STIMULI.

172. Stimuli are classed as external and internal, or physical and physiological. The one class comprises all the agencies in the External Medium which appreciably affect the organism; the other class all the changes in the organism which appreciably disturb the equilibrium of any organ. Although the pressure of the atmosphere, for example, unquestionably affects the organism, and determines organic processes, it is not reckoned as a stimulus unless the effect become appreciable under sudden variations of the pressure. In like manner the blood is not reckoned among the internal stimuli, except when sudden variations in its composition, or its circulation, determine appreciable changes. Because the external stimuli, and the so-called Senses which respond to them, are more conspicuous than the internal stimuli and the Systemic Senses, they have unfortunately usurped too much attention. The massive influence of the Systemic Sensations in determining the desires, volitions, and conceptions of mankind has not been adequately recognized. Yet every one knows the effect of impure air, or a congested liver, in swaying the mental mood; and how a heavy meal interferes with muscular and mental exertion.[192] What is conspicuous in such marked effects, is less conspicuously, but not less necessarily, present in slighter stimuli.

173. A constant pressure on the tympanum excites no sound; only a rhythmic alternation of pressures will excite the sensation. A constant temperature is not felt; only changes in temperature. If Light and Sound were as uniform as the circulation of the blood, or the pressure of the atmosphere, we should be seldom conscious of the existence of these stimuli. But because the changes are varied and marked, our attention is necessarily arrested by them. The changes going on within the tissues are too graduated to fix the attention; it is only by considering their cumulative effects that we become impressed with their importance. For example, the development of the sexual glands determines conspicuous physical and moral results—we note consequent effects on voice, hair, horns, structure of the skull and size of the muscles, no less than the rise of new feelings, desires, instincts, ideas. Any organic interference with the activity of the ovaries will alter the moral disposition of the animal: suppression of this organic process means non-development of the feelings of maternity; the moral superstructure is absent because its physical basis is wanting.

174. Blood supplies the tissues with their plasmodes; a constant supply of oxygenated blood is therefore necessary to the vitality of the tissues. But it is an error to suppose that oxygen is the special stimulus of nerve-centres, or that their activity depends on their oxidation; on the contrary, the deficiency of oxygen or surplus of carbonic acid is that which stimulates. When saturated with oxygen, the blood paralyzes respiration; when some of the oxygen is withdrawn, respiration revives. Here—as in all other cases—we have to remember that differences in degree readily pass into differences in kind, so that an excess of a stimulus produces a reversal of the effect; thus although surplus of carbonic acid excites respiratory movements, excess of carbonic acid causes Asphyxia. Abundance of blood is requisite for the continuous activity of nerve-centres; but while a temporary deficiency of blood renders them more excitable, too great a deficiency paralyzes them. Anæmia, which causes great excitability, and convulsions (so that nerves when dying are most irritable), may easily become the cause of the death of the tissue. There are substances which can only be dissolved by a given quantity of liquid; if this quantity be in excess, they are precipitated from the solution. There are vibrations of a given order which cause each string to respond; change the special order, and the string returns to its repose.

In the stillness and darkness of the night we are excluded from most of the external stimuli, yet a massive stream of systemic sensations keeps the sensitive mechanism active, and in sleep directs the dreams. The cramps and epileptiform attacks which occur during sleep are most probably due to the over-excitability produced by surplus carbonic acid. To temporary anæmia may be assigned the strange exaggeration of our sensations during the moments which precede awakening; and the greater vividness of dream-images.

It is only needful to mention in passing the varied stimuli by which cerebral changes act upon the organism. The mention of a name will cause a blush, a brightening of the eye, a quickening of the pulse. The thought of her absent infant will cause a flow of milk in the mother’s breast.

175. We may formulate the foregoing considerations in another law:

Law II. The neural excitation, which is itself a change, directly causes a change in the organ innervated, and indirectly in the whole organism.

The significance of this law is, that although for the convenience of research and exposition we isolate one organ from the rest of the organism, and one process from all the co-operant processes, we have to remember that this is an artifice, and that in reality there is no such separation.