Expert Planning and Reform.
To-day engineers of mark are engaged not only to plan a power-house, a flour mill, a steel works or other vast installation, but also to examine industrial plants established long ago and enlarged from time to time in an unsystematic way. Armed with scales, pressure-gauges, indicators, voltmeters, they ascertain the cost of a horse-power-hour, of making a pound of flour, copper wire, or aught else. They note how speeds may be heightened with profit, as by using suitable brands of high-speed steels. They suggest how a pattern may be adopted in the foundry which will lessen machining; how by-products now thrown away may be turned to account. They point out how quality may be improved by the adoption of new machines which may, furthermore, demand unskilled instead of skilled attendance. They may advise, from a wide outlook on the whole field of American experience, a method for equalizing output throughout the day and throughout the year, as when a central-lighting station sells current at a large discount during the hours when no lamps are aglow, so that ice may be manufactured at such periods, or batteries restored for use in automobiles and motor-boats. Mr. Wilson S. Howell, of New York, a few years ago became convinced that a neglected branch of economy in central lighting stations was the maintaining a uniform voltage. He succeeded in reducing fluctuations in many plants to the unexampled figure of four per cent. The result was that he lowered the current necessary for an Edison lamp from 3.6 watts to 3.1 watts per candle-power, a saving of one seventh. Mr. M. K. Eyre, another well-known engineer, once took charge of a lamp factory in Ohio. In four months he had reduced cost forty per cent. while producing a lamp of the best quality. An electric lighting and power property which for years had been unprofitable was placed in the hands of Messrs. J. G. White & Company of New York, an engineering firm of the first rank. Within a few months the property was earning a substantial surplus; the ratio of operating to gross earnings was reduced about thirty per cent., and the gross earnings showed an increase over corresponding months of the previous year of nearly forty per cent. Economies quite as striking have been effected by the firm of Messrs. Dodge & Day of Philadelphia. On request investigators of this stamp, whose aim is to abolish waste and promote efficiency, go beyond mechanical and engineering details. They may point out how needed working capital may be obtained, how best to extend sales, and possibly how an economical consolidation with other similar plants may be effected. Almost invariably it is found imperative to recast the bookkeeping methods, especially with regard to ascertaining the cost of production in each department. Drawing upon experience recommendations may follow as to premium plans of paying wages, and other methods of identifying the interests of employers and employed.[31] Approved schemes for the comfort and welfare of work people are also suggested by counsellors thoroughly aware that contentment is great gain, that pure air, good light, and the utmost feasible safety, contribute to the balance sheet not less than the quickest lathe tools or the best wound dynamo.
[31] Mr. T. S. Halsey is a contributor to “Trade Unionism and Labor Problems,” published by Ginn & Co., Boston, 1905. He recites (p. 284) how a corporation had manufactured a product again and again. Both workmen and foreman were positive that the working time was at the minimum. The premium plan of payment was introduced, with a reduction in time of 41 per cent. as the result.
CHAPTER XVIII
NATURE AS TEACHER
Forces take paths of least resistance . . . Accessibility decides where cities shall arise . . . Plants display engineering principles in structure. Lessons from the human heart, eye, bones, muscles, and nerves . . . What nature has done, art may imitate,—in the separation of oxygen from air, in flight, in producing light, in converting heat into work . . . Lessons from lower animals . . . A hammer-using wasp.
Beyond their unending study of forms and properties, their constant weighing and measuring, the inventor and his twin-brother, the discoverer, have a gainful province which now for a little space will engage our attention. This province is nothing else than Nature, which begins by offering primitive man stones for hammers, arrowheads, knives; sticks to serve as clubs, paddles, harrows or tent-poles. We may well believe that the lowest savages have always exercised some degree of choice even here; it would be the soundest and sharpest stone that they picked up when a rude axe was needed. Should only blunt stones be found, then in giving one of them an edge was taken a first step in art, rewarded with a tool as good as the axe found ready to hand in some earlier quest. Nature is not only a giver of much besides stones and sticks, she is virtually a great contriver whose feats may incite the inventor to reach her goals if he can; his path will probably differ widely enough from hers as he arrives at success.