Properties at First Unwelcome are Turned to Account.
At first the lightness and weakness of aluminium were much against it; these, as we have seen, were soon overcome by alloying the metal with copper or nickel. But by giving aluminium forms of utmost stiffness, by reinforcing these forms with steel wires, the metal is quite strong and rigid enough for cups, plates, cameras and other instruments for which lightness is most desirable. In many another case a material or a characteristic at first unwelcome has been turned to excellent account. Smokiness in a fuel is not a quality mentioned in its advertisements, and yet smokiness is just what is sought in the twigs, stubble, or coals set on fire to give plants a cloud protecting them from unseasonable frosts. It is astonishing how little fuel will serve in such cases, especially if the atmosphere is calm, so as not to carry the smoke where it is not needed. Many another instance might be given of a quality objectionable for one service and then turned to satisfying a new want. Sometimes, too, offensive qualities are most useful. Illuminating gas, as at first manufactured, had a distressing odor, which gave prompt and unmistakable notice of a leak. When water gas came into use, most harmful when inhaled, the chemists were puzzled to know how to give it an offensive smell; they found that a quality long complained of was really an advantage in disguise.
So in the electrical field, when an unsought quality has intruded itself, and proved unwelcome, the question has arisen, what service can we enlist it for? Not seldom the answer has been gainful in the extreme. Dr. Oliver J. Lodge tells us that a bad electrical contact was at one time regarded simply as a nuisance, because of the singularly uncertain and capricious character of the current transmitted by it. Professor Hughes observed its sensitiveness to sound-waves, and it became the microphone, which, duly modified, brought the telephone from the whisper of a curious toy to the full tones which ensured commercial success the world over. This same “bad” contact turns out to be sensitive to electric waves also, forming indeed nothing else than the coherer of the wireless telegraph.
Many an electrician has been perplexed and thwarted by the small bubbles of air which place themselves on a metallic surface immersed in an electric bath, interrupting the attack sought to be carried to a finish. Happily there is a task which these very bubbles perform as if they had been created for no other purpose, namely, the re-sharpening of files. First the dull and dirty files are placed for twelve hours in a fifteen to twenty per cent. solution of caustic soda; they are then cleaned with a scratch-brush and a five per cent. soda solution. Next they are placed in a bath of six parts of forty per cent. nitric acid, three parts sulphuric acid, and 100 parts water, each file being connected to a plate of carbon immersed close to it, by means of a copper plate connecting at the top all the carbons and the files. This produces a short-circuited battery generating gas at the surface of the files; the bubbles which adhere to the points of the files protect them from being eaten away, while the rest of the metal is being etched. Every five minutes the files are taken out and washed in water to remove the oxide which collects on their surfaces. When sufficiently etched they are placed in lime-water to remove any adherent acid, dried in sawdust to prevent rusting, and rubbed with a mixture of oil and turpentine. Indispensable in the whole process is the protection afforded by the bubbles of air.