(1) Heavy Liquids
Experiment tells us that a solid substance floats in a liquid denser than itself, sinks in one less dense, and remains suspended at any level in one of precisely the same density. If the stone be only slightly less dense than the liquid, it will rise to the surface; if it be just as slightly denser, it will as surely sink to the bottom, a physical fact which has added so much to the difficulty and danger of submarine manœuvring. If then we can find a liquid denser than the stone to be tested, and place the latter in it, the stone will float on the surface. If we take a liquid which is less dense than the stone and capable of mixing with the heavier liquid, and add it to the latter, drop by drop, gently stirring so as to assure that the density of the combination is uniformly the same throughout, a stage is finally reached when the stone begins to move downwards. It has now very nearly the density of the liquid, and, if we find by some means this density, we know simultaneously the specific gravity of the stone.
Various devices and methods are available for ascertaining the density of liquids—for instance, Westphal’s balance; but, apart from the inconvenience attending such a determination, the density of all liquids is somewhat seriously affected by changes in the temperature, and it is therefore better to make direct comparison with fragments of substances of known specific gravity, which are termed indicators. If of two fragments differing slightly in specific gravity one floats on the surface of a uniform column of liquid and the other lies at the bottom of the tube containing the liquid, we may be certain that the density of the liquid is intermediate between the two specific gravities. Such a precaution is necessary because, if the liquid be a mixture of two distinct liquids, the density would tend to increase owing to the greater volatility of the lighter of them, and in any case the density is affected by change of temperature. The specific gravity of stones is not much altered by variation in the temperature.
A more convenient variation of this method is to form a diffusion column, so that the density increases progressively with the depth. If the stone under test floats at a certain level in such a column intermediate between two fragments of known specific gravity, its specific gravity may be found by elementary interpolation. To form a column of this kind the lighter liquid should be poured on to the top of the heavier. Natural diffusion gives the most perfect column, but, being a lengthy process, it may conveniently be quickened by gently shaking the tube, and the column thus formed gives results sufficiently accurate for discriminative purposes.
By far the most convenient liquid for ordinary use is methylene iodide, which has already been recommended for its high refraction. It has, when pure, a density at ordinary room-temperatures of 3·324, and it is miscible in all proportions with benzol, whose density is O·88, or toluol, another hydrocarbon which is somewhat less volatile than benzol, and whose density is about the same, namely, 0·86. When fresh, methylene iodide has only a slight tinge of yellow, but it rapidly darkens on exposure to light owing to the liberation of iodine which is in a colloidal form and cannot be removed by filtration. The liquid may, however, be easily cleared by shaking it up with any substance with which the iodine combines to form an iodide removable by filtration. Copper filings answer the purpose well, though rather slow in action; mercury may also be used, but is not very satisfactory, because a small amount may be dissolved and afterwards be precipitated on to the stone under test, carrying it down to the bottom of the tube. Caustic potash (potassium hydroxide) is also recommended; in this case the operation should preferably be carried out in a special apparatus which permits the clear liquid to be drawn off underneath, because water separates out and floats on the surface. In Fig. 32 three cut stones, a quartz (a), a beryl (b), and a tourmaline (c) are shown floating in a diffusion column of methylene iodide and benzol. Although the beryl is only slightly denser than the quartz, it floats at a perceptibly lower level. These three species are occasionally found as yellow stones of very similar tint.
Fig. 32.—Stones of different
Specific Gravities floating
in a Diffusion Column of
heavy Liquid.
Various other liquids have been used or proposed for the same purpose, of which two may be mentioned. The first of them is a saturated solution of potassium iodide and mercuric iodide in water, which is known after the discoverer as Sonstadt’s solution. It is a clear mobile liquid with an amber colour, having at 12° C. a density of 3·085; it may be mixed with water to any extent, and is easily concentrated by heating; moreover, it is durable and not subject to alteration of any kind; on the other hand, it is highly poisonous and cauterizes the skin, not being checked by albumen; it also destroys brass-ware by amalgamating the metal. The second is Klein’s solution, a clear yellow liquid which has at 15° C. a density of 3·28. It consists of the boro-tungstate of cadmium, of which the formula is 9WO3.B2O3.2CdO.2H2O + 16Aq, dissolved in water, with which it may be diluted. If the salt be heated, it fuses at 75° C. in its own water of crystallization to a yellow liquid, very mobile, with a density of 3·55. Klein’s solution is harmless, but it cannot compare for convenience of manipulation with methylene iodide.
The most convenient procedure is to have at hand three glass tubes, fitted with stoppers or corks, to contain liquids of different densities—
(a) Methylene iodide reduced to 2·7; using as indicators orthoclase 2·55, quartz 2·66, and beryl 2·74.
(b) Methylene iodide reduced to 3·1; indicators, beryl 2·74 and tourmaline 3·10.
(c) Methylene iodide, undiluted, 3·32.
The pure liquid in the last tube should on no account be diluted; but the density of the other two liquids may be varied slightly, either by adding benzol in order to lower it, or by allowing benzol, which has far greater volatility than methylene iodide, to evaporate, or by adding methylene iodide, in order to increase it. The density of the liquids may be ascertained approximately from the indicators.
A glance at the table of specific gravities shows that as regards the gem-stones methylene iodide is restricted in its application, since it can be used to test only moonstone, quartz, beryl, tourmaline, and spodumene; opal and turquoise, being amorphous and more or less porous, should not be immersed in liquids, lest the appearance of the stone be irretrievably injured. Methylene iodide readily serves to distinguish the yellow quartz from the true topaz, with which jewellers often confuse it, the latter stone sinking in the liquid; again aquamarine floats, but the blue topaz, which is often very similar to it, sinks in methylene iodide.
By saturating methylene iodide with iodine and iodoform, we have a liquid (d) of density 3·6; a fragment of topaz, 3·55, may be used to indicate whether the liquid has the requisite density. Unfortunately this saturated solution is so dark as to be almost opaque, and is, moreover, very viscous. Its principal use is to distinguish diamond, 3·535, from the brilliant colourless zircon, with which, apart from a test for hardness, it may easily be confused. It is easy to see whether the stone floats, as it would do if a diamond. To recover a stone which has sunk, the only course is to pour off the liquid into another tube, because it is far too dark for the position of the stone to be seen.
It is possible to employ a similar method for still denser stones by having recourse to Retgers’s salt, silver-thallium nitrate. This double salt is solid at ordinary room-temperatures, but has the remarkable property of melting at a temperature, 75° C., which is well below the point of fusion of either of its constituents, to a clear, mobile yellow liquid, which is miscible in any proportion with water, and has, when pure, a density of 4·6. The salt may be purchased, or it may be prepared by mixing 100 grams of thallium nitrate and 64 grams of silver nitrate, or similar proportions, in a little water, and heating the whole over a water-bath, keeping it constantly stirred with a glass rod until it is liquefied. The two salts must be mixed in the correct proportions, because otherwise the mixture might form other double salts, which do not melt at so low a temperature. A glance at the table of specific gravities shows that Retgers’s salt may be used for all the gem-stones with the single exception of zircon (b). There are, however, some objections to its use. It is expensive, and, unless kept constantly melted, it is not immediately available. It darkens on exposure to strong sunlight like all silver salts, stains the skin a peculiar shade of purple which is with difficulty removed, and in fact only by abrasion of the skin, and, like all thallium compounds, is highly poisonous.
It is convenient to have three tubes, fitted as before with stoppers or corks, to contain the following liquids, when heated:—
(e) Silver-thallium nitrate, reduced to 3·5; using as indicators, peridot or idocrase 3·40 and topaz 3·53.
(f) Silver-thallium nitrate, reduced to 4·0; indicators, topaz 3·53 and sapphire 4·03.
(g) Silver-thallium nitrate, undiluted, 4·6.
The tubes must be heated in some form of water-bath; an ordinary glass beaker serves the purpose satisfactorily. The pure salt should never be diluted; but the density of the contents of tubes (e) and (f) may be varied at will, water being added in order to lower the density, and concentration by means of evaporation or addition of the nitrate being employed in order to increase it. To avoid the discoloration of the skin, rubber finger-stalls may be used, and the stones should not be handled until after they have been washed in warm water. The staining may be minimized if the hands be well washed in hot water before being exposed to sunlight. It is advisable to warm the stone to be tested in a tube containing water beforehand lest the sudden heating develop cracks. A piece of platinum, or, failing that, copper wire is of service for removing stones from the tubes; a glass rod, spoon-shaped at one end, does equally well. It must be noted that although Retgers’s salt is absolutely harmless to the ordinary gem-stones—with the exception of opal and turquoise, which, as has already been stated, being to some extent porous, should not be immersed in liquids—it attacks certain substances, for instance, sulphides and cannot be applied indiscriminately to minerals.
The procedure described above is intended only as a suggestion; the method may be varied to any extent at will, depending upon the particular requirements. If such tests are made only occasionally, a smaller number of tubes may be used. Thus one tube may be substituted for the two marked a and b, the liquid contained in it being diluted as required, and a series of indicators may be kept apart in small glass tubes. On the other hand, any one having constantly to test stones might increase the number of tubes with advantage, and might find it useful to have at hand fragments of all the principal species in order to make direct comparison.