The Acetates

Aluminium Acetate, made by dissolving alumina in acetic acid, is the “red liquor” which is used as a mordant in dyeing. It is a colourless liquid, but is called “red liquor” because it is used with dyes which give a red colour.

Ferrous Acetate, made in a similar way from scrap iron and acetic acid, is the “black liquor” used in dyeing.

Verdigris, or basic copper acetate, is a valuable pigment. It is made by interposing cloths soaked in vinegar between plates of copper. After the action has been allowed to go on for a long time, the plates are washed with water and the verdigris is scraped off. The finest verdigris is made in France in the wine-producing district around Montpellier. Here, instead of cloths soaked in vinegar, the solid residue from the wine presses is spread in layers between the copper plates. The product made in this way is called vert de Montpellier.

Fig. 11. DUTCH PROCESS FOR WHITE LEAD

Verdigris, like all the copper compounds, is extremely poisonous. It is very liable to be formed on the surface of copper utensils used for cooking purposes.

Lead Acetate, or sugar of lead, is used in large quantities in the colour industry for making various reds and yellows. It is prepared by dissolving the metal or its oxide (litharge) in acetic acid.

The slow action which acetic acid vapour has upon the metal lead finds a very interesting application in what is known as the Dutch process for the manufacture of white lead[4] for paint. The metal is cast into grids or spirals, which are placed on the shoulders of the specially made pots sketched in [Fig. 11]. A little dilute acetic acid is poured into each of the pots, which are then arranged side by side on a thick layer of tan bark, stable manure, or other material which will heat by fermentation. The first layer of pots is then boarded over; another layer of pots is placed upon this, and so on, tier upon tier, until the shed is quite full. The heat developed by the fermenting material vaporizes the acetic acid, and this vapour corrodes the lead, forming basic lead acetate. The carbon dioxide which is also produced during fermentation converts the acetate into the carbonate, which falls as a heavy white powder into the pots.

Future Supply of Acetic Acid. When all the operations involved in the production of acetic acid from wood, from the felling of the tree to the final separation of the glacial substance, are taken into consideration, it will be readily understood how it is that this acid has never been cheap when compared with other acids used on an equally large scale. In addition to this, the competition for wood for paper-making and for the very numerous cellulose industries is rapidly increasing. It is, therefore, not surprising to learn that chemists have turned their attention towards the discovery of newer and cheaper methods of making acetic acid.

Such a process seems to have been worked out in Germany. The starting-point is acetylene gas made by the action of water on calcium carbide. When this gas is passed through sulphuric acid containing suspended mercuric oxide or dissolved mercury salt, the acetylene is oxidized first to aldehyde and then to acetic acid.

If this process should prove to be successful, it will form the starting-point of a new and important industry, for, apart from the large amount of acetic acid which is used in commerce, there is the production of the very important solvent known as acetone, which can be made from acetic acid by a very simple operation.

Tartaric Acid. Grape juice contains a large quantity of potassium hydrogen tartrate dissolved in it; when the liquid is fermented and alcohol is formed, this salt crystallizes out because it is not soluble in alcohol. After the new wine has been poured off, the salt is found as a brownish crystalline residue adhering to the sides of the vat. Also the salt goes on crystallizing after the wine is put into barrels, and forms an incrustation on the sides. This is called the lees or sediment of wine. In commerce, the substance is known as argol (sometimes spelt argal), and also tartar of wine.

Crude argol is purified by dissolving it in water and destroying the colour by boiling with animal charcoal. When the clear liquid obtained from this mixture by filtration is evaporated, a white crystalline substance separates out. This is potassium hydrogen tartrate or cream of tartar.

Tartaric acid is obtained from cream of tartar. The salt is dissolved in water and nearly neutralized with milk of lime. Insoluble calcium tartrate is precipitated, and potassium tartrate remains in solution. A further quantity of calcium tartrate is obtained by adding calcium chloride to the solution just mentioned. The two precipitates of calcium tartrate are then mixed and decomposed by dilute sulphuric acid, and after the calcium sulphate is filtered off, tartaric acid is obtained as a solid by evaporating the clear liquid.

The general properties of tartaric acid are well known. It is soluble in water, giving a solution which has a pleasantly acid taste.

Citric Acid. The sharp flavour of many unripe fruits is due to the presence of citric acid; the juice of lemons contains 5-6 per cent. of the acid. The free acid is obtained in a manner precisely similar in principle to that described for tartaric acid.

Oxalic Acid. Oxalic acid and its salts, the oxalates, are very widely distributed in the vegetable kingdom. These compounds are present in wood sorrel (Oxalis acetosella), in rhubarb, in dock, and in many other plants. The acid is made on a large scale by mixing pine sawdust to a stiff paste with a solution containing caustic soda and potash. The paste is spread out on iron plates and heated, care being taken not to heat the mixture to the point at which it chars. The mass is then allowed to cool, and is mixed with a small quantity of water to dissolve out the excess of alkali. This is recovered and used again.

Sodium oxalate, which is the main product of the reaction described above, is dissolved in water and treated with milk of lime, whereby insoluble calcium oxalate is obtained, which is subsequently decomposed with sulphuric acid, yielding oxalic acid.

Potassium hydrogen oxalate is sometimes called salts of sorrel, and potassium quadroxalate, salts of lemon. The most familiar use of the latter substance is in the removal of ink stains.

Oxalic acid and its salts are poisonous. The free acid has sometimes been mistaken for sugar with fatal results.

Formic Acid (L. formica, an ant) is found both in the vegetable and in the animal kingdom. If the leaf of a stinging nettle is examined with a microscope, it is seen to be covered with long pointed hairs having a gland at the base. This gland contains formic acid. When the nettle is touched lightly, the fine point of the hair punctures the skin, and a subcutaneous injection of formic acid is made, which quickly raises a blister.

The inconvenience which arises from the stings of bees and wasps, also from the fluid ejected by ants when irritated, is due to formic acid. The remedy in each case is the same; the acid must be neutralized as quickly as possible with mild alkali, such as washing soda.

Formic acid was first made by distilling an infusion of red ants. It is now made from glycerine and oxalic acid.

The Fatty Acids. Animal fats and vegetable oils are similarly constituted bodies. They are composed mainly of three chemical compounds known as stearin, palmitin, and oleïn. Of these, stearin and palmitin are solids at ordinary temperatures, while oleïn is a liquid. Hard fats like those of mutton and beef are composed mainly of stearin; fats of medium hardness contain stearin, palmitin, and some oleïn; while oils such as cod-liver oil and olive oil are nearly pure oleïn.

Stearin, palmitin, and oleïn are analogous in composition to salts. Their proximate constituents are glycerine and certain organic acids, stearic, palmitic, and oleïc respectively.

In order to obtain the fat free from tissue which it contains in its natural state, it is tied up in a muslin bag and heated in boiling water. The fat is squeezed out through the meshes of the fabric and floats on the surface of the water as an oil which solidifies on cooling. This clarified fat is called tallow.

All fats and vegetable oils can be resolved into their two constituents, the acid and the glycerine. This can be brought about by heating the fat with water to about 200° C. This operation must be carried out in a vessel capable of withstanding pressure and closed with a safety valve; otherwise, the requisite temperature could not be obtained. After this treatment, there is left in the vessel an oily layer which solidifies on cooling and an aqueous layer which contains the glycerine. The solidified oily layer is the fatty acid. In the case of mutton or beef tallow, it would be mainly a mixture of stearic and palmitic acids. This mixture is used to make “stearin” candles. The acids themselves are wax-like solids without any distinctive taste. Stearic acid melts at 69° C. and palmitic at 62° C. They have no perceptible action on the colour of litmus, neither have they any solvent action on metals or carbonates. We should not recognize these substances as acids at all were it not for the fact that they combine with alkalis, forming salts.

The salts of the fatty acids are called soaps. To make soap, the fat is boiled with caustic alkali or caustic lye, as it is more often called. This breaks the fat up primarily into the acid and glycerine; but in this case, instead of obtaining the acid as the final product as we did above by heating with water under pressure, we get the sodium or potassium salt of the acid according to the alkali used. When caustic soda is used, the product is a hard soap; when caustic potash is used, it is a soft soap. The treatment of fats in this way with caustic alkalis is called “saponification.”

CHAPTER VIII
MILD ALKALI

Caustic and Mild. There are two classes of alkalis distinguished by the terms caustic and mild. If a piece of all-wool material is boiled with a solution of caustic soda or potash, it dissolves completely, giving a yellow solution. Mild alkali will not dissolve flannel, though it may have some slight chemical action causing shrinkage. Partly for this reason, and partly because commercial washing soda often contains a little caustic soda, woollen garments must not be boiled or even washed in hot soda water.

The disintegrating action of the caustic alkalis is also illustrated by the use of caustic soda in the preparation of wood pulp for paper making. Tree trunks are first torn up and shredded by machinery; but notwithstanding the power of modern machinery, the fibre is not nearly fine enough for the purpose until it has been “beaten” with a solution of caustic soda, whereby the pulp is brought to a smooth and uniform consistency like that of thin cream.

Mild Soda and Potash. Until the middle of the eighteenth century, it was thought that the soluble matter extracted from the ashes of all plants was the same. In 1752 it was shown that the substance obtained in this way from plants which grew in or near the sea differed from that from land vegetation by producing a golden yellow colour when introduced into the non-luminous flame of a spirit lamp, while that from land plants gave to the flame a pale lilac tinge. The former substance is now known as mild soda, and the latter as mild potash.

At this point it is well to make it clear to the reader that there are two bodies commonly called soda, and two called potash. One of each pair is caustic and one mild.

By a simple chemical test it is easy to distinguish a mild from a caustic alkali. When a little dilute acid is added to the former, there is a vigorous effervescence caused by the escape of carbon dioxide, but no gas is given off when a caustic alkali is treated in the same way. The liberation of carbon dioxide on the addition of acids shows that the mild alkalis are carbonates.

Washing Soda is so well known, that very little description of its external characteristics is necessary. It is a crystalline substance, easily soluble in water. The crystals, when freshly prepared, are semi-transparent; but after exposure to air for some time, they are found to lose their transparency and to become coated with an opaque white solid which crumbles easily. This change in appearance is accompanied by a loss in weight.

Crystals of soda melt very easily on the application of heat and, on continued heating, the liquid seems to boil. When this operation is carried out in a vessel attached to a condenser, the vapour that is given off from the melted soda condenses to a clear colourless liquid which, on examination, proves to be water. When no more water collects in the receiver, the vessel contains a dry, white solid, which by any chemical test that may be applied is shown to be the same as washing soda, but it contains no water of crystallization and has a different crystalline form. This substance is anhydrous sodium carbonate, or soda ash as it is called in commerce. When soda ash is mixed with water, it combines with about twice its own weight of that liquid, forming soda crystals again.

Washing soda, then, contains nearly two-thirds of its weight of water. Some of this water is given off spontaneously when the soda is exposed to air; the water may even be said to evaporate. This accounts for the loss of weight observed and also for the formation of the white layer of partially dehydrated soda over the surface of the crystal. The property of losing water in this way is common to most crystals containing a high percentage of water of crystallization. The phenomenon is known as “efflorescence.” It may here be observed that crystals of washing soda which have become coated over in this way contain relatively more soda than those which are transparent.

Natural Soda. In Egypt, Thibet, and Utah, there are tracts of country where the soil is so impregnated with soda that the land is desert. The separation of the soda from the earth is a simple operation, for it is only necessary to agitate the soil with water and, after the insoluble matter has settled down, to evaporate the clear solution until the soda crystallizes out.

In addition to alkali deserts, there are also alkali lakes. Those in Egypt are small, nevertheless, about 30,000 tons of soda per annum are exported from Alexandria. Owens Lake in California is said to contain sufficient soda to supply the needs of North America; while in the East African Protectorate, beneath the shallow waters of Lake Magadi (discovered in 1910), there is a deposit of soda estimated at 200,000,000 tons.

The Leblanc Process. At the present time, the greater part of the world’s supply of soda is made from common salt by two processes. The older of these, which is known as the Leblanc process, was introduced in France towards the end of the eighteenth century. In those days soda was very dear, for the main supply came from the ashes of seaweeds; wherefore the French Academy of Sciences, in 1775, offered a prize for the most suitable method of converting salt into soda on a manufacturing scale. The prize was won by Nicholas Leblanc, who in 1791 started the first soda factory near Paris. These were the days of the French Revolution; the “Comité de Sûreté Général” abolished monopolies and ordered citizen Leblanc to publish the details of his process.

Fig. 12. SALT CAKE FURNACE

The first alkali works were established in Great Britain in 1814. The total amount of soda now made in this country every year is about 1,000,000 tons, of which nearly one-half is still made by the Leblanc process.

Salt Cake. The first stage of the Leblanc process consists in mixing a charge of salt weighing some hundredweights with the requisite amount of “chamber” sulphuric acid. The operation is carried out in a circular cast-iron pan (D, [Fig. 12]) about 9 ft. in diameter and 2 ft. deep. The pan is covered over with a dome of brickwork, leaving a central flue (E) for the escape of hydrochloric acid gas which is produced. At first, the reaction takes place without the application of heat, but towards the end the mass is heated for about one hour. The contents of the pan are then raked out on to the hearth of a reverberatory furnace (a, b) and more strongly heated. More hydrochloric acid gas is given off, and the reaction is completed. The solid product which remains is impure Glauber’s salt (sodium sulphate), and is known in the trade as “salt cake.”

Black Ash. In the second stage of the Leblanc process, salt cake is converted into black ash. The salt cake is crushed and mixed with an equal weight of powdered limestone or chalk and half its weight of coal dust. This mixture is introduced into a reverberatory furnace ([Fig. 13]) by the hopper K, and heated to about 1000° C. by flames and hot gases from a fire at a. During this operation, the mass is kept well mixed, and after some time it is transferred to h where the temperature is higher. The mixture then becomes semi-fluid and carbon monoxide gas is given off.

Fig. 13. BLACK ASH FURNACE

The formation of carbon monoxide within the semi-solid mass renders it porous. This is an advantage, because it greatly facilitates the subsequent operation of dissolving out the soluble sodium carbonate. The appearance of the flames of carbon monoxide at the surface of the black ash indicates the end of the process. The product is then worked up into balls and removed from the furnace.

The chemical changes which take place in making black ash are probably as follows: Carbon (coal dust) removes oxygen from sodium sulphate, which is thus changed to sodium sulphide. This substance then reacts with the limestone (calcium carbonate), forming sodium carbonate (soda) and calcium sulphide.

Extraction of Soda. It now only remains to dissolve out the soda from the insoluble impurities with which it is mixed in the black ash. It is evident that the smaller the amount of water used for this purpose the better, because the water has subsequently to be got rid of by evaporation. The process of extraction is, therefore, carried out systematically. The black ash is treated with water in a series of tanks which are fitted with perforated false bottoms. The soda solution, which is heavier than water, tends to sink to the bottom and, after passing through the perforations, is carried away by a pipe to the second tank, and so on throughout the series. The fresh water is brought first into contact with the black ash from which nearly all the soda has been extracted.

The method of finishing off the black ash liquor differs according to the final product which the manufacturer desires to obtain, for the liquor contains caustic soda as well as mild soda. For the present, we will suppose that the end product is to be washing soda. In this case, carbon dioxide is passed into the liquor to convert what caustic soda there is into mild soda.

The clarified soda liquor is then evaporated until crystals of soda separate out. The first part of this process is carried out in large shallow pans (P. [Fig. 13]), using the waste heat of the black ash furnace, and finally in vats containing steam-heated coils. As the crystals separate out, they are removed, drained, and dried.

Alkali Waste. Black ash contains less than half its weight of soda, so that for every ton of soda produced there is from a ton and a half to two tons of an insoluble residue which collects in the lixiviating and settling tanks. This residue is known as alkali waste.

Alkali waste is of no particular value. It is not even suitable as a dressing for the land, and since it is not soluble in water there is no convenient means of disposing of it. Consequently, it is just accumulated at the works and, as the heap grows at an alarming rate, it cumbers much valuable ground. Moreover, it contains sulphides from which, under the influence of air and moisture, sulphuretted hydrogen is liberated. Alkali waste, therefore, has a very unpleasant odour.

The whole of the sulphur which was contained in the sulphuric acid used in the first stage of the process remains in the alkali waste, mainly as calcium sulphide. A plant for the recovery of this sulphur is established in some of the larger works. The alkali waste is mixed with water to the consistency of a thin cream, in tall, vertical cylinders. Carbon dioxide under pressure is forced into the mixture, and this converts the calcium sulphide into calcium carbonate and sets free hydrogen sulphide, which, when burnt with a limited supply of air, yields sulphur.

By this process, the most unpleasant feature of alkali waste, namely, the smell, is removed. The calcium carbonate which remains is of very little value. Some of it is used in making up fresh charges for the black ash process and some for preparing Portland cement, for which finely-ground calcium carbonate is required; the remainder is thrown on a heap.

Bicarbonate of Soda. Bicarbonate of soda can be easily distinguished from washing soda. It is a fine, white powder similar in appearance to the efflorescence on soda crystals. It does not contain any water of crystallization.

When bicarbonate of soda is heated, it does not melt, and, as far as its external appearance is concerned, it does not seem to undergo any change. If, however, suitable arrangements are made, water and carbon dioxide gas can be collected, and the sodium bicarbonate will be found to have lost 36·9 per cent. of its weight. The substance which remains is identical with that obtained by heating soda crystals, that is, anhydrous sodium carbonate. Sodium bicarbonate is, therefore, a compound of sodium carbonate and carbonic acid.

The most familiar use of this compound is indicated by its common names “baking-soda” and “bread-soda.” It is mixed with dough or other similar material in order to keep this from settling down to a hard solid mass in baking. The way in which bicarbonate of soda prevents this will be readily understood when it is remembered that an ounce of this substance liberates more than 2,300 cu. in. of carbon dioxide when it is heated. When the bicarbonate of soda is well mixed with the ingredients of the cake or loaf and disseminated throughout the mass, each particle will furnish (let us say) its bubble of gas. Since these cannot escape, a honey-combed structure is produced.

Fig. 14. THE SOLVAY PROCESS

Baking powder is a mixture of bicarbonate of soda and ground rice; the latter substance is merely a solid diluent.

The Solvay Process. Soda ash is one of the principal forms of mild alkali used in commerce. Large quantities of this substance are made by heating bicarbonate of soda. We shall now consider another alkali process in which this substance is the primary product.

For the greater part of the first century of its existence, the Leblanc soda process had no rival, although another method, known as the ammonia-soda process, was patented as early as 1838. In this case, however, as in many others, expectations based on the experiments carried out in the laboratory were not realized when the method came to be tried under manufacturing conditions. It was not until 1872 that Ernest Solvay, a Belgian chemist, had so far solved the difficulties, that a new start could be made. In that year, about 3,000 tons of soda were produced by the ammonia-soda or Solvay process, as it has now come to be known. Since then, however, the quantity produced annually has been steadily increasing, until at the present time it amounts to more than half of the world’s supply.

The Solvay process is very simple in theory. Purified brine is saturated first with ammonia gas and then with carbon dioxide. Water, ammonia, and carbon dioxide combine, forming ammonium bicarbonate, which reacts with salt (sodium chloride), producing sodium bicarbonate and ammonium chloride.

The principal reaction is carried out in a tower ([Fig. 14] (1), a, a) from 50 to 65 ft. in height and about 6 ft. in diameter. At intervals of about 3½ ft. throughout its length, the tower is divided into sections by pairs of transverse discs, one flat with a large central hole, and one hemispherical and perforated with small holes ([Fig. 14] (2)). The discs are kept in position by a guide rod G. [Fig. 14] (3) shows a better arrangement of the guide rods. In modern works, the space between the discs is kept cool by pipes conveying running water. The ammoniated brine is led into the tower near its middle point. The carbon dioxide is forced in at E in the lowest segment, and as it passes up the tower it is broken up into small bubbles by the sieve plates. Sodium bicarbonate separates out as a fine powder, which makes its way to the bottom of the tower suspended in the liquid.

The perforated plates are necessary for the proper distribution of carbon dioxide through the brine. They are, however, a source of trouble, because the holes quickly become blocked up with sodium bicarbonate, and every ten days or so it is necessary to empty the tower and clean it out with steam or boiling water.

Recovery of Ammonia. The production of 1 ton of soda ash by the Solvay process involves the use of a quantity of ammonia which costs about eight times as much as the price realized by selling the soda. It is evident that the success of the process as a commercial venture depends largely on the completeness with which the ammonia can be recovered.

During the process, ammonia is converted into ammonium chloride, which remains dissolved in the residual liquor. From this ammonia gas is set free by adding quicklime and by blowing steam through the mixture. It is now claimed that 99 per cent. of the ammonia used in one operation is recovered.

Soda Ash. The bicarbonate of soda produced by the Solvay process is moderately pure. For all ordinary purposes, it is only necessary to wash it with cold water to remove unchanged salt, and after drying, it is ready to be placed on the market if it is to be sold as bicarbonate. The greater part of the Solvay product, however, is converted into soda ash by the application of heat. If soda crystals are required, the soda ash is dissolved in water and crystallized.

In many ways, the Solvay process compares very favourably with the older method. It is an advantage to start with brine, for that is the form in which salt is very often raised from the mines. The end product is relatively pure; moreover, it is quite free from caustic soda, which for some purposes for which soda ash is used is a great recommendation. There is no unpleasant smelling alkali waste. On the other hand, the efficiency of the Solvay process is not high, for only about one-third of the salt used is converted into soda. This would make the process impossible from the commercial point of view were it not for the cheapness of salt.

The Leblanc process, too, has its advantages. In the next chapter we shall see that it is adaptable for the production of caustic as well as mild alkali. The chlorine which is recovered in the Leblanc process is a very valuable by-product. In the Solvay process, chlorine is lost, for hitherto no practicable method has been found for its recovery from calcium chloride.

The position with regard to the future supply of alkali is very interesting. The competition between the Leblanc and the Solvay processes for supremacy in the market is very keen. At the same time, both processes are in some degree of danger of being supplanted by the newer electrical methods, which will be mentioned in the last chapter.

The following table shows very clearly the rapid progress made by the Solvay process in ten years. The quantities are given in tonnes (1 tonne = 0·9842 ton).

1884. 1894.
Leblanc soda. Solvay soda. Leblanc soda. Solvay soda.
Great Britain 380,000 52,000 340,000 181,000
Germany 56,500 44,000 40,000 210,000
France 70,000 57,000 20,000 150,000
United States 1,100 20,000 80,000
Austria-Hungary 39,000 1,000 20,000 75,000
Russia 10,000 50,000
Belgium 8,000 6,000 30,000
545,500 163,100 456,000 776,000

Mild Potash. Potassium carbonate (mild potash) was formerly obtained from wood ashes. The clear aqueous extract was evaporated to dryness in iron pots, and the substance was on this account called potashes; later, potash. A whiter product was obtained by calcining the residue, and this was distinguished as pearl-ash. Chemically pure potassium carbonate was formerly obtained by igniting cream of tartar (potassium hydrogen tartrate) with an equal weight of nitre. It is for this reason that potassium carbonate is sometimes called “salt of tartar.”

About the middle of last century, natural deposits of potassium chloride were discovered in Germany. The beds of rock salt near Stassfurt are covered over with a layer of other salts, and for many years these were removed and cast aside as “waste salts” (abraumsalze). When at a later date they were examined more carefully, they were found to contain valuable potassium compounds, notably the chloride. After that discovery, mild potash was made by the Leblanc process., and Germany controlled the world’s markets for all potassium compounds.

At the outbreak of war, the German supplies of potassium compounds ceased as far as the allied nations were concerned, and an older method of making potassium chloride from orthoclase or potash-felspar was revived. This involves the heating of the powdered mineral to a high temperature after mixing it with calcium chloride, lime, and a little fluorspar. The potassium chloride is then extracted from the fused mass with water. This method has been worked with great success in America, and it is claimed that potassium chloride can be made in that country at a cost which is lower than that formerly paid for the imported article.

Mild potash and soda are so very similar in chemical properties that in most cases it is immaterial which compound is used. In all cases in which there is this choice, soda is employed, both because it is cheaper and because it is more economical, for 106 parts of soda ash are equivalent to 138 parts of potash. There are, however, some occasions when soda cannot be substituted, notably for the manufacture of hard glass and soft soap, and for the preparation of caustic potash, potassium dichromate, and other potassium salts.

Potassium Bicarbonate. This resembles the corresponding sodium salt in nearly every respect. It is, however, much more readily soluble in water, so much so, that it is not possible to obtain this substance by the Solvay method. It is made from potassium carbonate by saturating a strong aqueous solution of that substance with carbon dioxide.

CHAPTER IX
CAUSTIC ALKALIS

The Alkali Metals. The discovery of current electricity in 1790 furnished the chemist with a very powerful agency for bringing about the decomposition of compounds. Hydrogen and oxygen were soon obtained by passing an electric current through acidulated water; and in 1807, Sir Humphry Davy, who is perhaps better remembered for his invention of the miners’ lamp, isolated the metals sodium and potassium by subjecting caustic soda and caustic potash respectively to the action of the current.

Sodium and potassium are very remarkable metals. They are only a little harder than putty, and can easily be cut with a knife or moulded between the fingers. When exposed to the air, they rust or oxidize very rapidly, so much so that they have to be preserved in some mineral oil or in airtight tins. They are lighter than water, which they decompose with the liberation of hydrogen, and under favourable circumstances the hydrogen takes fire so that the metals appear to burn on the surface of the water. After the reaction is over and the sodium or potassium has disappeared, a clear colourless liquid remains which has a strongly alkaline reaction, and when this is evaporated until the residue solidifies on cooling, caustic soda or potash is obtained. For very special purposes, the caustic alkalis are sometimes made by the action of the metals on water, but for production on a large scale, less expensive methods are adopted.

Caustic Alkali is obtained from the corresponding mild alkali in the following way. The substance—washing soda, for example—is dissolved in water and the solution is warmed. Lime is stirred into this solution, and from time to time a small test portion of the clear supernatant liquid is removed and mixed with a dilute mineral acid. When this ceases to cause effervescence, the change is complete. The clear liquid is now separated from the solid matter (excess of lime together with calcium carbonate) and evaporated in a metal dish. Since the caustic alkalis are extremely soluble in water, they do not crystallize as do most of the compounds previously described. Evaporation is, therefore, carried on until the liquid which remains solidifies when cold.

Caustic Soda. To describe the process by which caustic soda is manufactured, we must return to the making of black ash. The mixture from which black ash is made contains limestone. It is heated to 1000° C., which is a sufficiently high temperature to convert limestone into lime. When the black ash is subsequently treated with water, the lime which is present converts some of the mild alkali to caustic; consequently, black ash liquor always contains both alkalis.

When the manufacturer intends to make caustic soda and not soda crystals, the composition of the black ash mixture is varied by adding a larger proportion of limestone, so that there may be an excess of lime in the black ash produced. The treatment with water is carried out as described under washing soda, and then more lime is added to convert the mild soda into caustic soda. After the excess of lime and other suspended matter has settled down, the clear caustic liquor is evaporated in iron kettles until it becomes molten caustic, which will solidify on being allowed to cool.

There are various grades of caustic soda on the market differing one from another in purity. The soap manufacturer uses caustic liquor or lye containing about 40 per cent. of caustic soda. For other purposes, the solid containing from 60 to 78 per cent. is used. Sometimes the product is whitened by blowing air through the strong caustic liquor or by the addition of a little potassium nitrate. Finally, for analytical purposes, caustic soda is purified by dissolving it in alcohol and subsequently evaporating the clear liquid.

Caustic Potash. The methods for the preparation of the corresponding potassium compound are precisely the same as those described for caustic soda; in fact, wherever the words sodium and soda occur in this chapter, the reader can always substitute potassium and potash respectively.

Caustic Lime. Apart from its use in making mortar and cement, lime is very often employed to neutralize acids. For this purpose, a suspension in water, called milk of lime, is generally used, for lime itself is not very soluble. Probably it is only the soluble part which reacts; nevertheless, as soon as this is used up, more of the solid dissolves, and in this way the action goes on as if all the lime were in solution.

Lime is also a very valuable substance in agriculture, especially on damp, boggy land, where there is much decaying vegetable matter, and on land which has been liberally manured. The soil in these cases is very likely to become acid and is then unproductive. Lime is added to “sweeten” the soil; in other words, to neutralize the acid.

Ammonia. The pungent smelling liquid popularly known as “spirits of hartshorn” is a solution of ammonia gas in water. It is a caustic alkali and, as such, is sometimes used to remove grease spots. Here, however, we shall consider ammonia only in connection with ammonium salts, some of which are used in very large quantity as fertilizers.

The principal source of ammonia at the present time is the ammoniacal liquor obtained as a by-product in the manufacture of gas for heating and lighting. Coal contains about 1 per cent. of nitrogen, and when it is distilled, some of this nitrogen is given off as ammonia, which dissolves in the water produced at the same time. This liquid is condensed in the hydraulic main and in other parts of the plant where the gas is cooled down.

Gas liquor contains chiefly the carbonate, sulphide, sulpho-cyanide, and chloride of ammonia, together with many other substances, some of which are of a tarry nature. It would not be practicable to evaporate this liquid with a view to obtaining the ammonium salts, because it is only a very dilute solution. Hence, after the removal of tar, the liquor is treated in such a way that ammonia is set free.

In some cases the liberation of ammonia is accomplished by blowing superheated steam into the liquor, which sets free the ammonia which is combined as carbonate, sulphide, and sulpho-cyanide, but not that which is present as chloride. In other works, the gas liquor is mixed with milk of lime, which liberates all the combined ammonia. The ammonia is then expelled from the mixture by a current of steam or air and steam. In both cases, the gas which is given off is passed into sulphuric acid, whereby ammonium sulphate is formed in solution and afterwards obtained as a solid by evaporation.