Folk Observation Foreruns Science.
Often a conviction widely held by the plain people of a countryside is based on many and sound observations, long before a scientific theory accounts for the facts. For many generations there was a saying among German peasants that when a storm is approaching a fire should be made in the stove, with as much smoke as possible. Professor Schuster has shown that this saying and the custom founded upon it are rational, as the products of combustion and the smoke act as an effective conductor to discharge the atmosphere slowly but surely. He quotes statistics showing that out of each 1000 cases of lightning stroke, 6.3 churches and 8.5 mills were struck, and but 0.3 factory chimneys. Only the factories had fires burning.
A mighty work has been wrought by glaciers on the surface of our globe. Long before this fact was discovered by professional geologists it was clear to many of the plainer people. Jean de Charpentier, one of the first propounders of the theory of glacial action now fundamental in geological science, relates:—“When in the year 1815, I returned from the magnificent glaciers of the valley of the Rhone, I spent the night in the hamlet of Lourtier, in the cottage of Perraudin, a chamois-hunter. Our conversation turned on the peculiarities of the country, and especially of the glaciers which he had repeatedly explored and knew most intimately. ‘Our glaciers,’ said Perraudin, ‘had formerly a much larger extent than now. Our whole valley was occupied by a glacier extending as far as Martigny, as is proved by the boulders in the vicinity of this town, and which are far too large for the water to have carried them thither.’” Charpentier adds that he afterward met with similar explanations on the part of mountaineers in other sections of Switzerland.
Cowpox was long observed by English country folk to be a preventive of smallpox. It was in hearing a servant woman say so that Dr. Jenner was drawn to the study which ended in his successful vaccinations, in all the triumphs since won in this department of medical science. For two thousand years the peasants of Italy have suspected mosquitoes and other insects to be concerned in the spread of malarial and other fevers. It remained for Dr. Ronald Ross in our day to prove that the suspicion was founded in truth. In “The Naturalist in La Plata,” one of the best books on natural history ever written, Mr. W. H. Hudson says:—“The country people in South America believe that the milky secretion exuded by the toad possesses wonderful curative properties; it is their invariable specific for shingles—a painful, dangerous malady common amongst them, and to cure it living toads are applied to the inflamed part. I dare say learned physicians would laugh at this cure, but then, if I mistake not, the learned have in past times laughed at other specifics used by the vulgar, but which now have honorable places in the pharmacopœia—pepsine, for example. More than two centuries ago, very ancient times for South America, the gauchos were accustomed to take the lining of the rhea’s (a large ostrich’s) stomach, dried and powdered, for ailments caused by impaired digestion; and the remedy is popular still. Science has gone over to them, and the ostrich-hunter now makes a double profit, one from the feathers, and the other from the dried stomachs which he supplies to the chemists of Buenos Ayres. Yet he was formerly told that to take the stomach of the ostrich to improve his digestion was as wild an idea as it would be to swallow birds’ feathers in order to fly.”
Snake poison has long been used by the Hottentots as an antidote to snake poison. With aid from the Carnegie Institution of Washington, Dr. Hideyo Noguchi, of the University of Pennsylvania, has succeeded in producing antivenins, to use the medical term, for the venoms of the water-moccasin and Crotalus adamanteus snakes, using the venoms themselves in preparing his antidotes. He is continuing his researches in this remarkable field of the healing art.
Kelp, as it drifts and sways in the Atlantic, attracts from the sea both the iodine and the bromine dissolved in minute quantities in the sea-water. This trait of fastening upon a particular and rare element is displayed by plants on land as well as by sea-weeds. In the Horn silver mine of Utah, the zinc mingled with the silver is betokened by the abundance of a zinc violet, Viola calaminaria, a delicate cousin of the pansy. In Germany this little flower was believed to point to zinc deposits long before zinc was discovered in its juices. The late Mr. William Dorn, of South Carolina, had faith in a bush of unrecorded name, as declaring that gold veins stood beneath it: that his faith was not baseless is proved by the large fortune he won as a gold miner in the Blue Ridge country—his guide the bush aforesaid. Mr. Rossiter W. Raymond, a famous mining engineer of New York, has given some attention to “indicative plants” of this kind. He is of opinion that their unwritten lore among practical miners, prospectors, hunters, and Indians is well worth sifting.
He says:—“Judging from the general laws of the distribution of plants, and from the analogy furnished by Viola calaminaria, we may expect that an indicative plant will be, not a distinct species, but a variety of some widely distributed species, the range of the species as a whole being determined by general conditions of climate, altitude and soil, while the characteristics of the variety are affected by causes peculiar to the mineral deposit. Temperature and moisture, as Agricola long ago pointed out, are among these causes, and color is one of the most sensitive of their effects. It is quite reasonable to believe the soil may affect the color of the plant absorbing it. On the other hand, it is not certain, even if a plant is proved to indicate by color or other peculiarities the presence of silver, that silver is the substance actually entering into and altering the plant. The effect may be due to some other mineral substances associated with the silver-ores; and our silver-plant may be indicative of silver in a silver region only.”
Mr. Raymond remarks that a general relation between the flora and the geological formation of any given district is a fact familiar to field-geologists. Many plants, too, indicate the neighborhood of water. A botanist knowing the root-length, water-requirements and habits of different species can often determine from the surface vegetation, he tells us, the nature, amount and distance of the underground water-supply.[33]
[33] In his paper on “Indicative Plants,” published in the Transactions of the American Institute of Mining Engineers, 1886, Mr. R. W. Raymond illustrated in natural size Viola calaminaria, Amorpha crescens, and Erigonium ovalifolium. His paper is followed by the interesting discussion it called forth.
How observation may lead to a bold and successful experiment is told by Mr. L. E. Chittenden, Register of the Treasury under President Lincoln, in his Personal Reminiscences:—