Do Not Pay More than 100 Cents for a Dollar.
That, with regard to a new machine, all the facts of constructive and working cost should be in view, and after tests in practice, is the conviction of Professor A. B. W. Kennedy:—“Machines cannot be finally criticized, pronounced good or bad, simply from results measurable in a laboratory. One wishes to use a steam plant, for example, by which as little coal shall be burnt as possible. But clearly it would be worth while to waste a certain amount of coal if a less economical machine would allow a larger saving in the cost of repairs or of interest. Or, it might be worth while to use a machine in which a certain amount of extra power was obviously employed, if only by means of such a machine the cost of attendance could be measurably reduced. The ‘worth-whileness’ of economies comes out only in practical experience. A careful training in comparatively simple parts fits a man more than anything else to gauge accurately the importance of such parts as those named. No doubt there are many men in whom the critical faculty is insufficiently developed to allow them ever to be of use in these matters, but to those who are intellectually capable of ‘the higher criticism’ it is of inestimable value to have had a systematic training in the lower.”
To the same effect are remarks by Professor J. Hopkinson:—“Doubling the thickness of a cylinder by no means doubles its strength. Conversely, doubling the strength of the material will permit the thickness to be diminished to much less than one half. Until 1869 hydraulic presses were mostly made of cast iron. There was much astonishment at the great reduction in thickness and weight which became possible when steel was substituted for the weaker material. In the case of guns it is well-known that greater strength can be obtained if the outer hoops are shrunken on the inner ones. Mathematical theory tells us what amount of shrinkage should give the best results. A gun may have a shrinkage so great as to weaken it.”
He continues:—“Mathematical treatment of any problem is always analytical—attention is concentrated upon certain facts, and for the moment other facts are neglected. For example, in dealing with the thermodynamics of the steam engine, one dismisses from consideration very vital points essential to the successful working of the engine—questions of strength of parts, lubrication, convenience for repairs. But if an engineer is to succeed he must not fail to consider every element necessary to success; he must have a practical instinct which will tell him whether the engine as a whole will succeed. His mind must not be only analytical, or he will be in danger of solving bits of the problems which his work presents, and of falling into fatal mistakes on points which he has omitted to consider, and which the plainest, intelligent, practical man would avoid almost without knowing it. Again, the powers of the strongest mathematician being limited, there is a constant temptation to fit the facts to suit the mathematics, and to assume that the conclusions will have greater accuracy than the premises from which they are deduced. This is a trouble one meets with in other applications of mathematics to experimental science. In order to make the subject amenable to treatment, one finds, for example, in the science of magnetism, that it is boldly assumed that the magnetization of magnetizable material is proportionate to the magnetizing force, and the ratio has a name given to it, and conclusions are drawn from the assumption; but the fact is, no such proportionality exists, and all conclusions resulting from the assumption are so far invalid. Whenever possible the mathematical deductions should be frequently verified by reference to observation and experiment, for the very simple reason that they are only deductions, and the premises from which the deductions are drawn may be inaccurate or incomplete. We must always remember that we cannot get more out of the mathematical mill than we put into it, though we may get it in a form infinitely more useful for our purpose.”
Professor Alexander Bain in his “Senses and the Intellect” concludes:—“A sound judgment, meaning a clear and precise perception of what is really effected by the contrivances employed, is to be looked upon as the first requisite of the practical man. He may be meagre in intellectual resources, he may be slow in getting forward and putting together the appropriate devices, but if his perception of the end is unfaltering and strong, he will do no mischief and practice no quackery. He may have to wait long in order to bring together the apposite machinery, but when he has done so to the satisfaction of his own thorough judgment, the success will be above dispute. Judgment is in general more important than fertility; because a man by consulting others and studying what has been already done, may usually obtain suggestions enough, but if his judgment of the end is loose, the highest exuberance of intellect is only a snare.”