NATURAL SELECTION AND ORGANIC AFFINITY.

118. It is impossible to treat of Evolution without taking notice of that luminous hypothesis by which Mr. Darwin has revolutionized Zoölogy. There are two points needful to be clearly apprehended before the question is entered upon. The first point relates to the lax use of the phrase “conditions,” sometimes more instructively replaced by “conditions of existence.” Inasmuch as Life is only possible under definite relations of the organism and its medium, the “conditions of existence” will be those physical, chemical, and physiological changes, which in the organism, and out of it, co-operate to produce the result. There are myriads of changes in the external medium which have no corresponding changes in the organism, not being in any direct relation to it (see § [54]). These, not being co-operant conditions, must be left out of the account; they are not conditions of existence for the organism, and therefore the organism does not vary with their variations. On the other hand, what seem very slight changes in the medium are often responded to by important changes in the vital chemistry, and consequently in the structure of the organism. Now the nature of the organism at the time being, that is to say, its structure and the physico-chemical state of its tissues and plasmodes, is the main condition of this response; the same external agent will be powerful, or powerless, over slightly different organisms, or over the same organism at different times. Usually, and for convenience, when biologists speak of conditions, they only refer to external changes. This usage has been the source of no little confusion in discussing the Development Hypothesis. Mr. Darwin, however, while following the established usage, is careful in several places to declare that of the two factors in Variation—the nature of the organism and the nature of the conditions—the former is by far the more important.

118a. A still greater modification of terms must now be made. Instead of confining the “struggle for existence” to the competition of rivals and the antagonism of foes, we must extend it to the competition and antagonism of tissues and organs. The existence of an organism is not only dependent on the external existence of others, and is the outcome of a struggle; but also on the internal conditions which co-operate in the formation of its structure, this structure being the outcome of a struggle. The organism is this particular organism, differing from others, because of the particular conditions which have co-operated. The primary and fundamental struggle must be that of the organic forces at work in creating a structure capable of pushing its way amid external forces. The organism must find a footing in the world, before it can compete with rivals, and defend itself against foes. Owing to the power of reproduction, every organism has a potential indefiniteness of multiplication; that potential indefiniteness is, however, in reality restricted by the supply of food, and by the competition of rivals for that supply. The multiplication of any one species is thus kept down by the presence of rivals and foes: a balance is reached, which permits of the restricted quantities of various species. This balance is the result of a struggle.

Now let me call attention to a similar process in the formation of the organism itself. Every organite, and every tissue, has a potential growth of indefinite extent, but its real growth is rigorously limited by the competition and antagonism of the others, each of which has its potential indefiniteness, and its real limits. Something, in the food assimilated, slightly alters the part which assimilates it. This change may be the origin of other changes in the part itself, or in neighboring parts, stimulating or arresting the vital processes. A modification of structure results. Or there may be no new substance assimilated, but external forces may call a part into increased activity—which means increased waste and repair; and this increase here is the cause of a corresponding decrease somewhere else. Whatever the nature of the change, it finds its place amid a complex of changes, and its results are compounded with theirs. When organites and tissues are said to have a potential indefiniteness of growth, there is assumed a potential indefiniteness in the pabulum supplied: if the pabulum were supplied, and if there were no antagonism thwarting its assimilation, growth would of course continue without pause, or end; but in reality this cannot be so. For, take the blood as the vehicle of the pabulum—not only is its quantity limited, and partly limited by the very action of the tissues it feeds, but even in any given quantity there is a limit to its composition—it will only take up a limited quantity of salts, iron, albumen, etc.; no matter how abundant these may be in the food. So again with the plasmodes of the various tissues—they have each their definite capacities of assimilation. What has already been stated respecting chemical affinity (§ [20]) is equally applicable to organic affinity; as the presence of fused iron in the crucible partially obstructs the combination of sulphur and lead, so the presence of connective tissue partially obstructs the combination of muscle protoplasm with its pabulum.

118 b. Owing to the action and reaction of blood and plasmode, of tissues on tissues, and organs on organs, and their mutual limitations, the growth of each organism has a limit, and the growth of each organ has a limit. Beyond this limit, no extra supply of food will increase the size of the organism; no increase of activity will increase the organ. “Man cannot add a cubit to his stature.” The blacksmith’s arm will not grow larger by twenty years of daily exercise, after it has once attained a certain size. Increase of activity caused it to enlarge up to this limit; but no increase of activity will cause it to pass this limit. Why? Because here a balance of the co-operating formative forces has been reached. Larger muscles, or more muscle-fibres, demand arteries of larger calibre, and these a heart of larger size; with the increase of muscle would come increase of connective tissue; and this tissue would not only compete with the muscle for pabulum, but by mechanical pressure would diminish the flow of that pabulum. And why would connective tissue increase? Because, in the first place, there is a formative association between the two, so that owing to a law, not yet understood, the one always accompanies the other; and, in the second place, there is a functional association between the two, a muscle-fibre being inoperative unless it be attached to a tendon, or connective tissue; it will contract out of the body although separated from its tendon or other attachment; but in the body its contraction would be useless without this attachment. We must bear in mind that muscle-fibres are very much shorter than ordinary muscles; according to the measurements of W. Krause they never exceed 4 cm in length, and usually range between 2 and 3 cm; their fine points being fixed to the interstitial connective tissue, as the whole muscle is fixed to its tendon. The function of the muscle is thus dependent on a due balance of its component tissues; if that balance is disturbed the function is disturbed. Should, from any cause, an excess of muscle-fibre arise, the balance would be disturbed; should an encroachment of connective tissue, or of fat, take place, there would be also a defect of function.

Here we have the co-operation and limitation of the tissues illustrated; let us extend our glance, and we shall see how the co-operation and limitation of the organs come into play, so that the resulting function depends on the balance of their forces. The contractile power of each individual muscle is always limited by the resistance of antagonists, which prevent the muscle being contracted more than about a third of its possible extent, i. e. possible when there are no resistances to be overcome. Not only the increasing tension of antagonist muscles, but the resistance of tendons, bones, and softer parts must be taken into account. Thus, the increase of the blacksmith’s muscular power would involve a considerable increase in all the tissues of the arm; but such an increase would involve a reconstruction of his whole organism.

Whenever there is an encroachment of one tissue on another, there is a disturbance of the normal balance, which readily passes into a pathological state. If the brain is overrun with connective tissue, or the heart with fatty tissue, we know the consequences. If connective tissue is deficient, epithelial runs to excess, no longer limited by its normal antagonist, and pus, or cancer, result.

118c. It is unnecessary here to enlarge on this point. I have adduced it to show that we must extend our conception of the struggle for existence beyond that of the competition and antagonism of organisms—the external struggle; and include under it the competition and antagonism of tissues and organs—the internal struggle. Variability is inherent in organic substances, as the result of their indefiniteness of composition (§ [45b]). This variability is indefinite, and is rendered definite by the competition and antagonism, so that every particular variation is the resultant of a composition of forces. The forces in operation are the internal and external conditions of existence—i. e. the nature of the organism, and its response to the actions of its medium. A change may take place in the medium without a corresponding response from the organism; or the change may find a response and the organism become modified. Every modification is a selection, determined by laws of growth; it is the resultant of a struggle between what, for want of a better term, may be called the organic affinities—which represent in organized substances what chemical affinities are in the anorganized. Just as an organism which has been modified and thereby gained a superiority over others, has by this modification been selected for survival—the selection being only another aspect of this modification—so one tissue, or one organ, which has surpassed another in the struggle of growth, will thereby have become selected. Natural Selection, or survival of the fittest, therefore, is simply the metaphorical expression of the fact that any balance of the forces which is best adapted for survival will survive. Unless we interpret it as a shorthand expression of all the internal and external conditions of existence, it is not acceptable as the origin of species.

118d. Mr. Darwin has so patiently and profoundly meditated on the whole subject, that we must be very slow in presuming him to have overlooked any important point. I know that he has not altogether overlooked this which we are now considering; but he is so preoccupied with the tracing out of his splendid discovery in all its bearings, that he has thrown the emphasis mainly on the external struggle, neglecting the internal struggle; and has thus in many passages employed language which implies a radical distinction where—as I conceive—no such distinction can be recognized. “Natural Selection,” he says, “depends on the survival under various and complex circumstances of the best-fitted individuals, but has no relation whatever to the primary cause of any modification of structure.”[61] On this we may remark, first, that selection does not depend on the survival, but is that survival; secondly, that the best-fitted individual survives because of that modification of its structure which has given it the superiority; therefore if the primary cause of this modification is not due to selection, then selection cannot be the cause of species. He separates Natural Selection from all the primary causes of variation, either internal or external—either as results of the laws of growth, of the correlations of variation, of use and disuse, etc., and limits it to the slow accumulations of such variations as are profitable in the struggle with competitors. And for his purpose this separation is necessary. But biological philosophy must, I think, regard the distinction as artificial, referring only to one of the great factors in the production of species. And for this reason: Selection only comes into existence in the modifications produced either by external or internal changes; and the selected change cannot be developed further by mere inheritance, unless the successive progeny have such a disposition of the organic affinities as will repeat the primary change. Inherited superiority will not by mere transmission become greater. The facts which are relied on in support of the idea of “fixity of species” show at any rate that a given superiority will remain stationary for thousands of years; and no one supposes that the progeny of an organism will vary unless some external or internal cause of variation accompanies the inheritance. Mr. Darwin agrees with Mr. Spencer in admitting the difficulty of distinguishing between the effects of some definite action of external conditions, and the accumulation through natural selection of inherited variations serviceable to the organism. But even in cases where the distinction could be clearly established, I think we should only see an historical distinction, that is to say, one between effects produced by particular causes now in operation, and effects produced by very complex and obscure causes in operation during ancestral development.

118e. The reader will understand that my criticism does not pretend to invalidate Mr. Darwin’s discovery, but rather to enlarge its terms, so as to make it include all the biological conditions, and thus explain many of the variations which Natural Selection—in the restricted acceptation—leaves out of account. Mr. Darwin draws a broad line of distinction between Variation and Selection, regarding only those variations that are favorable as selected. I conceive that all variations which survive are by that fact of survival, selections, whether favorable or indifferent. A variety is a species in formation; now Selection itself is not a cause, or condition, of variation, it is the expression of variation. Mr. Darwin is at times explicit enough on this head: “It may metaphorically be said that Natural Selection is daily and hourly scrutinizing throughout the world the slightest variations; rejecting those that are bad, preserving and adding up all that are good; silently and insensibly working, whenever and wherever opportunity offers, at the improvement of each organic being in relation to its organic and inorganic conditions of life.”[62] But the metaphorical nature of the term is not always borne in mind, so that elsewhere Natural Selection is said to “act on and modify organic beings,” as if it were a positive condition and not the expression of the modifying processes. Because grouse are largely destroyed by birds of prey, any change in their color which would render them less conspicuous would enable more birds to escape; but it is obvious that this change of color will be due to Organic Affinity; and only when the change is effected will there have been that selection which expresses it. Mr. Darwin’s language, however, is misleading. He says: “Hence Natural Selection might be most effective in giving the proper color to each kind of grouse, and in keeping that color when once acquired.” This is to make Selection an agent, a condition of the development of color; which may be accepted if we extend the term so as to include the organic changes themselves. Again: “Some writers have imagined that Natural Selection induces variability, whereas it only implies the preservation of such variations as are beneficial to the being under its conditions of life.” It, however, is made to imply more than this, namely, the accumulation and further modification of such variations. “The mere existence of individual variability and of some well-marked varieties, though necessary as the foundation, helps us but little in understanding how species arise in nature. How have all those exquisite adaptations of one part of the organization to another part, and to the conditions of life, and of one organic being to another being, been perfected?” My answer to this question would be: By Organic Affinity, and the resulting struggle of the tissues and organs, the consequences of which are that very adaptation of the organism to external conditions, which is expressed as the selection of the structures best adapted. The selections are the results of the struggle, according to my proposed extension of the term “struggle.” Mr. Darwin defines the struggle: “The dependence of one being on another, and including (what is more important) not only the life of the individual but success in leaving progeny.” This definition seems defective, since it omits the primary and more important struggle which takes place between the organic affinities in operation. To succeed in the struggle with competitors, the organism must have first acquired—by selection—a superiority in one or more of its organs.

118f. A little reflection will disclose the importance of keeping our eyes fixed on the internal causes of variation, as well as on the external conditions of the struggle. Mr. Darwin seems to imply that the external conditions which cause a variation are to be distinguished from the conditions which accumulate and perfect such variation, that is to say, he implies a radical difference between the process of variation and the process of selection. This, I have already said, does not seem to me acceptable; the selection, I conceive, to be simply the variation which has survived.[63]

If it be true that a Variety is an incipient Species and shows us Species in formation, it is in the same sense true that a variation is an incipient organ. A species is the result of a slowly accumulating divergence of structure; an organ is the result of a slowly accumulating differentiation. At each stage of differentiation there has been a selection, but we cannot by any means say that this selection was determined by the fact of its giving the organism a superiority over rivals, inasmuch as during all the early stages, while the organ was still in formation, there could be no advantage accruing from it. One animal having teeth and claws developed will have a decided superiority in the struggle over another animal that has no teeth and claws; but so long as the teeth and claws are in an undeveloped state of mere preparation they confer no superiority.

118g. Natural Selection is only the expression of the results of obscure physiological processes; and for a satisfactory theory of such results we must understand the nature of the processes. In other words, to understand Natural Selection we must recognize not only the facts thus expressed, but the factors of these facts,—we must analyze the “conditions of existence.” As a preliminary analysis we find external conditions, among which are included not only the dependence of the organism on the inorganic medium, but also the dependence of one organism on another,—the competition and antagonism of the whole organic world; and internal conditions, among which are included not only the dependence of the organism on the laws of composition and decomposition whereby each organite and each tissue is formed, but also the dependence of one organite and one tissue on all the others—the competition and antagonism of all the elements.

The changes wrought in an organism by these two kinds of conditions determine Varieties and Species. Although many of the changes are due to the process of natural selection brought about in the struggle with competitors and foes, many other changes have no such relation to the external struggle, but are simply the results of the organic affinities. They may or they may not give the organism a greater stability, or a greater advantage over rivals; it is enough that they are no disadvantage to the organism, they will then survive by virtue of the forces which produced them.

119. The position thus reached will be important in our examination of the Theory of Descent by which Mr. Darwin tentatively, and his followers boldly, explain the observed resemblances in structure and function as due to blood-relationship. The doctrine of Evolution affirms that all complex organisms are evolved by differentiation from simpler organisms, as we see the complex organ evolved from simpler forms. But it does not necessarily affirm that the vast variety of organisms had one starting-point—one ancestor; on the contrary, I conceive that the principles of Evolution are adverse to such a view, and insist rather on the necessity of innumerable starting-points. Let us consider the question.

That the Theory of Descent explains many of the facts must be admitted; but there are many which it leaves obscure; and Mr. Darwin, with that noble calmness which distinguishes him, admits the numerous difficulties. Whether these will hereafter be cleared away by an improvement in the Geological Record, now confessedly imperfect, or by more exhaustive exploration of distant countries, none can say; but, to my mind, the probability is, that we shall have to seek our explanation by enlarging the idea of Natural Selection, subordinating it to the laws of Organic Affinity. It does not seem to me, at present, warrantable to assume Descent as the sole principle of morphological uniformities; there are other grounds of resemblance beyond those of blood-relationship; and these have been too much overlooked; yet a brief consideration will disclose that similarity in the physiological laws and the conditions of Organic Affinity must produce similarity in organisms, independently of relationship; just as similarity in the laws and conditions of inorganic affinity will produce identity in chemical species. We do not suppose the carbonates and phosphates found in various parts of the globe, or the families of alkaloids and salts, to have any nearer kinship than that which consists in the similarity of their elements and the conditions of their combination. Hence, in organisms, as in salts, morphological identity may be due to a community of conditions, rather than community of descent. Mr. Darwin justly holds it to be “incredible that individuals identically the same should have been produced through Natural Selection from parents specifically distinct,” but he, since he admits analogous variations, will not deny that identical forms might issue from parents having widely different origins, provided that these parent forms and the conditions of their reproduction were identical, as in the case of vegetable and animal resemblances. To deny this would be to deny the law of causation. And that which is true of identical forms under identical conditions is true of similar forms under similar conditions. When History and Ethnology reveal a striking uniformity in the progression of social phases, we do not thence conclude that the nations are directly related, or that the social forms have a common parentage; we conclude that the social phases are alike because they have had common causes. When chemists point out the uniformity of type which exists in compounds so diverse in many of their properties as water and sulphuretted or selenetted hydrogen, and when they declare phosphoretted hydrogen to be the congener of ammonia, they do not mean that the one is descended from the other, or that any closer link connects them than that of resemblance in their elements.

In the case of vegetal and animal organisms, we observe such a community of elementary substance as of itself to imply a community in their laws of combination; and under similar conditions the evolved forms must be similar. With this community of elementary substance, there are also diversities of substance and of co-operant conditions; corresponding with these diversities there must be differences of form. Thus, although observation reveals that the bond of kinship does really unite many widely divergent forms, and the principle of Descent with Natural Selection will account for many of the resemblances and differences, there is at present no warrant for assuming that all resemblances and differences are due to this one cause, but, on the contrary, we are justified in assuming a deeper principle which may be thus formulated: All the complex organisms are evolved from organisms less complex, as these were evolved from simpler forms; the link which unites all organisms is not always the common bond of heritage, but the uniformity of organized substance acting under similar conditions.

It is therefore consistent with the hypothesis of Evolution to admit a variety of origins or starting-points, though not consistent to admit the sudden appearance of complex Types, such as is implied in the hypothesis of specific creations.

119 a. The analogies of organic forms and functions demand a more exhaustive scrutiny than has yet been given them. Why is it that vessels, nerves, and bones ramify like branches, and why do these branches take on the aspect of many crystalline forms? Why is it that cavities are constantly prolonged in ducts, e. g. the mouth succeeded by the œsophagus, the stomach by the intestines, the bladder by the urethra, the heart by the aorta, the ovary by the oviduct, and so on? Why are there never more than four limbs attached to a vertebral column, and these always attached to particular vertebræ? Why is there a tendency in certain tissues to form tubes, and in these tubes commonly to assume a muscular coat?[64] To some of these queries an answer might be suggested which would bring them under known physical laws. I merely notice them here for the sake of emphasizing the fact that such analogies lie deeply imbedded in the laws of evolution, and that what has been metaphorically called organic crystallization will account for many similarities in form, without forcing us to have recourse to kinship. To take a very simple case. No one will maintain that the crystalline forms of snow have any kinship with the plants which they often resemble. Mr. Spencer has noticed the development of a wing-bearing branch from a wing of the Ptilota plumosa, when its nutrition is in excess. “This form, so strikingly like that of the feathery crystallizations of many inorganic substances, proves to us that in such crystallizations the simplicity or complexity of structure at any place depends on the quantity of matter that has to be polarized at that place in a given time. How the element of time modifies the result, is shown by the familiar fact that crystals rapidly formed are small, and that they become larger when they are formed more slowly.”[65]

It may be objected, and justly, that in the resemblance between crystals and organisms the analogy is purely that of form, and usually confined to one element, whereas between organisms there is resemblance of substance no less than of form, and usually the organisms are alike in several respects. The answer to this objection is, that wherever there is a similarity in the causal conditions (substance and history) there must be a corresponding similarity in the results; if this similarity extends to only a few of the conditions, the analogy will be slight; if to several, deep. But whether slight or deep we are not justified, simply on the ground of resemblance, in assuming, short of evidence, that because they are alike, two organisms are related by descent from a common ancestor.

120. Let us glance at a few illustrations. It has been urged as a serious objection to Mr. Darwin’s hypothesis,[66] that it fails to explain the existence of phosphorescent organs in a few insects; and certainly, when one considers the widely different orders in which these organs appear, and their absence in nearly related forms, it is a difficulty. In noctilucæ, earthworms, molluscs, scolopendra, and fireflies, we may easily suppose the presence of similar organic conditions producing the luminosity; but it requires a strong faith to assign Descent as the cause.[67] We may say the same of the electric organs possessed by seven species of fish, belonging to five widely separated genera. Although each species appears to have a limited geographical range, one or the other is found in almost every part of the globe. These organs occupy different positions, being now on each side of the head, now along the body, and now along the tail; and in different species they are innervated from different sources. Their intimate structure also varies; as appears from the remarkable investigations of Max Schultze.[68] They cannot, therefore, be homologous. How could they have arisen? Not by the slow accumulations of Natural Selection, because, until the organs were fully formed, they could be of no advantage in the struggle; hence the slow growth of the organ must have proceeded without the aid of an advantage in the struggle—in each case from some analogous conditions which produced a differentiation in certain muscles. The fundamental resemblance to muscles was pointed out by Carus long ago. It has been insisted on by Leydig:[69] and Owen says, “The row of compressed cells constituting the electric prism of the Torpedo offers some analogy to the row of microscopic discs of which the elementary muscle fibre appears to consist.”[70] We must not, however, forget that these resemblances are merely such as suggest that the electric organ is a differentiation of the substance which elsewhere becomes muscular, and that Dr. Davy was justified in denying the organ to be muscular.[71] That it is substituted for muscle cannot be doubted. Now, although we are entirely ignorant of the conditions which cause this differentiation of substance which elsewhere becomes muscular, but here becomes electric organs, we can understand that, when once such a development had taken place, if it in any way profited the fish in its struggle for existence, Natural Selection would tend to its further increase and propagation. So far Mr. Darwin carries us with him; but we decline proceeding further. The development of these organs in fishes so widely removed, does not imply an ancestral community. It is interpretable as mere growth on a basis once laid; and therefore would occur with or without any advantage in the struggle with rivals. The similarity in concurrent conditions is quite enough to account for the resemblance in structure. This, with his accustomed candor, Mr. Darwin admits. “If the electric organs,” he says, “had been inherited from one ancient progenitor thus provided, we might have expected that all electric fishes would be specially related to each other. Nor does Geology at all lead to the belief that formerly most fishes had electric organs which most of their modified descendants have lost.”

121. It may seem strange that he should urge a difficulty against his hypothesis when it could be avoided by the simple admission that even among nearly allied animals great differences in development are observable, and the electric organs might be ranged under such diversities. But Mr. Darwin has so thoroughly wrought out his scheme, that he foresees most objections, and rightly suspects that if this principle of divergent development be admitted, it will cut the ground from under a vast array of facts which his hypothesis of Descent requires.

The sudden appearance of new organs, not a trace of which is discernible in the embryo or adult form of organisms lower in the scale,—for instance, the phosphorescent and electric organs,—is like the sudden appearance of new instruments in the social organism, such as the printing-press and the railway, wholly inexplicable on the theory of Descent,[72] but is explicable on the theory of Organic Affinity. For observe: if we admit that differentiations of structure, and the sudden appearance of organs, can have arisen spontaneously—i. e. not hereditarily—as the outcome of certain changed physical conditions, we can hardly refuse to extend to the whole organism what we admit of a particular organ. If, again, we admit that organs very similar in structure and function spontaneously appear in organisms of widely different kinds—e. g. the phosphorescent and electric organs—we must also admit that similar resemblances may present themselves in organisms having a widely different parentage; and thus the admission of the spontaneous evolution of closely resembling organs carries with it the admission of the spontaneous evolution of closely resembling organisms: that the protoplasm of muscular tissue should, under certain changed conditions, develop into the tissue of electric organs, is but one case of the law that organized substance will develop into organisms closely resembling each other when the conditions have been similar.

122. It is to be remarked that Mr. Darwin fixes his attention somewhat too exclusively on the adaptations which arise during the external struggle for existence, and to that extent neglects the laws of organic affinity; just as Lamarck too exclusively fixed his attention on the influence of external conditions and of wants. Not that Mr. Darwin can be said to overlook the organic laws; he simply underestimates the part they play. Occasionally he seems arrested by them, as when instancing the “trailing palm in the Malay Archipelago, which climbs the loftiest trees by the aid of exquisitely constructed hooks, clustered around the ends of the branches, and this contrivance no doubt is of the highest service to the plant; but as there are nearly similar hooks on many trees which are not climbers, the hooks on the palm may have arisen from unknown laws of growth, and have been subsequently taken advantage of by the plant undergoing further modification and becoming a climber.”

123. I come round to the position from which I started, that the resemblances traceable among animals are no proof of kinship; even a resemblance so close as to defy discrimination would not, in itself, be such a proof. The absolute identity of chalk in Australia and in Europe is a proof that there was absolute identity in the formative conditions and the constituent elements, but no proof whatever that the two substances were originally connected by genesis. In like manner the similarity of a plant or animal in Africa and Europe may be due to a common kinship, but it may also be due to a common history. It is indeed barely conceivable that the history, from first to last, would ever be so rigorously identical in two parts of the globe as to produce complex identical forms in both; because any diversity, either in structure or external conditions, may be the starting-point of a wide diversity in subsequent development; and the case of organic combinations is so far unlike the inorganic, that while only one form is possible to the latter (chalk is either formed or not formed), many forms are possible to organic elements owing to the complexity and indefiniteness of organic composition. But although forms so allied as those of Species are not readily assignable to an identical history in different quarters of the globe, it is not only conceivable, but is eminently probable, that Orders and Classes have no nearer link of relationship than is implied in their community of organized substance and their common history. The fact that there is not a single mammal common to Europe and Australia is explicable, as Mr. Darwin explains it, on the ground that migration has been impossible to them; but it is also explicable on the laws of Evolution—to have had mammals of the same species and genera would imply a minute coincidence in their history, which is against the probabilities. Again, in the Oceanic Islands there are no Batrachians; but there are Reptiles, and these conform to the reptilian type. Mr. Darwin suggests that the absence of Batrachia is due to the impossibility of migration, their ova being destroyed by salt water. But may it not be due to the divergence from the reptilian type, which was effected elsewhere, not having taken place in these regions? When we find the metal Tin in Prussia and Cornwall, and nowhere else in Europe, must we not conclude that in these two countries, and nowhere else, a peculiar conjunction of conditions caused this peculiar evolution?

124. The question at issue is, Are the resemblances observable among organic forms due to remote kinship, and their diversities to the divergences caused by adaptation to new conditions? or are the resemblances due to similarities, and the diversities to dissimilarities in the substance and history of organic beings? Are we to assume one starting-point and one centre of creation, or many similar starting-points at many centres? So far from believing that all plants and animals had their origin in one primordial cell, at one particular spot, from which descendants migrated and became diversified under the diverse conditions of their migration, it seems to me more consistent with the principle of Evolution to admit a vast variety of origins more or less resembling each other; and this initial resemblance will account for the similarities still traceable under the various forms; while the early differences, becoming intensified by development under different conditions, will yield the diversities. The evolution of organisms, like the evolution of crystals, or the evolution of islands and continents, is determined, 1st, by laws inherent in the substances evolved, and, 2d, by relations to the medium in which the evolution takes place. This being so, we may à priori affirm that the resultant forms will have a community strictly corresponding with the resemblance of the substances and their conditions of evolution, together with a diversity corresponding with their differences in substance and conditions. It is usually supposed that the admission of separate “centres of creation” is tantamount to an admission of “successive creations” as interpreted by the majority of those who invoke “creative fiats.” But the doctrine of Evolution, which regards Life as making its appearance consequent upon a concurrence of definite conditions, and regards the specific forms of Life as the necessary consequences of special circumstances, must also accept the probability of similar conditions occurring at different times and in different places. Upon what grounds, cosmical or biological, are we to assume that on only one microscopic spot of this developing planet such a group of conditions was found—on only one spot a particle of protein substance was formed out of the abundant elements, and under conditions which caused it to grow and multiply, till in time its descendants overran the globe? The hypothesis that all organic forms are the descendants of a single germ, or of even a few germs, and are therefore united by links of kinship more or less remote, is not more acceptable than the hypothesis that all the carbonates and phosphates, all the crystals, and all the strata found in different parts of the globe, are the descendants of a single molecule, or a few molecules; or,—since this may seem too extravagant,—than that the various maladies which afflict organic beings are, in a literal sense, members of families having a nearer relationship than that of being the phenomena manifested by similar organs under similar conditions—a conception which might have been accepted by those metaphysical pathologists who regarded Disease as an entity. Few philosophers have any hesitation in supposing that other planets besides our own are peopled with organic forms, though, from the great differences in the conditions, these forms must be extremely unlike those of our own planet. If separate worlds, why not separate centres? The conclusion seems inevitable that wherever and whenever the state of things permitted that peculiar combination of elements known as organized substance, there and then a centre was established—Life had a root. From roots closely resembling each other in all essential characters, but all more or less different, there have been developed the various stems of the great tree. Myriads of roots have probably perished without issue; myriads have developed into forms so ill-adapted to sustain the fluctuations of the medium, so ill-fitted for the struggle of existence, that they became extinct before even our organic record begins; myriads have become extinct since then; and the descendants of those which now survive are like the shattered regiments and companies after some terrific battle.

125. There seems to me only one alternative logically permissible to the Evolution Hypothesis, namely, that all organic forms have had either a single origin, or else numerous origins; in other words, that a primordial cell was the starting-point from which all organisms have been successively developed; or that the development issued from many independent starting-points, more or less varied. This is apparently not the aspect presented by the hypothesis to many of its advocates; they seem to consider that if all organic forms are not the lineal descendants of one progenitor, they must at any rate be the descendants of not more than four or five. The common belief inclines to one. Mr. Darwin, whose caution is as remarkable as his courage, and whose candor is delightful, hesitates as to which conclusion should be adopted: “I cannot doubt,” he says, “that the theory of descent, with modifications, embraces all the members of the same class. I believe that animals have descended from, at most, only four or five progenitors, and plants from an equal or lesser number. Analogy would lead me one step further, namely, to the belief that all animals and plants have descended from some one prototype. But analogy may be a deceitful guide.”

126. I cannot see the evidence which would warrant the belief that Life originated solely in one microscopic lump of protoplasm on one single point of our earth’s surface; on the contrary, it is more probable that from innumerable and separate points of this teeming earth, myriads of protoplast sprang into existence, whenever and wherever the conditions of the formation of organized substance were present. It is probable that this has been incessantly going on, and that every day new protoplasts appear, struggle for existence, and serve as food for more highly organized rivals; but whether an evolution of the lower forms is, or is not, still going on, there can be no reluctance on the part of every believer in Evolution to admit that when organized substance was first evolved, it was evolved at many points. If this be so, the community observable in organized substance, wherever found, may as often be due to the fact of a common elementary composition as to the fact of inheritance. If this be so, we have a simple explanation both of the fundamental resemblances which link all organisms together, and of the characteristic diversities which separate them into kingdoms, classes, and orders. The resemblances are many, and close, because the forms evolved had a similar elementary composition, and their stages of evolution were determined by similar conditions. The diversities are many, because the forms evolved had from the first some diversities in elementary composition, and their stages of evolution were determined under conditions which, though similar in general, have varied in particulars. Indeed, there is no other ground for the resemblances and differences among organic beings than the similarities and dissimilarities in their Substance and History; and, whether the similarities are due to blood-relationship, or to other causes, the results are the same. There is something seductive in the supposition that Life radiated from a single centre in ever-increasing circles, its forms becoming more and more various as they came under more various conditions, until at last the whole earth was crowded with diversified existences. “From one cell to myriads of complex organisms, through countless æons of development,” is a formula of speculative grandeur, but I cannot bring myself to accept it; and I think that a lingering influence of the tradition of a “creative fiat” may be traced in its conception. May we not rather assume that the earth at the dawn of Life was a vast germinal membrane, every slightly diversified point producing its own vital form; and these myriads upon myriads of forms—all alike and all unlike—urged by the indwelling tendencies of development, struggled with each other for existence, many failing, many victorious, the victors carrying their tents into the camping ground of the vanquished. The point raised is the immense improbability of organized substance having been evolved only in one microscopic spot; if it were evolved at more than one spot, and under slightly varying conditions, there would necessarily have arisen in these earliest formations the initial diversities which afterwards determined the essential independence and difference of organisms.

129. Let us for a moment glance at the resemblances and diversities observable in all organisms. All have a common basis, all being constructed out of the same fundamental elements: carbon, hydrogen, nitrogen, and oxygen; these (the organogens, as they are named), with varying additions of some other elements, make up what we know as Organic Substance, vegetal and animal. Another peculiarity all organisms have in common, namely, that their matter is neither solid nor liquid, but viscid. Beside this community of Substance we must now place a community of History. All organisms grow and multiply by the same process; all pass through metamorphic stages ending in death; all, except the very simplest, differentiate parts of their substance for special uses, and these parts (cilia, membranes, tubes, glands, muscles, nerves) have similar characters in whatever organism they appear, and their development is always similar, so that the muscles or nerves of an intestinal worm, a lobster, or a man, are in structure and history fundamentally alike. When, therefore, we see that there is no biological character of fundamental importance which is not universal throughout the organic world, when we see that in Structure and History all organisms have a community pervading every variety, it is difficult not to draw the conclusion that some hidden link connects all organisms into one; and when, further, it is seen that the most divergent forms may be so arranged by the help of intermediate forms only slightly varying one from the other, that the extreme ends—the monad and the man—may be connected, and a genealogical tree constructed, which will group all forms as modified descendants from a single form, the hypothesis that kinship is the bidden link of which we are in search becomes more and more cogent.

130. But now let the other aspect be considered. If there is an unmistakable uniformity, there is also a diversity no less unmistakable. The chemical composition of organic substances is various. Unlike inorganic substances, the composition of which is rigorously definite, organic substances are, within narrow limits, variable in composition (§ [45]).

I pass over the resemblances and differences observed in the earliest stages of development, marked as they are, and direct attention to the fact, that down at what must be considered the very lowest organic region, we meet with differences not less striking than those met with in the highest, we find structures (if structures they may be called), which cannot be affiliated, so widely divergent is their composition. The structureless vibrio, for example, is not only capable of living in a medium destitute of Oxygen, but is, according to M. Pasteur, actually killed by oxygen; whereas the equally simple bacteria can no more dispense with Oxygen than other animals can. Consider for a moment the differences implied in the fact that one organism cannot even form an enveloping membrane to contain its protoplasm, whereas another contrives to secrete an exquisite shell; yet between the naked Rhizopod and the shelled Rhizopod our lenses and reagents fail to detect a difference. One Monad can assimilate food of only one kind, another Monad assimilates various kinds.[73] What a revelation of chemical differences appears in the observations of M. Pasteur respecting the vibrio and bacteria, in a fermentescible liquid—the former beginning the putrid fermentation which the latter completes! We cannot doubt that some marked difference must exist between the single-celled organism which produces alcoholic fermentation, and that which produces acetic fermentation, and that again which produces butyric fermentation; and if we find distinctions thus established at the lowest region of the organic series, we need not marvel if the distinctions become wider and more numerous as the series becomes more diversified. The structure and development of an organism are dependent on the affinities of its constituent molecules, and it is a biological principle of great importance which Sir James Paget insists on, when he shows how “the existence of certain materials in the blood may determine the formation of structures in which they may be incorporated.”[74] Any initial diversity may thus become the starting-point of a considerable variation in subsequent evolution.[75] Thus, supposing that on a given spot there are a dozen protoplasts closely resembling each other, yet each in some one detail slightly varying; if this variation is one which, by its relations to the external medium, admits of a difference in the assimilation of materials present in the medium, it may be the origin of some new direction in development, and the ultimate consequence may be the formation of a shell, an internal skeleton, a muscle, or a nerve. Were this not so, it would be impossible to explain such facts as that chitine is peculiar to the Articulata, cellulose to Molluscoida, carbonates of lime to Mollusca and Crustacea, and phosphates to Vertebrata—all assimilated from the same external medium. But we see that from this medium one organism selects the materials which another rejects; and this selection is determined by the nature of the structure: which assimilates only those materials it is fitted to assimilate. We hear a great deal of Adaptation determining changes of structure and function, and are too apt to regard this process as if it were not intimately dependent on a corresponding structural change. By no amount of external influence which left the elementary composition of the structure unchanged, could an organism with only two tissues be developed into an organism with three or four. By no supply or stimulus, could an animal incapable of assimilating peroxide of iron acquire red blood corpuscles, although it might have the iron without the corpuscles; nor could an oyster form its shell unless capable of assimilating carbonate of lime. For myriads of years, in seas and ponds, under endless varieties of external conditions, the amœbæ have lived and died without forming a solid envelope, although the materials were abundant, and other organisms equally simple have formed envelopes of infinite variety. In all the seas, and from the earliest ages, zoophytes have lived, and assumed a marvellous variety of shapes and specialization of functions; but although some of them have acquired muscles, none have acquired true nerves, none bone. Ages upon ages rolled on before fishes were capable of forming bone; and thousands are still incapable of forming it, though living in the same waters as the osseous fishes.

131. “Looking to the dawn of life,” says Mr. Darwin (repeating an objection urged against his hypothesis), “when all organic beings, as we imagine, presented the simplest structure, how could the first steps in advancement, or in the differentiation and specialization of parts have arisen? I can make no sufficient answer; and can only say that, as we have no facts to guide us, all speculation would be baseless and useless.”

Where Mr. Darwin hesitates, lesser men need extra caution; but I must risk the danger of presumption, at least so far as to suggest that while an answer to this question is difficult on that dynamical view of Evolution which regards Function as determining Structure, it is less difficult on the statico-dynamical view propounded in these pages; the difficulty which besets the explanation when all the manifold varieties of organic forms are conceived as the successive divergences from an original starting-point, is lessened when a variety of different starting-points is assumed, in each of which some initial diversity prepared the way for subsequent differentiations; just as we know that between the ovum of a vertebrate and the ovum of an invertebrate, similar as they are, there is a diversity which manifests itself in their subsequent evolution. If Function is determined by Structure, and Evolution is the product of the two, it is clear that the different directions in the lines of development will have their origin in structural differences, and not in the action of external circumstances, unless these previously bring about a structural change. The action of the medium on the organism is assuredly a potent factor which Biology cannot ignore: but the organism itself is a factor, and according to its nature the influence of the medium is defined. (§ [118].)

132. Quitting for a moment the track of this argument, let us glance at the resemblances and differences observable in Plants and Animals, because most people admit that these have separate origins. The resemblances are scarcely less significant than those existing among animals. Both have a similar basis of elementary composition; not only are both formed out of protoplasts with similar properties, but in both the first step from the protoplasm to definite structure is the Cell. And the life of this Cell is remarkably alike in both, its phases of development being in many respects identical; nay, even such variations as obtain in the cell-membranes are curiously linked together by a community in the formative process.[76] In both Plants and Animals we find individuals constituted—1st, by single cells; 2d, by groups of cells undistinguishable among each other; and 3d, by groups of differentiated cells. In both we find colonies of individuals leading a common life. In both the processes of Nutrition and Reproduction are essentially similar; both propagate sexually and asexually; both exhibit the surprising phenomena of parthenogenesis and alternate generations. In both there are examples of a free-roving embryo which in maturity becomes fixed to one spot, losing its locomotive organs and developing its reproductive organs. In both the development of the reproductive organs is the climax which carries Death. So close is the analogy between plant-life and animal-life, that it even reaches the properties usually held to be exclusively animal; I mean that even should we hesitate to accept Cohn’s discovery of the muscles in certain plants,[77] we cannot deny that plants exhibit Contractility; and should we refuse to interpret as Sensibility the phenomena exhibited by the Sensitive Plants, we cannot deny that they present a very striking analogy to the phenomena of Sensibility exhibited by animals.

133. It is unnecessary to continue this enumeration, which might easily be carried into minute detail. A chapter of such resemblances would only burden the reader’s mind, without adding force to the conclusion that a surprising community in Substance and Life-history must be admitted between Plants and Animals. This granted, we turn to the differences, and find them no less fundamental and detailed. Chemistry tells us nothing of the differences in the protoplasms from which animals and plants arise; but that initial differences must exist is proved by the divergence of the products. The vegetable cell is not the animal cell; and although both plants and animals have albumen, fibrine, and caseine, the derivatives of these are unlike. Horny substance, connective tissue, nerve tissue, chitine, biliverdine, creatine, urea, hippuric acid, and a variety of other products of evolution or of waste, never appear in plants; while the hydrocarbons so abundant in plants are, with two or three exceptions, absent from animals. Such facts imply differences in elementary composition; and this result is further enforced by the fact that where the two seem to resemble, they are still different: the plant protoplasm forms various cells, but never forms a cartilage-cell or nerve-cell; fibres, but never a fibre of elastic tissue; tubes, but never a nerve tube; vessels, but never a vessel with muscular coatings; solid “skeletons,” but always from an organic substance (cellulose), not from phosphates and carbonates. In no one character can we say that the plant and the animal are identical; we can only point throughout the two kingdoms to a great similarity accompanying a radical diversity.

134. Having brought together the manifold resemblances, and the no less marked diversities, we must ask what is their significance? Do the resemblances imply a community of origin, an universal kinship? If so, the diversities will be nothing more than the divergences which have been produced by variations in the Life-history of the several groups. Or—taking the alternative view—do the diversities imply radical differences of origin? If so, the resemblances will be nothing more than the inevitable analogies resulting from Organized Substance being everywhere somewhat similar in composition, and similar in certain phases of evolution. To state the former position in the simplest way, we may assume that of two masses of protoplasm having a common parentage, one, by the accident of assimilating a certain element not brought within the range of the other, thereby becomes so differentiated as to form the starting-point of a series of evolutions widely divergent from those possible to its congener; and at each stage of evolution the introduction of a new element (made possible by that stage) will form the origin of a new variation. It is thus feasible to reduce all organic forms to a primordial protoplasm, in the evolutions of which successive differentiations have been established. On the other hand, it is equally feasible to assume that the existence of radical differences must be invoked to account for the possibility of the successive differentiations.

135. The hunt after resemblances has led to much mistaken speculation; and with reference to the topic now before us, it may be urged, that although by attaching ourselves to the points of community, in disregard of the diversities, we may make it appear that all animals have a common parentage, and that plants and animals are merely divergent groups of the same prototype, a rigorous logic will force us onwards, and compel us to admit that a kinship no less real unites the organic with the inorganic world. For upon what principle are we to pause at the cell or protoplasm? If by a successive elimination of differences we reduce all organisms to the cell, we must go on and reduce the cell itself to the chemical elements out of which it is constructed; and inasmuch as these elements are all common to the inorganic world, the only difference being one of synthesis, we reach a result which is the stultification of all classification, namely, the assertion of a kinship which is universal. We must bear in mind that all things may be reduced to a common root by simply disregarding their differences. All things are alike when we set aside their unlikeness.

136. Suppose, for the sake of illustration, we regard an Orchestra in the light of the Development Hypothesis. The various instruments of which it is composed have general resemblances and particular differences, not unlike those observable in various organisms; and as we proceed in the work of classification we quickly discover that they may be arranged in groups analogous to the Sub-kingdoms, Classes, Orders, Genera, and Species of the organic world. Each group has its cardinal distinction, its initial point of divergence. All musical instruments resemble each other in the fundamental character of producing Tone by the vibrations of their substance. This may be called their organic basis. The first marked difference which determines the character of two sub-kingdoms (namely, instruments of Percussion and Wind instruments) arises from a difference in the method of impressing the vibrations; and the grand divisions of these sub-kingdoms arise from the nature of the vibrating substances. Each type admits of many modifications, but the primary distinction is ineffaceable. We can conceive the Pipe modified into a Flute, a Flageolet, a Clarionet, a Hautbois, a Bassoon, or a Fife, by simple accessory changes; to modify the Pipe into a Trumpet, and thus produce the peculiar timbre of the trumpet, would be impossible except by the substitution of a new material; by replacing the wood with metal we may adhere to the old Type, but we have created a new Class. (Attention is requested to this point, because the current views respecting the transmutation of tissues, which seem to lend a decisive support to the hypothesis of the transmutation of species are very commonly vitiated by the confusion of transformation with substitution. No anatomical element is transformed into another specifically different—an epithelial-cell into a nerve-cell, for instance—but one anatomical element is frequently substituted for another.) To convert the Pipe or the Trumpet into a Violin or a Drum would be impossible. We can follow the modifications of a Tambourine into a Drum or Kettle-drum, but no modifications of these will yield the Cymbals. That is to say, the vibrating materials—wood, metal, parchment, and the combination of wood and strings—have peculiar properties, and the instruments formed of such materials must necessarily from the very first belong to different groups, each subdivision of the groups being dependent on some characteristic difference in methods of impressing the vibrations, or in the materials. Although all musical instruments have a common property and a common purpose, we do not regard them as transformations of one primitive instrument; their kindred nature is a subjective conception; the analogies are numerous and close, but we know their origin. It is obvious that men being pleased by musical tones, have been led by their delight to construct instruments whenever they have discovered substances capable of musical vibrations, or methods of impressing such vibrations. By substituting the bow for the plectrum or the fingers, they may have changed the Lyre into the Violin, Viola, Violoncello, and Bass. (It seems historically probable that the real origin of the Violin class was an instrument with one string played on by a bow.) By grouping together Pipes of various sizes they got the Panpipes; by substituting metal and enlarging the blowing apparatus they got the Organ. By beating on stretched parchment with the finger, they got the Tambourine and Tom-Tom; by doubling this and using a stick they got the Drum. By beating metal with metal they got the Cymbals; by beating wood they got the Castanets.

137. The application of this illustration is plain. Just as a wind-instrument is incapable of becoming a stringed instrument, so a Mollusc, with all its muscles unstriped, and its nervous system unsymmetrical, is incapable of becoming a Crustacean, with all its muscles striped and its nervous system symmetrical. Indeed there are probably few biologists of the present day who imagine the transmutation of one kind into the other to be possible; but many biologists assume that both may have been evolved from a common root. The point is beyond proof; yet I think there is a greater probability in the assumption that both were evolved from different roots. At any rate, one thing is certain; a divergence could only have been effected by a series of substitutions; and the question when and how these substitutions took place is unanswerable: one school believes them to have been creative fiats, the other school believes them to have been transmutations.

138. When we see an annelid and a vertebrate resembling each other in some special point which is not common either to their classes or to any intermediate classes—as when we see the wood-louse (Oniscus) and the hedgehog defend themselves in the same strange way by rolling up into a ball—we cannot interpret this as a trace of distant kinship. When we see a breed of pigeons and a breed of canaries turning somersaults, and one of the Bear family (Ratel) given to the same singular habit, we can hardly suppose that this is in each case inherited from a common progenitor. When we see one savage race tipping arrows with iron, and another, ignorant of iron, using poison, there is a community of object effected by diversity of means; but the analogy does not necessarily imply any closer connection between the two races than the fact that men with similar faculties and similar wants find out similar methods of supplying their wants. Even those who admit that the human race is one family, and that the various peoples carried with them a common fund of knowledge when they separated from the parent stock, may still point to a variety of new inventions and new social developments which occurred quite independently of each other, yet are strikingly alike. Their resemblance will be due to resemblance in the conditions. The existence, for example, of a religious worship, or a social institution, in two nations widely separated both in time and space, and under great historical diversities, is no absolute proof that these two nations are from the same stock, and that the ideas have the same parentage. It may be so; it may be otherwise. It may be an analogy no more implying kinship than the fact of ants making slaves of other ants (and these the black ants!) implies a kinship with men. Given an organization which in the two nations is alike, and a history which is in certain characteristics analogous, there must inevitably result religious and social institutions having a corresponding resemblance. I do not wish to imply that the researches of philologists and ethnologists are misdirected, or that their conclusions respecting the kinship of mankind are to be rejected; I only urge the consideration that perhaps too much stress is laid on community of blood, and not enough on community of conditions.