top, the joints of which are carefully cemented to prevent the escape of steam. Sand is placed directly on the slate as a plunging material for the pots containing cuttings. In the south division tanks are also used, but as the plants are potted off when placed there, bottom heat is not so necessary; the sand is dispensed with and the pots rest on a shelf or table built about two inches above the tanks, allowing the heat radiated from the slate to diffuse itself through the house. Slides in each tank afford means of shutting off the water allowing each house to be worked independently. The centre of house is occupied by an earth bed in which the plants (after becoming well rooted in the small pots, to which they are first transferred from the cutting pots) are carefully transplanted and will form large and vigorous vines by the end of the season.

Fig. 5.—Section of Propagating House.

Fig. 6.—Plan.

DESIGN No. 2.

In Figure 7 is given a perspective view of a propagating house of an ornamental character. It is intended for forcing early vegetables, strawberries, grapes in pots, and such general propagation of plants as are needed on a country place of moderate extent. The curvilinear roof gives beauty to the design as well as affording more head room inside than the ordinary straight rafter.

Fig. 7.—Perspective View.

The pitch of the roof is quite flat, a straight line between the ends of the rafter forming an angle of only 28 degrees with the horizon. It was desirable to have the roof as low as was consistent with sufficient head room, that the plants might be as near the glass as possible, without the necessity of high staging in the centre. The house has the ends to the east and west. At the west end is an ante-room, not shown in perspective view, containing the boiler, seed drawers, desk, &c. On the north side of house are beds for propagating plants, and the south side is used for early vegetables, strawberries, &c. In the centre is a large bed of earth used for grapes in pots, vegetables and plants. A portion of the roof on the south side can be raised when it is desirable to harden off the plants in spring. The foundation is of wood, locust posts being used, with boards nailed upon both sides and coated with coal tar. The house is forty one feet long and sixteen feet wide, and is heated by a tank constructed as follows: brick piers are built three feet apart on which are laid common blue flag stones six feet long and two feet wide. The sides and divisions of the tanks are built of brick, and cemented inside. One of Hitchings & Co.'s boilers furnishes the heat, and is connected with the tank by two inch iron pipe. Above the tanks are the propagating beds as shown in figure 8. The tank, with the exception of that part across the end of the house is covered with beds and no provision is made for other heat than that radiated from the sides, and that portion left uncovered at the end. In the practical working of the house, this has been found insufficient, and pipes have been introduced for atmospheric heat, the tanks being still retained for bottom heat.

Fig. 8.—Section.

Fig. 9.—Ground Plan.

Fig. 10.—Perspective View.

DESIGN No. 3.


The following plan is similar to the one previously given, and was erected for the same general purposes. It has, however, been found to answer so well for a general green-house, that there is but little forcing or propagation carried on. At the east end is the boiler pit, seed room, &c.; the roof of which is of tongued and grooved boards bent to the curve of the roof and battened. The foundation is of stone, and the whole house of a substantial character. Bottom heat is furnished by brick tanks built in the same manner as before described, the water in which is heated by iron pipes running through the tanks (see section Fig. 12.) The pipes being also used to heat a grapery near by on a higher level, it was necessary to carry them thus. This arrangement for bottom heat is not as good as when the water flows directly into the tank from the boiler. There is a large bed in centre of house in which pots of plants are plunged, and considerable shelving at ends of house. Bottom ventilation is obtained by six inch earthen drain pipe, placed on a level with the floor inside and running through the wall and up to the surface of the ground outside, where they are covered with wooden caps for regulating the amount of air required. Ventilators are placed over the doors and in the opposite end of house, in addition to which, the sash in the doors are hinged and can be opened when needful.

Fig. 11.—Ground Plan.

Fig. 12.—Section.

DESIGN No. 4.


This design combines a grapery, and forcing, and propagating house in one. Figs. 13, 14, 15, show side elevation, south front, and section through the centre. The dimensions are twenty feet in width by forty three feet in length, to which ten feet have since been added, enclosing boiler pit C. and potting room not shown in sketch. The foundation is built on locust posts with plank nailed upon both sides. Such foundations we do not advocate, as they are a bill of expense, for needful repairs, every four or five years, and the additional outlay for permanent brick or stone foundations is money well invested. In the present case, the owners wishes were carried out. On the ground plan, that part designated A. is devoted to the growth of grapes. The border is all inside of the house and is about three feet in depth. At the dotted line a wall is built across the house to sustain the border, the floor of B. being two feet lower. The central portion of B. is devoted to grapes in pots. At the sides of B. are beds for propagating plants, forcing vegetables, &c., furnished with bottom heat from brick tanks which extend entirely around the house and heat the grapery part as well.

Fig. 13.—Side Elevation.

Fig. 14.—South Front.

Fig. 15.—Section.

Pipes laid underground from the outside furnish fresh air when desired and ventilation in the roof is also provided for.

Fig. 16.—Ground Plan.

DESIGN No. 5.

The following design is a house with a straight roof of low pitch, and was built with considerate regard to cost, for which reason, among others, the foundations are of wood, and side lights are omitted. The sides are of inch and a half plank nailed to locust posts, the space between the inside and outside lining being filled with charcoal dust. Such foundations do very well at first, but the wood in contact with the ground will decay in three or four years, and require repairs—though locust posts will last for many years.

This house is quite narrow, being only twelve feet wide. It has tables on either side and a walk in the middle, through which is a row of light posts to support climbing plants. Ventilation is effected at the ridge by six ventilators. There are also ventilators over and in the doors. The house is heated by two four inch pipes under the tables. The boiler pit is located in a sunken shed outside, not shown in the plan. This house has been used for growing such plants as are generally found in an amateur's collection, and has given satisfactory results.

Fig. 17.—Perspective View.

Fig. 18.—Ground Plan.

DESIGN No. 6.

Our next illustration is of a green-house and grapery combined, seventy feet in length by twenty feet wide. It is divided by a glass partition into two compartments, either of which can be heated at pleasure from the same boiler, by means of cut-offs in the pipes. This house was designed to be heated entirely by the tank system, but pipes were afterwards substituted except for the propagating beds. This house is located on a large village lot at Kingston, N. Y., near the dwelling, and is in full view of the street. The exposure is all that could be desired, and the protection from northerly winds perfect. A boiler pit is located outside, at the side of the building, over which a handsome summer-house is built which shields it entirely from view. The foundation is of brick, and the whole workmanship is first class. The side sashes are three feet high, and each alternate one is hung for bottom ventilation. There are also the usual ventilators in the roof.

Fig. 19.—Ground Plan.

Fig. 20.—Section.

Fig. 21.—South Front.

DESIGN No. 7.

Fig. 22.—Perspective.

Fig. 23.—Section.

Fig. 24.—Ground Plan.

This design is for a Cold Grapery of low cost. The object contemplated is to secure a house that shall answer the purpose intended, and be a complete working house in all its parts, without unnecessary expense. The general outside appearance, Fig. 22, is similar to a plant house before illustrated, the straight roof affording little opportunity for architectural variety. By referring to Fig. 23, section, and Fig. 24, ground plan, it will be observed that rafters to support the roof are dispensed with, except two at each end to form the verge and finish. The ridge and purlins are supported by light 2x3 inch posts, which rest upon larger posts beneath the ground. This is a considerable saving, both in material and workmanship. Posts set three feet into the ground form the foundation for the sides and ends of the house. The sides are two feet above the ground, and the entire structure is but ten feet in height, enabling the gardener to reach nearly every part of the roof from the ground. The posts may appear to be an objection, but in practice they are found not to be so, but are useful to train the vines upon. Five rows of vines are planted, two in the usual manner at the sides, and one row along each line of posts. The object in planting thus, was to get as much fruit as possible in the shortest space of time. These centre vines will give several crops of good fruit before they will be much interfered with by those trained upon the roof. 9x15 glass was used in glazing, to lessen the expense of sash bars, the glass being laid the 15-inch way. This glass, being very true, has made a good roof, but 10x12 is as large a size as will usually be found to answer. This house is distinguished from most of our other designs by the greater amount of light admitted, owing to the absence of rafters and the less than usual number of sash bars. The sides and ends are boarded perpendicularly, and battened. Ventilators are provided on each side of the ridge and over the doors, while the sashes hung in the doors furnish sufficient bottom ventilation. It was desirable to have the house raised or appear higher owing to the slight depression of the ground at the site, and for this reason the border was all made above the surface two feet and a half in height, composed largely of decayed sods, with an addition of muck, coal and wood ashes and a small quantity of stable manure. It has been found to work admirably, and preserve an even moisture throughout. Elevated borders are highly recommended by some exotic grape growers, and our experience with them is much in their favor. At present the inside border is alone completed, as it was desirable to plant the vines, and sufficient materials were not at hand to complete the whole. Vines were planted the 1st of June, 1864.

DESIGN No. 8.

THE POLYPROSOPIC ROOF.

Polyprosopic is not a dictionary word, at least we cannot find it in our two-volume large quarto edition of Webster, but Loudon makes use of it to name a special form of roof sometimes made use of in the construction of Horticultural buildings, the true meaning of which we believe is, that the interior side or outline of the rafter is curvilinear and the exterior formed of planes or faces.

A very extensive practice in the design and erection of Horticultural buildings of all classes and for all purposes, from the low priced commercial shed to the finished crystal palaces, that adorn our finest country seats, has led us to a more thorough investigation of this now very important subject, and we have been enabled by a long practical experience in the construction and practical management of Horticultural buildings to reach conclusions relative to form, combination, heating and management that could not be arrived at in any other manner.

We have illustrated examples of the straight and curvilinear roofs, and now give the polyprosopic roof, in which manner we have erected some half dozen graperies and plant houses.

Fig. 25.—Perspective.

This particular form of hot houses was described by Mr. Loudon in his encyclopedia of gardening some thirty years ago, and he says, "he considers it to be the ne plus ultra of improvement as far as air and light are concerned."

Mr. Leuchars in his practical treaties on hot-houses published some twelve or fifteen years since, illustrates this form of house and says: "It is by some considered superior to all other forms for winter forcing."

Fig. 26.—Section.

Mr. James Cranston of Birmingham, England, has also adopted this form of construction, which in many respects he considers ahead of all others. It seems to have been very generally known and used by many builders of glass-houses, and its numerous combinations of sliding, lifting, and permanently fastened sash, has been public property for upwards of thirty years. Although nearly approaching to the curvilinear, form it lacks the graceful beauty of a continuous curved line, and as excessive ventilation so necessary in the climate of England, is not required in our dry sunny atmosphere, the lifting or sliding sash roof is not considered so desirable as the continuous fixed roof, which is at once the most beautiful and the most economical roof yet introduced.

The principal advantage of the Polyprosopic roof, is its portability, that is, it can be made in sashes, and transported to any portion of the country, thus obviating the necessity of painting and glazing in the hot atmosphere of the interior, or loss of time from storms, etc., on outside work. The fixed roof house can be sent anywhere primed, but the glazing and second coat of paint must be done after the erection of the building; either house we think equally well adapted to growing purposes, but as a matter of beauty and economy we give the preference to the fixed curvilinear roof.

The engraving is a view of a Plant House, erected by us for Mr. Geo. H. Brown, on his beautiful estate of Millbrook, near Washington Hollow, Duchess County, New York. The plan of the house gives two nearly equal apartments, one to be used as a propagating and forcing house, and the other as a conservatory or show house for plants and flowers. Both are heated by the circulation of hot water and can be worked independently of each other. Such houses add very much to the attractions of a country estate, and impress a stranger with a higher degree of taste and refinement, while the owner has added very much to his luxuries and enjoyments.

DESIGN No. 9.

Fig. 27.—Perspective View.

Fig. 28.—Ground Plan.


In this design we give a small Green House which has been erected in a substantial and permanent manner. The Green House is quite small, being only 20 by 30 feet. It is intended to keep bedding plants, Camellias, Oranges, and similar things, during the winter, and also to propagate such plants as may be wanted for bedding purposes on a place of moderate dimensions. This house runs east and west. Its position was determined partly by the nature of the ground, but mainly by the propagating bed. Fig. 28 is the ground plan. The large compartment is nearly twenty feet square. The potting-room, which is at the west end of the house, is eight by ten feet, and is fitted up with desks, drawers, and other necessary conveniences. The furnace pit, at the same end of the house, is eight by eight feet, and contains ample room for coal. The house is heated by two four-inch pipes. The large compartment has a side table for plants. On the north side of the house there is a propagating bed, the bottom heat for which is supplied by a hot-air chamber. This hot-air chamber is formed by simply inclosing a portion of the iron pipes. In the plan there is a large table in the centre of this compartment; but this was not put in, the owner adopting the suggestion of setting his large plants on the floor of the house; a very excellent plan in itself, but which was subsequently very much marred by filling in the whole floor of the house to the depth of six inches with coarse pebbles, to the injury, we think, of the subsequent well-being of the house. The idea was, an appearance of neatness, the preservation of the tubs, and to prevent the roots from running through; but an inch of nice gravel would have secured the first without the objections that lie against the thick coat of pebbles, while the other objects will not be secured; for the tubs will rot, and the roots will not thus be prevented from running through the pots. This object must be secured by other means than pebbles. The pebbles are unpleasant to walk on, become heated, and dry off the house too rapidly, to the manifest injury of the plants. We merely mention the subject, that our readers may avoid a similar error, and save themselves the money thus needlessly spent.

Fig. 72 is a perspective view of the house. The west end is boarded and battened. This corresponds with the general design of the house, and presents a neat finish. The sides, except the potting room, are of glass, the sashes being about three feet high. Every other sash is hung at the bottom, for the purpose of ventilation. The roof is a continuous glazed roof, and is quite flat, which is a decided advantage to the plants within. There are no ventilators in the roof, the top ventilation being effected by means of the sashes over the doors at each end, which are hung at the bottom for this purpose, and afford abundant ventilation for a house the length of this one. There is an ornamental crest along the ridge, and at each end a neat finial.

DESIGN No. 10.

Fig. 29.—Perspective View.

Fig. 30.—Section.

Our next example is a Cold Grapery, erected at South Manchester, Connecticut.

Fig. 29 is the perspective view of the house, and Fig. 30 is a section. The house is twenty feet wide and sixty feet long. In Fig. 30, a is a stone wall, with a drain under it. b is a hollow brick wall. d, d, is the ground level of the house on the inside; the line below b is the level on the outside, but the earth is embanked against the brick wall to within an inch of the sill. A small house is shown at the north end which is used for tools, potting, &c. The border is about three feet deep, and occupies the whole interior of the house. There is no outside border. On the bottom is placed about one foot of "tussocks" from a neighboring bog, which may in time decay. The border is made up pretty freely of muck, with the addition of sand, loam, charcoal dust, bone dust, etc. There is a row of vines, two feet and a half apart, at each side of the house, at d, d. There are two other rows at e, e. There are also a few vines at c, and at the ends of the house. The rows at d, d, form fruiting canes half way up the rafters; those at e, e, go to the roof with a naked trunk, and furnish fruiting canes for the other half of the rafters. The fruiting canes are thus very short, and easily managed. The house was planted in the month of April, with such grapes as Black Hamburgh, Victoria Hamburgh, Wilmot's Hamburgh, Golden Hamburgh, Muscat Hamburgh, Chasselas Fontainebleau, Frontignans, Muscat of Alexandria, Syrian, Esperione, Tokay, and some others. The plants were very small, and the wire worm injured some of them so as to make it necessary to replant; but the growth of those not injured was very good. A fine crop of Melons, Tomatoes, Strawberries, etc., was taken from the house the first year. The second year a few bunches of grapes were gathered, and every thing went on finely.

Fig. 31.—Ground Plan.

This is the third year in which the house has been in operation. Our last visit was in the early part of August, 1863, when we counted 734 bunches of grapes, weighing from one to seven pounds each, the Syrian being the grape which reached the last figure. Almost as many bunches were thinned out. In some cases too many are left, but they look very fine. The Muscats are extremely well set, and some of the bunches will weigh fully three pounds. The Black Hamburghs look quite as well; but the finest show of fruit is on the Esperione. The large number of bunches is owing to the manner of planting; so many could hardly be taken the third season from a house planted in the ordinary way. The canes, it will be borne in mind, are now only fruited about half their length.

The exposure of this house is a very bleak one, and the climate cold and fickle. In order to provide against a late spring frost, a coil of one inch pipe was inclosed in brick work, with a fire chamber under it. From this coil a single one inch pipe was carried around the house next the side sashes. It is found to answer the purpose, having on one occasion kept the frost out of the house, when the crop in the house of a neighbor was destroyed. In many places, some resource of this kind is necessary, and a small boiler with a single pipe will in most cases prove sufficient.

DESIGN No. 11.

The following illustration is of a Plant House attached to a dwelling, and is quite different in its plan from those before given. It was designed and erected for J. C. Johnston, Esq., of Scarborough, N. Y.

It is built on the south side of the dwelling, and is entered from the parlor as well as from the pleasure grounds. Fig. 32 is a perspective view, which gives the reader a good idea of its general appearance, though we can not help saying that in this case, at least, the picture does not flatter; the house looks finer on the ground than in the picture. The circular house on the southeast corner is strictly an ornamental feature, and a very pretty one.

Fig. 32.—Perspective View.

Fig. 33.—Ground Plan.

The interior arrangement is shown in the ground plan, Fig. 33. The house is divided into two compartments, A and B. The last is intended for growing and propagating plants. The house is heated by hot water pipes, the boiler being placed in the cellar of the dwelling, which is entered by the steps, f; e is a propagating tank, fitted with sliding sashes. It is quite large enough to propagate all the plants the owner will want; d, d, are beds about a foot deep, with a moderate bottom heat, for plunging pots in when desired; w is the walk. This compartment is to be used for bringing plants into bloom, after which they are to be taken to the show room or conservatory, marked A in the plan. The arrangement of this compartment is such, that all the plants in it may be seen from the parlor door or window, the steps leading to which are marked b; a, d, d, are tables; c would make a pretty little fountain, but it is intended at present to put it in the form of a rustic basket, and fill it with ornamental plants. The effect can not be otherwise than good. Climbing plants of various kinds will be trained up the mullions and rafters of the circular house, and allowed to hang in festoons from the roof. When the house is filled with flowering and ornamental-leaved plants, with climbers dependent from the roof, the effect will be charming.

DESIGN No. 12.

COLD GRAPERIES FOR CITY LOTS.

In this illustration is given three graperies, designed and constructed by us for Mr. John H. Sherwood of this city, which are among the first, if not the first erected in New York, as an elegant, substantial and attractive addition to three very superb palatial residences on Murray Hill, near 5th Avenue. These latter are buildings, such as, in style and workmanship, very few persons in this country, outside of New York, have seen, and such as but few of the first class builders of New York are competent to erect.

Centrally located in the aristocratic portion of a city noted for its wealth, taste and influence, these Graperies will be carefully watched as an index of what the future may do in the increased demand for houses on city lots for Horticultural purposes.

A full sized lot in the city of New York is twenty-five feet wide by one hundred feet in depth. The ground attached to each dwelling in this case is equal to two full sized lots, being twenty-five feet wide and two hundred feet in depth. The dwellings front on Fortieth Street, behind which are the yards, twenty by twenty-five feet; the Graperies, which are twenty-five feet by forty feet; then the coach houses, which front on, and are entered from, Thirty-ninth Street, thus using the whole space.

Fig. 34.—Perspective.

Fig. 35.—Ground Plan.

The graperies are intended to be used without heat; but whenever desirable, heating apparatus can be easily introduced, and the grape season materially lengthened. For practical purposes only, and on open grounds, it would, perhaps, have been better to have built the houses lower; but as grapes are usually fruited next to the glass, the principal objection to high houses for grape culture is the extra labor in getting up to the vines for pruning and training. These houses are purposely built higher than is now usual, to give a finer effect from the drawing-room windows, and to secure, as far as possible, the influence of the sun's rays.

By the use of glass houses on city lots, much enjoyment may be had by all who have a desire to spend their time in growing fine fruits and flowers. Pot vines and trees condense a vineyard and orchard into a wonderfully small space, and border vines yield a harvest of glorious fruit that surprise all not accustomed to seeing and eating such luxuries. Our city lots, with rare exceptions, are well adapted to the growth, under glass, of grapes and orchard fruit, and the forcing of vegetables. There are many of them somewhat shaded during portions of the day, yet the better protection is something of a compensation, and besides that, it is still an open question whether sun-light is alone essential in perfecting fruit; daylight in many cases does pretty well.

The failure to receive the sun's rays the entire day would not deter us one moment from the erection of a horticultural building. Those who grow fruit where all conditions are most favorable to success, do not enjoy the same pleasure nor attain the same skill as those who battle with difficulties; success easily acquired has not the same value as success which is reached by persistent effort against adverse circumstances.

Unlike the garden of a country gentleman that blossoms and fruits and passes away in a season, the horticultural building properly heated is a perpetual pleasure, a garden the year round; vegetables and fruit and flowers follow each other without intermission.

Very much is due to the foresight and energy of Mr. Sherwood, in inaugurating the introduction of horticultural structures of this class in New York. Few gentlemen of wealth have had the same opportunity, and few less would have the courage to take the first bold step in this matter. It cannot, however, by horticulturists, be looked upon as an experiment, however much those inexperienced in such matters may be disposed to criticise.

We are sure that Mr. Sherwood has done something that will advance the cause of Horticulture, and equally sure that he will be successful in the result. We shall feel much interested in his progress.

DESIGN No. 13.

Fig. 36.—Perspective.

Fig. 37.—Ground Plan.


In our present illustration we have an example of what may be done with a wall. It was necessary, for certain purposes, to cut away an embankment, and build a sustaining wall. After this had been done, we were asked if the wall could not be devoted to some useful purpose, and it was determined to build a lean-to grapery against it. The chief difficulty in the way was the wet and springy nature of the ground at the level marked water line in Fig. 38. It was found, however, that it could be drained; but at certain seasons of the year surface water would accumulate from the overflow of a milldam. But there is generally some way to overcome difficulties. In this case, the border was placed inside the house, and well raised, with a firm concrete bottom between the ground and water lines, and suitable drains connecting with the main drain under the front wall, to secure the requisite degree of dryness inside. Up to the present time we believe every thing has gone on very favorably. We have no doubt that many other places, now deemed useless, might be converted into good graperies at an expense that the results would fully warrant. In case this was successful, it was the owner's purpose to extend the house along the wall at the left; and it was therefore deemed best to insert the valley at the angle, to save future expense in tearing down the end of the house.

Fig. 38.—Section.

Fig. 36 is a perspective view of the house, which, in connection with Fig. 38 will give the reader a good idea of the general arrangement. Fig. 37 is a plan.

DESIGN No. 14.

Our next illustration is a hot grapery. It is forty-one feet long and twenty feet wide. Fig. 39 is a perspective view. It is covered with a low, continuous, curvilinear roof, and is without side lights. The omission of side lights materially lessens the cost of the house, and secures additional warmth. In some cases, side lights serve no other purpose than architectural effect. Graperies, propagating houses, and plant houses generally may very well be constructed without them; some of these houses, indeed, are very much better without them.

In the present instance, to prevent what is called a "squatty" appearance, and also to give additional headway, the side walls were carried up some twenty inches above the ground line. The house is thus made to assume a handsome appearance. Air is introduced into the house at the sides, through underground wooden air chambers opening on the inside near the walk. Instead of these wooden air chambers, we now use six inch glazed pipes, as being more convenient and durable. It is an effective and excellent mode of introducing fresh air, without letting it directly on the plants. Ventilation is effected by the sash over the end doors, and also by ventilators placed along the ridge board.

Fig. 39.—Perspective.

Fig. 40.—Ground Plan.

Fig. 40 is the ground plan. At the north end a small room is partitioned off for a boiler pit. On one side is a chest of drawers for seeds, &c., and on the other some shelving. In connection with the boiler pit is a coal bin, not, however, of very large capacity. The house is heated by two four-inch pipes, the design being not to work the house very early. The border is entirely inside the house, and is composed principally of sod, muck, and gravel, with the addition of some old manure and bone shavings. The vines have done well, annually ripening a fine crop of fruit, and the house has in all respects proved to be satisfactory.

DESIGN No. 15.

This is a plan of a range of houses designed and built for Joseph Howland, Esq., of Matteawan, N. Y. It is a large and imposing structure, befitting the character of Mr. Howland's ample grounds. It stands at the north end of the kitchen garden, and conceals it from the dwelling, from which the range is in full view. A part of the structure on the right, used as a green house, not shown in ground plan, was built some four or five years ago with the old sliding sash roof, which was found so unsatisfactory that at the time of the erection of the new portion, this roof was removed and replaced with a curvilinear fixed roof to correspond with the rest.

It will be observed that the range is divided into two parts by a road-way. The design of this was to enable the family to visit the houses at any time in the carriage without exposure to the weather, and enjoy the fruits, flowers, and temperature of tropical climates, without the necessity of leaving their homes.

The north side of the middle houses is covered with boards and battened. End ventilation being impracticable here, top ventilation is increased so as to meet all requirements.

Fig. 41.—Ground Plan.

Fig. 42.—Double Gate.

Fig. 41 is the ground plan. On the right is the old green house, a portion of the foundation of which is shown. This communicates with the hot grapery and tool house, under which is a capacious root cellar. From the covered road-way, all the parts of this extensive range are easily accessible. Across the road-way, between the houses, is a handsome double gate, a sketch of which is given in Fig. 42.

Crossing the road-way, we enter the cold grapery. The foundation of this rests on piers, the border being outside. There are hot-water pipes in this compartment, to be used only to keep out frost. It may, however, be used as a "second" hot grapery. Passing out of the cold grapery, we enter what may be called the conservatory, its principal use being for the show of ornamental plants; and to this end it has several accessories which add much to its beauty. One of these which may be noticed is a neat fountain in the centre; always a pretty feature wherever it can be introduced. Another is a rustic niche or alcove in the north wall, built of rough stones, over and through which the water constantly trickles into a basin. Its full beauty will not be seen till it has acquired age, and become covered with mosses and ferns. Fortunately for the plants and for good taste, there is no shelving in this house. Beds are formed of brick, with a neat coping, in which the pots are set. This arrangement is much more effective than any manner of staging could possibly be.

Fig. 43.—Interior View.

In order to give the reader an idea of the interior of this apartment, we have prepared a perspective view of it. (See Fig. 43.) From this a good conception can be formed of the appearance and arrangement of the beds, fountain, &c.

Returning through the cold grapery, we have on its north side a boiler and potting room. The boiler pit is sunk beneath the floor of this room, and has connected with it a coal bin and shoot. Communicating with the potting-room is a propagating room, in the north end of the conservatory, and divided from it by a solid partition. It is provided with hot-water pipes for furnishing bottom heat. It will propagate all the bedding and other plants needed on the place. It will thus be seen that there are ample facilities for furnishing an abundant supply of grapes and flowers. The house, as a whole, forms a marked feature of the grounds.

DESIGN No. 16.

The following design was prepared for Dr. Butler, of the Retreat for the Insane at Hartford, Conn. The doctor had conceived the idea that a green-house might be made to serve a very important part in the treatment of the insane, having noticed the soothing influence of plants upon his patients, more especially the females. We have no doubt that his anticipations will be fully realized; for we can scarcely conceive of anything better calculated to heal the "mind diseased," than daily intercourse with these voiceless, but gladsome children of Nature.

Fig. 44 is a perspective view of the house. It is twenty-four feet wide and seventy-five long. It has a low, curved roof, and side sashes three feet six inches high. We do not make these roofs low for the sake of architectural effect, though this point is certainly gained; but rather for the sake of the plants, a low roof, in this respect, possessing incalculable advantages over one that is steep. When attention is once generally fixed on this point, plant growers will not be slow to acknowledge the superiority of the low roof. It has often surprised us that gardeners will assume a great deal of unnecessary labor for the sake of an old prejudice. Some of them are slow to avail themselves of improvements that not only lessen their toils, but bring greater certainty and pleasure to the pursuit of their profession. Others, again, are quick enough to avail themselves of every facility brought within their reach. We could wish that the latter class might multiply rapidly.


Fig. 44.—Perspective View.

Fig. 45.—Ground Plan.

One of the prettiest features about this house is its rounded ends. The pitch of the roof and the width of the house are such, taken in connection with the circular ends, that all the lines flow into each other with the utmost harmony. These different parts were studied with reference to producing this result, and we think it has been done with some degree of success. The finials, the ornament along the ridge, and the entrance door, are all in keeping with the rest of the structure.

Fig. 45 is the ground plan. This presents some peculiarities. The house being designed for the use of the insane, it was desirable to place the heating apparatus out of their reach; the boiler is therefore placed under ground. For this purpose a vault of sufficient size to hold the boiler and several tons of coal, is built under ground in front of the house. It is substantially built of brick, and arched over. The smoke shaft is carried up through the roof, and finished above ground in the form of a column or pedestal, surmounted with a vase, as seen in Fig. 44. To harmonize the grounds, and conceal the purpose of this column, another is placed on the opposite side of the path. In summer, these vases will be filled with plants, and the columns are intended to be covered with vines, thus making them subserve an ornamental purpose. There are two entrances to the boiler vault, one from within by a concealed trap-door, and the other from without. The house will be heated by hot water pipes.

There will be neither shelves nor tables in the house. The plants will be set either on or in the ground, and the whole interior made to resemble as much as possible a flower garden. The plants will thus be easier seen, better enjoyed, and more appreciated than if placed either on tables or staging. In any well-designed house, the plants look and grow infinitely better upon flat tables; and a large class of plants will grow even better upon the earthen floor of the house.

DESIGN No. 17.

Our next example is a lean-to grapery for early forcing. It was designed for a gentleman in Connecticut, and we believe has since been built.

Fig. 46—Perspective View.

Fig. 47.—Ground Plan.

Fig. 46 is a perspective view. It runs east and west, and is designed to correspond in a measure with another house on the place, though the roof of this is much flatter. There are no side lights. Ventilation is effected by openings along the ridge, and by the sashes over the doors, which are hung for the purpose. The roof is continuous, and both ends of the house are glazed.

Fig. 48.—Section.

Fig. 47 is the ground plan. The sills of the front or glass part rest on brick piers, to allow the roots of the vines to run out, the border being both in and outside the house. A wooden partition on the north side of the walk divides the house into two unequal parts, the north being used for a potting shed, tool house, etc. This apartment is furnished with tables, etc., and is well lighted by windows at the side and ends. A water tank is conveniently placed in the middle. In the northwest corner is the boiler pit. This is sufficiently large to hold coal, and is furnished with a shoot for throwing it down. The grapery is to be heated by four rows of pipes, the object being to force early.

Fig. 48 is a section, showing the arrangement of pipes, walk, etc.

DESIGN No. 18.

Plant houses having a specific object in view, it is not possible to indulge in a great variety of forms without sacrificing their utility, or creating a great deal of room that can not be applied to any useful purpose whatever. In this respect they differ in a marked manner from dwelling-houses, which allow of great latitude in design and construction. That some degree of picturesqueness, however, is consistent with utility, we think will be apparent on examining the design herewith presented. The plan was made for H. B. Hurlbut, Esq., of Cleveland, Ohio. It is intended for a green-house and hot-house combined. It is located near the dwelling and in sight of the public highway. It is in the form of a cross.

Fig. 49.—Perspective View.

Fig. 50.—Ground Plan.

Fig. 49 is a perspective view, as seen from the street. The porch or front entrance is ornamented, but with an entire absence of heavy wood work. The finials and crest along the ridge are light, and harmonize with the general design. The valleys and angles break up the structure in a very pleasing and effective manner, and the elevation, as a whole, is one that will arrest attention.

Fig. 51.—Section.

Fig. 50 is the ground plan. Directly opposite the front entrance is a fountain. There are two centre tables for plants, also others around the sides of the house, not shown in the plan. This apartment will be used principally for plants in bloom. The other apartment which will be kept at a higher temperature, for the purpose of forcing plants into flower. At the end, on the right-hand side, is the boiler-pit, which is partitioned off. It is large enough to hold two or three tons of coal. There is a coal-shoot on the outside. On the left is the potting-room. This will be fitted up with a writing desk, and shelves and drawers for books, seeds, etc. Every other side-sash is hung at the bottom for ventilation. There are also ventilators on the top, and over the doors. Fig. 51 is a sectional view of the house.

There is scarcely any part of this structure that does not, at some time during the day, receive a portion of the sun's rays; some more, some less. A little judgment, therefore, on the part of the gardener who has charge of the place, will enable him to grow well a large variety of plants.

DESIGN No. 19.

Fig. 52.—Perspective.

Fig. 53.—Ground Plan.


This design is of a plant-house of larger dimensions than any we have heretofore given. Its form was determined by its location. Fig. 52 is a perspective.

The principal building runs east and west. This is divided by a brick wall into two unequal parts, that facing the south being the largest. On the north side we have first, at the west end, a small Camellia house. It would be also adapted to Orchids, Caladiums, Begonias, Ferns, and all plants requiring partial shade. Next we have a moderate sized bed-room for the man who attends to the boilers, one of which is in the next room. These two rooms are covered with boards bent to the curve of the roof and battened instead of glass. On the south of these three rooms is a hot grapery, to be used as a "second" house. Next, on the east, is a house designated "Forcing House" in the plan. (See Fig. 53.) It should be "Hot House," as this room is not adapted to forcing purposes. It is intended for plants that require a high temperature to keep them in good health. East of this is a room, or a "potting shed." Being covered with glass, it is well adapted to growing Mushrooms, propagating plants, &c., all the room not being needed for potting purposes. By the side of this room is another boiler room, and on the south another Hot Grapery, to be used as a "first" house. Then, on the east is the Cold Grapery, of goodly dimensions. Last of all we have a Green-house of large size south of the Hot-house. Thus, under one roof, we have all that is needed on a large place. We do not wish to be understood as saying that it is always best to put these houses in this particular shape; but where money is no particular object, and architectural effect is sought for, this form gives an opportunity in its broken outlines for considerable display.

DESIGN No. 20.

Green-houses and Graperies are usually erected as separate structures. While it is desirable that they should be so on extensive places where much accommodation is required, in grounds of moderate extent many advantages are gained by having the houses connected. Facility for heating and management, protection of those houses requiring the most heat, by those kept cold or at only moderate temperature, and the ease with which all departments may be visited by the owner, are all obtained by such an arrangement. In the present instance the Green-house occupies a position east and west, and is protected on its north and most exposed quarter by the Grapery. The boiler located as shown on the plan, supplies heat to all the houses. The Grapery, not being intended as a forcing or early house, has but one hot water pipe, which will afford sufficient heat to enable the vines to be started two or three weeks earlier in the spring, or if not desirable to anticipate their natural growth, will prevent them receiving sudden checks from frosty nights, which sometimes happen at the latter end of April and beginning of May, after the vines have broken their buds. We can prolong the season also, until about Christmas, in favorable years. Several of the late ripening, and late keeping varieties of the Grape, are intended to be grown. Lady Downes, Barbarossa, Frogmore St., Peters and others. These by the addition of another pipe and proper care in management, could be kept on the vines in fine condition until February, and perhaps March.

Fig. 54.—Perspective.

Fig. 55.—Ground Plan.

The sill or wall plate of the Grapery, is but two feet above the border; thus giving nearly the whole length of cane for fruiting upon the rafter. Side lights are dispensed with bottom ventilation being afforded by apertures through the brick wall, closed by shutters. The wall is supported on stone lintels, resting on brick piers placed about five feet apart, extending to the bottom of the border, allowing free access for the vine roots to the outside. Ventilation at the top is effected by means of sashes, hung in the roof at the ridge, which are raised and lowered by an iron shaft running the length of the building, with elbow attachments at each ventilator. A cord and lever at one end, works the shaft, raising the whole of the ventilators at one operation. This is by far the best method of ventilation, but more expensive than that generally used. It is strong, effective, rarely requires repair, and the sashes are never in danger of being blown open and broken by high winds. The floor level of the Green-house is two feet below that of the Grapery, in order that there may be sufficient height at the sides, to place plants on the tables, and bring them near the glass. General collections of plants cannot well be grown in one house; for this reason, we have the house divided by a glass partition. By an arrangement of valves in the hot water pipes, and independent ventilation, a different temperature can be maintained in each. Plants requiring a considerable degree of heat will find a congenial location in the central house, while those in bloom, and others to which a cooler atmosphere is more suitable, will be placed at the circular end of the building.

Three rows of heating pipe run around the Green-houses, which will give ample heat in the coldest weather. A propagating table is provided by enclosing a portion of the pipes in the central house. Beneath the floor is a cistern of 3,000 gallons capacity, from which tanks holding 100 gallons each are supplied by pumps. The Green-houses are entered through a door and porch on the south, not shown in the engraving, also through potting room and Grapery. The design of these houses gives an opportunity for further addition if desired, by a wing on the south, corresponding with the Grapery on the north. Such an extension would improve the architectural appearance of the whole. An early Grapery might be thus located and be heated from the same boiler. These houses, lately designed and erected by us for John L. Rogers, Esq., of Newburgh, N. Y., form a picturesque and attractive feature in his well kept grounds, and will no doubt be a source of much enjoyment to their owner.

ORCHARD HOUSES.

Glass-houses devoted exclusively to the cultivation of such fruits as are usually found in our orchards and gardens, would seem to be hardly necessary erections in our climate, with its bright and genial sunshine. But we must call to mind the almost total failure of the peach crop for several years past, on account of the severity of the winter frost, in sections of the country where this fruit was formerly cultivated with the greatest success, and ripened in the fullest abundance and perfection. We cannot forget, also, that it is next to impossible to prevent the attacks of the curculio upon our smooth-skinned fruits,—the Nectarine, Apricot and Plum—and the vast amount of vigilance and care required to counteract the invasions of the various other insect pests which visit us, and to obtain even a moderate crop, in many localities, out of doors. And we must be willing to concede that the certain means of securing even a limited supply of these delicious fruits, is worthy of our careful consideration.

Well managed Orchard houses will give us, without doubt or failure, the Peach, the Apricot, the Nectarine, the Plum, the Fig, and many other fruits in great perfection. With the addition of fire heat these may be forced, and the fruit obtained much in advance of its natural season.

In England, houses for the growth of these fruits, which will generally not ripen in the open air of that climate, have been in successful use for a number of years. In these houses the trees are planted in prepared borders, which gives the roots liberty to ramble at will. The fruit thus produced is very beautiful in appearance, and if abundant ventilation is supplied, at the proper season, it is of tolerable flavor. The great difficulty in this mode of culture, seems to be in not being able to furnish adequate ventilation to the house at the period of ripening, to enable the fruit to acquire its full flavor and perfection of delicacy and richness. Another difficulty is the over vigorous growth of the trees, and the care required to restrain them within proper bounds.

An impetus was given to the erection of Orchard houses in England, by Mr. Rivers, the celebrated nurseryman and fruit grower, by the publication of his little work on the subject of Orchard houses, in which he advocated the growth of trees in pots. By this system of pot culture, we are enabled to remove the trees when the fruit begins to color, and thus to ripen and perfect it in the open air. The over-growth of wood is also restrained in this system of culture, the trees being easily managed and controlled. Great success has, in many instances, attended this mode of culture in this country. Although it is but a few years since experiments were commenced here, some of our fruit growers have acquired such skill and experience, as to enable them to realize considerable profits from their investments in a money point of view, besides demonstrating the practicability of the system.

The majority of houses erected for this purpose among us, have been of the cheapest possible description. While the culture was merely experimental, this was all well enough; but now that the Orchard house has taken its place among other Horticultural structures, the same arguments we have urged against cheap Graperies will apply with equal force to this class of buildings.

The principal differences between the plans for Orchard houses and Graperies are, first, the somewhat lower roof of the former, that the pots containing the trees may stand upon the earth floor or border, while the foliage may be brought as near as possible to the glass; and secondly, the very ample ventilation required by the trees, at certain periods of their growth, and in completing the "hardening off" process of the wood, and leaves if the trees are to be removed to the open air.

Fruit trees are frequently grown in pots in Graperies. After the vines have expanded their leaves maturely, and obstructed the light, it becomes necessary to remove the trees to the open air. The leaves and new grown wood being very tender, the abrupt change to a different climate is too great, and they suffer in consequence. In a well constructed Orchard house, the means of ventilation should be so ample that the trees may be gradually inured to the change; or if it is desirable to let the trees remain within the house through the summer, the access of the air must be so abundant as to give as nearly as possible that flavor to the fruit which it would acquire if fully exposed.

Fig. 56 is a perspective view of a "lean-to" Orchard house, erected some years since by J. S. Lovering, Esq. of which the following description has been furnished to us:

"Mr. Lovering's Orchard House is 165 feet long by 14 wide, is a lean-to, points south, under shelter of a hill. Back wall 12 feet high, 8 feet stone work; on top of wall 4 feet of wood, in which the back row of ventilators (2 feet by 20 inches) work, hung on rollers, and all opened and closed simultaneously by means of a wire representing a front door pull. Front wall 4 feet high, made by nailing plowed and grooved planks to locust posts, in which are cut the front ventilators, 4 feet 8 inches long by 18 inches deep, and covered by a screen of gauze wire with board shutters to close tight. The roof is made of 16 feet rafters, on which rests 8 foot sash, immovable; the glass is first quality, 8 by 10. A single row of supporters on one side of the wall completes the roof. The interior is divided into three borders: the front border (3 feet 6 inches wide) is raised 9 inches above the walk (which is 2 feet 6 inches wide); the first back border is 3 feet wide, and raised 16 inches above the walk; the second back border is raised 1 foot above the front one, and is 4 feet wide. On this further back border are placed the largest trees only, having the most head room—the smallest pots standing on the front. The appearance of the house, when seen by the writer on the 7th of April, 1860, was truly magnificent, being one dense mass of bloom, (except some of the early kinds, on which the fruit was already set,) resembling a green-house of Azaleas in full flower. Peaches, apricots, nectarines, plums and figs are embraced in the assortment, and are grown principally in 11-inch pots placed about three feet apart, every leaf being fully exposed to the sun-light—vines being, of course, entirely prohibited.

Fig. 56.—Perspective View.

Of the success of this mode of culture in America, no one who has witnessed Mr. Lovering's house can have the shadow of a doubt. With him it is no new experiment, having fruited pot trees in his cold graperies for several years."

Fig. 57 is a section of a "lean-to" form of house, showing arrangement of trees and sunken walk to give sufficient head room.

Fig. 58 represents perspective view of a span-roofed house, in which ventilation is effected at the bottom and very freely at the ends. No ventilators are placed in the roof as they were not in this case deemed necessary.

Fig. 57.—Section.

Fig. 59 gives a view of the interior of the span-roofed house, in which are shown the pots containing the trees. The span-roofed house we consider better adapted to the growth of Orchard fruit than the "lean-to" form, except where it is desired to force the fruit in advance of its season, in which case the lean-to possesses the advantages of better protection, and of being more easily heated from the smaller area of glass exposed to radiation. These designs are of houses of a cheap class, such as might be erected for merely experimental purposes.

Fig. 58.—Perspective.

Fig. 59.—Interior View.

We consider the successful cultivation of Orchard fruit under glass, to be a fact so well settled, that we should advise substantial structures to be erected at the outset. Some of our numerous designs for graperies, both of the curvilinear and straight roofed form, would, with slight alteration in adding to the means of ventilation, be well adapted to this purpose. This is especially the case with designs numbered 7, 8, and 14.