On Objections which have been brought against the Theory of Organic Evolution on grounds of Palæontology.

While stating in the text, and in a necessarily general way, the evidence which is yielded by palæontology to the theory of organic evolution, I have been desirous of not overstating it. Therefore, in the earlier paragraphs of the chapter, which deal with the most general heads of such evidence, I introduced certain qualifying phrases; and I will now give the reasons which led me to do so.

Of all the five biological sciences which have been called into evidence—viz. those of Classification, Morphology, Embryology, Palæontology, and Geographical Distribution—it is in the case of palæontology alone that any important or professional opinions still continue to be unsatisfied. Therefore, in order that justice may be done to this line of dissent, I have thought it better to deal with the matter in a separate Appendix, rather than to hurry it over in the text. And, as all the difficulties or objections which have been advanced against the theory of evolution on grounds of palæontology must vary, as to their strength, with the estimate which is taken touching the degree of imperfection of the geological record, I will begin by adding a few paragraphs to what has already been said in the text upon this subject.

First, then, as to the difficulties in the way of fossils being formed at all. We have already noticed in the text that it is only the more or less hard parts of organisms which under any circumstances can be fossilized; and even the hardest parts quickly disintegrate if not protected from the weather on land, or from the water on the sea-bottom. Moreover, as Darwin says, “we probably take a quite erroneous view when we assume that sediment is being deposited over nearly the whole bed of the sea, at a rate sufficiently quick to embed and preserve fossil remains. Throughout an enormously large proportion of the ocean, the bright blue tint of the water bespeaks its purity. The many cases on record of a formation conformably covered, after an immense interval of time, by another and a later formation, without the underlying bed having suffered in the interval any wear and tear, seem explicable only on the view of the bottom of the sea not rarely lying for ages in an unaltered condition.” Next, as regards littoral animals, he shows the difficulty which they must have in becoming fossils, and gives a striking example in several of the existing species of a sub-family of cirripedes (Chthamalinæ), “which coat the rocks all over the world in infinite numbers,” yet, with the exception of one species which inhabits deep water, no vestige of any of them has been found in any tertiary formation, although it is known that the genus Chthamalus existed through the Chalk period. Lastly, “with respect to the terrestrial productions which lived through the secondary and palæozoic periods, it is superfluous to state our evidence is fragmentary in an extreme degree. For instance, until recently not a land shell was known belonging to either of these vast periods,” with one exception; while, “in regard to mammiferous remains, a glance at the historical table in Lyell’s Manual will bring home the truth, how accidental and rare has been their preservation, far better than pages of detail. Nor is their rarity surprising, when we remember how large a proportion of the bones of tertiary mammals have been discovered either in caves or in lacustrine deposits; and that not a cave or true lacustrine bed is known belonging to the age of our secondary or palæozoic formations.”

But perhaps of even more importance than all these known causes which prevent the formation of fossils, is the existence of unknown causes which make for the same result. For example, the Flysch-formation is a formation of several thousand feet in thickness (as much as 6000 in some places), and it extends for at least 300 miles from Vienna to Switzerland; moreover, it consists of shale and sandstone. Therefore, alike in respect of time, space, and character, it is just such a formation as we should expect to find highly rich in fossils; yet, “although this great mass has been most carefully searched, no fossils, except a few vegetable remains, have been found.”

So much then for the difficulty, so to speak, which nature experiences in the manufacture of fossils. Probably not one per cent. of the species of animals which have inhabited the earth has left a single individual as a fossil, whereby to record its past existence.

But of even more importance than this difficulty of making fossils in the first instance, is the difficulty of preserving them when they are made. The vast majority of fossils have been formed under water, and a large proportional number of these—whether the animals were marine, terrestrial, or inhabitants of fresh water—have been formed in sedimentary deposits either of sand, gravel, or other porous material. Now, where such deposits have been afterwards raised into the air for any considerable time—and this has been more or less the case with all deposits which are available for exploration—their fossiliferous contents will have been, as a general rule, dissolved by the percolation of rain-water charged with carbonic acid. Similarly, sea-water has recently been found to be a surprisingly strong solvent of calcareous material: hence, Saturn-like, the ocean devours her own progeny as far as shells and bones of all kinds are concerned—and this to an extent of which we have probably no adequate conception.

Of still greater destructive influence, however, than these solvent agencies in earth and sea, are the erosive agencies of both. Any one who watches the pounding of the waves upon the shore; who then observes the effect of it upon the rocks broken into shingle, and on the shingle reduced to sand; who, looking behind him at the cliffs, sees there the evidence of the gradual advance of this all-pulverising power—an advance so gradual that no yard of it is accomplished until within that yard the “white teeth” have eaten well into the “bowels of the earth"; who then reflects that this process is going on simultaneously over hundreds of thousands of miles of coast-lines throughout the world; and who finally extends his mental vision from space to time, by trying dimly to imagine what this ever-roaring monster must have consumed during the hundreds of millions of years that slowly rising and slowly sinking continents have exposed their whole areas to her jaws; whoever thus observes and thus reflects must be a dull man, if he does not begin to feel that in the presence of such a destroyer as this we have no reason to wonder at a frequent silence in the testimony of the rocks.

But although the erosive agency of the sea is thus so inconceivably great, it is positively small if compared with erosive agencies on land. The constant action of rain, wind, and running water, in wearing down the surfaces of all lands into “the dust of continents to be"; the disintegrating effects on all but the very hardest rocks of winter frosts alternating with summer heats; the grinding power of ice in periods of glaciation; and last, but not least, the wholesale melting up of sedimentary formations whenever these have sunk for any considerable distance beneath the earth’s surface:—all these agencies taken together constitute so prodigious a sum of energies combined through immeasureable ages in their common work of destruction, that when we try to realise what it must amount to, we can scarcely fail to wonder, not that the geological record is highly imperfect, but that so much of the record has survived as we find to have been the case. And, if we add to these erosive and solvent agencies on land the erosive and solvent agencies of the sea, we may almost begin to wonder that anything deserving the name of a geological record is in existence at all.

That such estimates of the destructive powers of nature are not mere matters of speculative reasoning may be amply shown by stating one single fact, which, like so many others where the present subject is concerned, we owe to the generalizations of Darwin. Plutonic rocks, being those which have emerged from subterranean heat of melting intensity, must clearly at some time or another have lain beneath the whole thickness of sedimentary deposits, which at that time occupied any part of the earth’s surface where we now find the Plutonic rocks exposed to view. Or, in other words, wherever we now find Plutonic rocks at the surface of the earth, we must conclude that all the sedimentary rocks by which they were covered when in a molten state have since been entirely destroyed; several vertical miles of the only kinds of rocks in which fossils can possibly occur must in all such cases have been abolished in toto. Now, in many parts of the world metamorphic rocks—which have thus gradually risen from Plutonic depths, while miles of various other rock-formations have been removed from their now exposed surfaces—cover immense areas, and therefore testify by their present horizontal range, no less than by their previously vertical depth, to the enormous scale on which a total destruction has taken place of everything that once lay above them. For instance, the granitic region of Parime is at least nineteen times the size of Switzerland; a similar region south of the Amazon is probably larger than France, Spain, Italy, and Great Britain all put together; and, more remarkable still, over the area of the United States and Canada, granitic rocks exceed in the proportion of 19 to 12½ the whole of the newer Palæozoic formations. Lastly, after giving these examples, Darwin adds the important consideration, that “in many regions the metamorphic and granitic rocks would be found much more widely extended than they appear to be, if all the sedimentary beds were removed which rest unconformably on them, and which could not have formed part of the original mantle under which they were crystallized.”

The above is a brief condensation of the already condensed statement which Darwin has given of the imperfection of the geological record; but I think it is enough to show, in a general way, how precarious must be the nature of any objections to the theory of evolution which are founded merely upon the silence of palæontology in cases where, if the record were anything like complete, we should be entitled to expect from it some positive information. But, as we have seen in the text, imperfect though the record be, in as far as it furnishes positive information at all, this is well-nigh uniformly in favour of the theory; and therefore, even on grounds of palæontology alone, it appears to me that Darwin is much too liberal where he concludes his discussion by saying,—"Those who believe that the geological record is in any degree perfect, will undoubtedly at once reject the theory.” If in any measure reasonable, such persons ought rather to examine their title to such a belief; and even if they disregard the consensus of testimony which is yielded by all the biological sciences to the theory of evolution, they ought at least to hold their judgment in suspense until they shall have not only set against the apparently negative testimony which is yielded by geology its unquestionably positive testimony, but also well considered the causes which may—or rather must—have so gravely impaired the geological record.

However, be this as it may, I will now pass on to consider the difficulties and objections which have been brought against the theory on grounds of palæontology.

These may be classified under four heads. First, the absence of varietal links between allied species; second, the sudden appearance of whole groups of species—not only as genera and families, but even sometimes as orders and classes—without any forms leading up to them; third, the occurrence of highly organized types at much lower levels of geological strata than an evolutionist would antecedently expect; and, fourth, the absence of fossils of any kind lower down than the Cambrian strata.

Now all these objections depend on estimates of the imperfection of the geological record much lower than that which is formed by Darwin. Therefore I have arranged the objections in their order of difficulty in this respect, or in the order that requires successively increasing estimates of the imperfection of the record, if they are to be successively answered.

I think that the first of them has been already answered in the text, by showing that even a very moderate estimate of the imperfection of the record is enough to explain why intermediate varieties, connecting allied species, are but comparatively seldom met with. Moreover it was shown that in some cases, where shells are concerned, remarkably well-connected series of such varieties have been met with. And the same applies to species and genera in certain other cases, as in the equine family.

But no doubt a greater difficulty arises where whole groups of species and genera, or even families and orders, appear to arise suddenly, without anything leading up to them. Even this the second difficulty, however, admits of being fully met, when we remember that in very many cases it has been proved, quite apart from the theory of descent, that superjacent formations have been separated from one another by wide intervals of time. And even although it often happens that intermediate deposits which are absent in one part of the world are present in another, we have no right to assume that such is always the case. Besides, even if it were, we should have no right further to assume that the faunas of widely separated geographical areas were identical during the time represented by the intermediate formation. Yet, unless they were identical, we should not expect the fossils of the intermediate formation, where extant, to yield evidence of what the fossils would have been in this same formation elsewhere, had it not been there destroyed. Now, as a matter of fact, “geological formations of each region are almost invariably intermittent"; and although in many cases a more or less continuous record of past forms of life can be obtained by comparing the fossils of one region and formation with those of another region and adjacent formations, it is evident (from what we know of the present geographical distribution of plants and animals) that not a few cases there must have been where the interruption of the record in one region cannot be made good by thus interpolating the fossils of another region. And we must remember it is by selecting the cases where this cannot be done that the objection before us is made to appear formidable. In other words, unless whole groups of new species which are unknown in formation A appear suddenly in formation C of one region (X), where the intermediate formation B is absent; and unless in some other region (Y), where B is present, the fossiliferous contents of B fail to supply the fossil ancestry of the new species in A (X); unless such a state of matters is found to obtain, the objection before us has nothing to say. But at best this is negative evidence; and, in order to consider it fairly, we ought to set against it the cases where an interposition of fossils found in B (Y) does furnish the fossil ancestry of what would otherwise have been an abrupt appearance of whole groups of new species in A (X). Now such cases are neither few nor unimportant, and therefore they deprive the objection of the force it would have had if the selected cases to the contrary were the general rule.

In addition to these considerations, the following, some of which are of a more special kind, appear to me so important that I will quote them almost in extenso.

We continually forget how large the world is, compared with the area over which our geological formations have been carefully examined: we forget that groups of species may elsewhere have long existed, and have slowly multiplied, before they invaded the ancient archipelagoes of Europe and the United States. We do not make due allowance for the intervals of time which have elapsed between our consecutive formations,—longer perhaps in many cases than the time required for the accumulation of each formation. These intervals will have given time for the multiplication of species from some one parent form; and, in the succeeding formation, such groups of species will appear as if suddenly created.

I may here recall a remark formerly made, namely, that it might require a long succession of ages, to adapt an organism to some new and peculiar line of life, for instance, to fly through the air; and consequently that the transitional form would often long remain confined to some one region; but that, when this adaptation had once been effected, and a few species had thus acquired a great advantage over other organisms, a comparatively short time would be necessary to produce many divergent forms, which would spread rapidly and widely throughout the world....

In geological treatises, published not many years ago, mammals were always spoken of as having abruptly come in at the commencement of the tertiary series. And now one of the richest known accumulations of fossil mammals belongs to the middle of the secondary series; and true mammals have been discovered in the new red sandstone at nearly the commencement of this great series. Cuvier used to urge that no monkey occurred in any tertiary stratum; but now extinct species have been discovered in India, South America, and in Europe as far back as the miocene stage. Had it not been for the rare accident of the preservation of footsteps in the new red sandstone of the United States, who would have ventured to suppose that, no less than at least thirty kinds of bird-like animals, some of gigantic size, existed during that period? Not a fragment of bone has been discovered in these beds. Not long ago palæontologists maintained that the whole class of birds came suddenly into existence during the eocene period; but now we know, on the authority of Professor Owen, that a bird certainly lived during the deposition of the upper green-sand. And still more recently that strange bird, the Archeopteryx ... has been discovered in the oolitic slates of Solenhofen. Hardly any recent discovery shows more forcibly than this, how little we as yet know of the former inhabitants of the world.

I may give another instance, which, from having passed under my own eyes, has much struck me. In a memoir on Fossil Sessile Cirripedes, I stated that, from the number of existing and extinct tertiary species; from the extraordinary abundance of the individuals of many species all over the world from the Arctic regions to the equator, inhabiting various zones of depths from the upper tidal limits to 50 fathoms; from the perfect manner in which specimens are preserved in the oldest tertiary beds; from the ease with which even a fragment of a valve can be recognized; from all these circumstances, I inferred that had sessile cirripedes existed during the secondary periods, they would certainly have been preserved and discovered; and as not one species had then been discovered in beds of this age, I concluded that this great group had been suddenly developed at the commencement of the tertiary series. This was a sore trouble to me, adding as I thought one more instance of the abrupt appearance of a great group of species. But my work had hardly been published, when a skilful palæontologist, M. Bosquet, sent me a drawing of a perfect specimen of an unmistakeable sessile cirripede, which he had himself extracted from the chalk of Belgium. And, as if to make the case as striking as possible, this sessile cirripede was a Chthamalus, a very common, large, and ubiquitous genus, of which not one specimen has as yet been found even in any tertiary stratum. Still more recently, a Pyrgoma, a member of a distinct sub-family of sessile cirripedes, has been discovered by Mr. Woodward in the upper chalk; so that we now have abundant evidence of the existence of this group of animals during the secondary period.

The case most frequently insisted on by palæontologists of the apparently sudden appearance of a whole group of species, is that of the teleostean fishes, low down, according to Agassiz, in the Chalk period. This group includes the large majority of existing species. But certain Jurassic and Triassic forms are now commonly admitted to be teleostean; and even some palæozoic forms have been thus classed by one high authority. If the teleosteans had really appeared suddenly in the northern hemisphere, the fact would have been highly remarkable; but it would not have formed an insuperable difficulty, unless it could likewise have been shown that at the same period the species were suddenly and simultaneously developed in other quarters of the world. It is almost superfluous to remark that hardly any fossil fish are known from south of the equator; and by running through Pictet’s Palæontology it will be seen that very few species are known from several formations in Europe. Some few families of fish now have a confined range; the teleostean fish might formerly have had a similarly confined range, and after having been largely developed in some one sea, might have spread widely. Nor have we any right to suppose that the seas of the world have always been so freely open from south to north as they are at present. Even at this day, if the Malay Archipelago were converted into land, the tropical parts of the Indian Ocean would form a large and perfectly enclosed basin, in which any great group of marine animals might be multiplied; and here they would remain confined, until some of the species became adapted to a cooler climate, and were enabled to double the southern capes of Africa or Australia, and thus reach other and distant seas.

From these considerations, from our ignorance of the geology of other countries beyond the confines of Europe and the United States; and from the revolution in our palæontological knowledge effected by the discoveries of the last dozen years, it seems to me to be about as rash to dogmatize on the succession of organic forms throughout the world, as it would be for a naturalist to land for five minutes on some one barren point in Australia, and then to discuss the number and range of its productions[53].

In view of all the foregoing facts and considerations, it appears to me that the second difficulty on our list is completely answered. Indeed, even on a moderate estimate of the imperfection of the geological record, the wonder would have been if many cases had not occurred where groups of species present the fictitious appearance of having been suddenly and simultaneously created in the particular formations where their remains now happen to be observable.

Turning next to the third objection, there cannot be any question that every here and there in the geological series animals occur of a much higher grade zoologically than the theory of evolution would have expected to find in the strata where they are found. At any rate, speaking for myself, I should not have antecedently expected to meet with such highly differentiated insects as butterflies and dragonflies in the middle of the Secondaries: still less should I have expected to encounter beetles, cockroaches, spiders, and May-flies in the upper and middle Primaries—not to mention an insect and a scorpion even in the lower. And I think the same remark applies to a whole sub-kingdom in the case of Vertebrata. For although it is only the lowest class of the sub-kingdom which, so far as we positively know, was represented in the Devonian and Silurian formations, we must remember, on the one hand, that even a cartilaginous or ganoid fish belongs to the highest sub-kingdom of the animal series; and, on the other hand, that such animals are thus proved to have abounded in the very lowest strata where there is good evidence of there having been any forms of life at all. Lastly, the fact that Marsupials occur in the Trias, coupled with the fact that the still existing Monotremata are what may be termed animated fossils, referring us by their lowly type of organization to some period enormously more remote,—these facts render it practically certain that some members of this very highest class of the highest sub-kingdom must have existed far back in the Primaries.

These things, I say, I should not have expected to find, and I think all other evolutionists ought to be prepared to make the same acknowledgment. But as these things have been found, the only possible way of accounting for them on evolutionary principles is by supposing that the geological record is even more imperfect than we needed to suppose in order to meet the previous objections. I cannot see, however, why evolutionists should be afraid to make this acknowledgment. For I do not know any reason which would lead us to suppose that there is any common measure between the distances marked on our tables of geological formations, and the times which those distances severally represent. Let the reader turn to the table on page [163], and then let him say why the 30,000 feet of so-called Azoic rocks may not represent a greater duration of time than does the thickness of all the Primary rocks above them put together. For my own part I believe that this is probably the case, looking to the enormous ages during which these very early formations must have been exposed to destructive agencies of all kinds, now at one time and now at another, in different parts of the world. And, of course, we are without any means of surmising what ranges of time are represented by the so-called Primeval rocks, for the simple reason that they are non-sedimentary, and non-sedimentary rocks cannot be expected to contain fossils.

But, it will be answered, the 30,000 feet of Azoic rocks, lying above the Primeval, are sedimentary to some extent: they are not all completely metamorphic: yet they are all destitute of fossils. This is the fourth and last difficulty which has to be met, and it can only be met by the considerations which have been advanced by Lyell and Darwin. The former says:—

The total absence of any trace of fossils has inclined many geologists to attribute the origin of the most ancient strata to an azoic period, or one antecedent to the existence of organic beings. Admitting, they say, the obliteration, in some cases, of fossils by plutonic action, we might still expect that traces of them would oftener be found in certain ancient systems of slate, which can scarcely be said to have assumed a crystalline structure. But in urging this argument it seems to be forgotten that there are stratified formations of enormous thickness, and of various ages, some of them even of tertiary date, and which we know were formed after the earth had become the abode of living creatures, which are, nevertheless, in some districts, entirely destitute of all vestiges of organic bodies[54].

He then proceeds to mention sundry causes (in addition to plutonic action) which are adequate to destroy the fossiliferous contents of stratified rocks, and to show that these may well have produced enormous destruction of organic remains in these oldest of known formations.

Darwin’s view is that, during the vast ages of time now under consideration, it is probable that the distribution of sea and land over the earth’s surface has not been uniformly the same, even as regards oceans and continents. Now, if this were the case, “it might well happen that strata which had subsided some miles nearer to the centre of the earth, and which had been pressed on by an enormous weight of superincumbent water, might have undergone far more metamorphic action than strata which have always remained nearer to the surface. The immense areas in some parts of the world, for instance in South America, of naked metamorphic rocks, which must have been heated under great pressure, have always seemed to me to require some special explanation; and we may perhaps believe that we see, in these large areas, the many formations long anterior to the Cambrian epoch in a completely metamorphosed and denuded condition[55].” The probability of this view he sustains by certain general considerations, as well as particular facts touching the geology of oceanic islands, &c.

On the whole, then, it seems to me but reasonable to conclude, with regard to all four objections in question, as Darwin concludes with regard to them:—

For my part, following out Lyell’s metaphor, I look at the geological record as a history of the world imperfectly kept, written in a changing dialect; of this history we possess the last volume alone, relating only to two or three countries. Of this volume, only here and there a short chapter has been preserved; and of each page only here and there a few lines. Each word of the slowly-changing language, more or less different in the successive chapters, may represent the forms of life, which are entombed in our consecutive formations, and which falsely appear to us to have been abruptly introduced. On this view, the difficulties above discussed are greatly diminished, or even disappear[56].

As far as I can see, the only reasonable exception that can be taken to this general view of the whole matter, is one which has been taken from the side of astronomical physics.

Put briefly, it is alleged by one of the highest authorities in this branch of science, that there cannot have been any such enormous reaches of unrecorded time as would be implied by the supposition of there having been a lost history of organic evolution before the Cambrian period. The grounds of this allegation I am not qualified to examine; but in a general way I agree with Prof. Huxley in feeling that, from the very nature of the case, they are necessarily precarious,—and this in so high a degree that any conclusions raised on such premises are not entitled to be deemed formidable[57].


Turning now to plants, the principal and the ablest opponent of the theory of evolution is here unquestionably Mr. Carruthers[58]. The difficulties which he adduces may be classified under three heads, as follows:—

1. There is no evidence of change in specific forms of existing plants. Not only are the numerous species of plants which have been found in Egyptian mummies indistinguishable from their successors of to-day; but, what is of far more importance, a large number of our own indigenous plants grew in Great Britain during the glacial period (including under this term the warm periods between those of successive glaciations), and in no one case does it appear that any modification of specific type has occurred. This fact is particularly remarkable as regards leaves, because on the one hand they are the organs of plants which are most prone to vary, while on the other hand they are likewise the organs which lend themselves most perfectly to the process of fossilization, so that all details of their structure can be minutely observed in the fossil state. Yet the interval since the glacial period, although not a long one geologically speaking, is certainly what may be called an appreciable portion of time in the history of Dicotyledonous plants since their first appearance in the Cretaceous epoch. Again, if we extend this kind of enquiry so as to include the world as a whole, a number of other species of plants dating from the glacial epoch are found to tell the same story—notwithstanding that, in the opinion of Mr. Carruthers, they must all have undergone many changes of environment while advancing before, and retreating after, successive glaciations in different parts of the globe. Or, to quote his own words:—"The various physical conditions which of necessity affected these {41} species in their diffusion over such large areas of the earth’s surface in the course of, say, 250,000 years, should have led to the production of many varieties; but the uniform testimony of the remains of this considerable pre-glacial flora, as far as the materials admit of a comparison, is that no appreciable change has taken place.”

2. There is no appearance of generalized forms among the earliest plants with which we are acquainted. For example, in the first dry land flora—the Devonian—we have representatives of the Filices, Equisetaceæ, and Lycopodiaceæ, all as highly specialized as their living representatives, and exhibiting the differential characters of these closely related groups. Moreover, these plants were even more highly organized than their existing descendants in regard to their vegetative structure, and in some cases also in regard to their reproductive organs. So likewise the Gymnosperms of that time show in their fossil state the same highly organized woody structure as their living representatives.

3. Similarly, and more generally, the Dicotyledonous plants, which first appear in the Cretaceous rocks, appear there suddenly, without any forms leading up to them—notwithstanding that “we know very well the extensive flora of the underlying Wealden.” Moreover, we have all the three great divisions of the Dicotyledons appearing together, and so highly differentiated that all the species are referred to existing genera, with the exception of a very few imperfectly preserved, and therefore uncertain fragments.

Such being the facts, we may begin by noticing that, even at first sight, they present different degrees of difficulty. Thus, I cannot see that there is much difficulty with regard to those in class 2. Only if we were to take the popular (and very erroneous) view of organic evolution as a process which is always and everywhere bound to promote the specialization of organic types—only then ought we to see any real difficulty in the absence of generalized types preceding these existing types. Of course we may wonder why still lower down in the geological series we do not meet with more generalized (or ancestral) types; but this is the difficulty number 3, which we now proceed to examine.

Concerning the other two difficulties, then, the only possible way of meeting that as to the absence of any parent forms lower down in the geological series is by falling back—as in the analogous case of animals—upon the imperfection of the geological record. Although it is certainly remarkable that we should not encounter any forms serving to connect the Dicotyledonous plants of the Chalk with the lower forms of the underlying Wealden, we must again remember that difficulties thus depending on the absence of any corroborative record, are by no means equivalent to what would have arisen in the presence of an adverse record—such, for instance, as would have been exhibited had the floras of the Wealden and the Chalk been inverted. But, as the case actually stands, the mere fact that Dicotyledonous plants, where they first occur, are found to have been already differentiated into their three main divisions, is in itself sufficient evidence, on the general theory of evolution, that there must be a break in the record as hitherto known between the Wealden and the Chalk. Nor is it easy to see how the opponents of this theory can prove their negative by furnishing evidence to the contrary. And although such might justly be deemed an unfair way of putting the matter, were this the only case where the geological record is in evidence, it is not so when we remember that there are numberless other cases where the geological record does testify to connecting links in a most satisfactory manner. For in view of this consideration the burden of proof is thrown upon those who point to particular cases where there is thus a conspicuous absence of transitional forms—the burden, namely, of proving that such cases are not due merely to a break in the record. Besides, the break in the record as regards this particular case may be apparent rather than real. For I suppose there is no greater authority on the pure geology of the subject than Sir Charles Lyell, and this is what he says of the particular case in question. “If the passage seem at present to be somewhat sudden from the flora of the Lower or Neocomian to that of the Upper Cretaceous period, the abruptness of the change will probably disappear when we are better acquainted with the fossil vegetation of the uppermost tracts of the Neocomian and that of the lowest strata of the Gault, or true Cretaceous series[59].”

Lastly, the fact of the flora of the glacial epoch not having exhibited any modifications during the long residence of some of its specific types in Great Britain and elsewhere, is a fact of some importance to the general theory of evolution, since it shows a higher degree of stability on the part of these specific types than might perhaps have been expected, supposing the theory to be true. But I do not see that this constitutes a difficulty against the theory, when we have so many other cases of proved transmutation to set against it. For instance, not to go further afield than this very glacial flora itself, it will be remembered that in an earlier chapter I selected it as furnishing specially cogent proof of the transmutation of species. What, then, is the explanation of so extraordinary a difference between Mr. Carruthers’ views and my own upon this point? I believe the explanation to be that he does not take a sufficiently wide survey of the facts.

To begin with, it seems to me that he exaggerates the vicissitudes to which the species of plants that he calls into evidence have been exposed while advancing before, and retreating after, the ice. Rather do I agree with Darwin that “they would not have been exposed during their long migrations to any great diversity of temperature; and as they all migrated in a body together, their mutual relations will not have been much disturbed; hence, in accordance with the principles indicated in this volume, these forms will not have been liable to much modification[60].” But, be this matter of opinion as it may, a much better test is afforded by those numerous cases all the world over, where arctic species have been left stranded on alpine areas by the retreat of glaciation; because here there is no room for differences of opinion as to a “change of environment” having taken place. Not to speak of climatic differences between arctic and alpine stations, consider merely the changes which must have taken place in the relations of the thus isolated species to each other, as well as to those of all the foreign plants, insects, &c., with which they have long been thrown into close association. If in such cases no variation or transmutation had taken place since the glacial epoch, then indeed there would have been a difficulty of some magnitude. But, by parity of reasoning, whatever degree of difficulty would have been thus presented is not merely discharged, but converted into at least an equal degree of corroboration, when it is found that under such circumstances, in whatever part of the world they have occurred, some considerable amount of variation and transmutation has always taken place,—and this in the animals as well as in the plants. For instance, again to quote Darwin, “If we compare the present Alpine plants and animals of the several great European mountain-ranges one with another, though many of the species remain identically the same, some exist as varieties, some as doubtful forms or sub-species, and some as distinct yet closely allied species representing each other on the several ranges[61].” Lastly, if instead of considering the case of alpine floras, we take the much larger case of the Old and New World as a whole, we meet with much larger proofs of the same general facts. For, “during the slowly decreasing warmth of the Pliocene period, as soon as the species in common, which inhabited the New and Old Worlds, migrated south of the Polar Circle, they will have been completely cut off from each other. This separation, as far as the more temperate productions are concerned, must have taken place long ages ago. As the plants and animals migrated southward, they will have become mingled in one great region with the native American productions, and would have had to compete with them; and, in the other great region, with those of the Old World. Consequently we have here everything favourable for much modification,—for far more modification than with the Alpine productions left isolated, within a much more recent period, on the several mountain ranges and on the arctic lands of Europe and N. America. Hence it has come, that when we compare the now living productions of the temperate regions of the New and Old Worlds, we find very few identical species; but we find in every class many forms, which some naturalists rank as geographical races, and others as distinct species; and a host of closely allied or representative forms which are ranked by all naturalists as specifically distinct[62].”

In view then of all the above considerations—and especially those quoted from Darwin—it appears to me that far from raising any difficulty against the theory of evolution, the facts adduced by Mr. Carruthers make in favour of it. For when once these facts are taken in connection with the others above mentioned, they serve to complete the correspondence between degrees of modification with degrees of time on the one hand, and with degrees of evolution, of change of environment, &c., on the other. Or, in the words of Le Conte, when dealing with this very subject, “It is impossible to conceive a more beautiful illustration of the principles we have been trying to enforce[63].”


Note A to Page [257].

The passages in Dr. Whewell’s writings, to which allusion is here made, are somewhat too long to be quoted in the text. But as I think they deserved to be given, I will here reprint a letter which I wrote to Nature in March, 1888.

In his essay on the Reception of the Origin of Species, Prof. Huxley writes:—

“It is interesting to observe that the possibility of a fifth alternative, in addition to the four he has stated, has not dawned upon Dr. Whewell’s mind” (Life and Lectures of Charles Darwin, vol. ii, p. 195).

And again, in the article Science, supplied to The Reign of Queen Victoria, he says:—

“Whewell had not the slightest suspicion of Darwin’s main theorem, even as a logical possibility” (p 365).

Now, although it is true that no indication of such a logical possibility is to be met with in the History of the Inductive Sciences, there are several passages in the Bridgewater Treatise which show a glimmering idea of such a possibility. Of these the following are, perhaps, worth quoting. Speaking of the adaptation of the period of flowering to the length of a year, he says:—

“Now such an adjustment must surely be accepted as a proof of design, exercised in the formation of the world. Why should the solar year be so long and no longer? or, this being such a length, why should the vegetable cycle be exactly of the same length? Can this be chance?... And, if not by chance, how otherwise could such a coincidence occur than by an intentional adjustment of these two things to one another; by a selection of such an organization in plants as would fit them to the earth on which they were to grow; by an adaptation of construction to conditions; of the scale of construction to the scale of conditions? It cannot be accepted as an explanation of this fact in the economy of plants, that it is necessary to their existence; that no plants could possibly have subsisted, and come down to us, except those which were thus suited to their place on the earth. This is true; but it does not at all remove the necessity of recurring to design as the origin of the construction by which the existence and continuance of plants is made possible. A watch could not go unless there were the most exact adjustment in the forms and positions of its wheels; yet no one would accept it as an explanation of the origin of such forms and positions that the watch would not go if these were other than they were. If the objector were to suppose that plants were originally fitted to years of various lengths, and that such only have survived to the present time as had a cycle of a length equal to our present year, or one which could be accommodated to it, we should reply that the assumption is too gratuitous and extravagant to require much consideration.”

Again, with regard to “the diurnal period,” he adds:—

“Any supposition that the astronomical cycle has occasioned the physiological one, that the structure of plants has been brought to be what it is by the action of external causes, or that such plants as could not accommodate themselves to the existing day have perished, would be not only an arbitrary and baseless assumption, but, moreover, useless for the purposes of explanation which it professes, as we have noticed of a similar supposition with respect to the annual cycle.”

Of course these passages in no way make against Mr. Huxley’s allusions to Dr. Whewell’s writings in proof that, until the publication of the Origin of Species, the “main theorem” of this work had not dawned on any other mind, save that of Mr. Wallace. But these passages show, even more emphatically than total silence with regard to the principle of survival could have done, the real distance which at that time separated the minds of thinking men from all that was wrapped up in this principle. For they show that Dr. Whewell, even after he had obtained a glimpse of the principle “as a logical possibility,” only saw in it an “arbitrary and baseless assumption.” Moreover, the passages show a remarkable juxtaposition of the very terms in which the theory of natural selection was afterwards formulated. Indeed, if we strike out the one word “intentional” (which conveys the preconceived idea of the writer, and thus prevented him from doing justice to any naturalistic view), all the following parts of the above quotations might be supposed to have been written by a Darwinian. “If not by chance, how otherwise could such a coincidence occur, than by an adjustment of these two things to one another; by a selection of such an organization in plants as would fit them to the earth on which they were to grow; by an adaptation of construction to conditions; of the scale of construction to the scale of conditions?” Yet he immediately goes on to say: “If the objector were to suppose that plants were originally fitted to years of various lengths, and that such only have survived to the present time ... as could be accommodated to it (i. e. the actual cycle), we should reply that the assumption is too gratuitous and extravagant to require much consideration.” Was there ever a more curious exhibition of failure to perceive the importance of a “logical possibility"? And this at the very time when another mind was bestowing twenty years of labour on its “consideration.”


Note B to Page [295].

Since these remarks were delivered in my lectures as here printed, Mr. Mivart has alluded to the subject in the following and precisely opposite sense:—

Many of the more noteworthy instincts lead us from manifestations of purpose directed to the maintenance of the individual, to no less plain manifestations of a purpose directed to the preservation of the race. But a careful study of the interrelations and interdependencies which exist between the various orders of creatures inhabiting this planet shows us yet a more noteworthy teleology—the existence of whole orders of such creatures being directed to the service of other orders in various degrees of subordination and augmentation respectively. This study reveals to us, as a fact, the enchainment of all the various orders of creatures in a hierarchy of activities, in harmony with what we might expect to find in a world the outcome of a First Cause possessed of intelligence and will[64].

Having read this much, a Darwinian is naturally led to expect that Mr. Mivart is about to offer some examples of instincts or structures exemplifying what in the margin he calls the “Hierarchy of Ministrations.” Yet the only facts he proceeds to adduce are the sufficiently obvious facts, that the inorganic world existed before the organic, plants before herbivorous animals, these before carnivorous, and so on: that is to say, everywhere the conditions to the occurrence of any given stage of evolution preceded such occurrence, as it is obvious that they must, if, as of course it is not denied, the possibility of such occurrence depended on the precedence of such conditions. Now, it is surely obvious that such a “hierarchy of ministrations” as this, far from telling against the theory of natural selection, is the very thing which tells most in its favour. The fact that animals, for instance, only appeared upon the earth after there were plants for them to feed upon, is clearly a necessity of the case, whether or not there was any design in the matter. Such “ministrations,” therefore, as plant-organisms yield to animal-organisms is just the kind of ministration that the theory of natural selection requires. Thus far, then, both the theories—natural selection and super-natural design—have an equal right to appropriate the facts. But now, if in no one instance can it be shown that the ministration of plant-life to animal-life is of such a kind as to subserve the interests of animal-life without at the same time subserving those of the plant-life itself, then the fact makes wholly in favour of the naturalistic explanation of such ministration as appears. If any plants had presented any characters pointing prospectively to needs of animals without primarily ministering to their own, then, indeed, there would have been no room for the theory of natural selection. But as this can nowhere be alleged, the theory of natural selection finds all the facts to be exactly as it requires them to be: such ministration as plants yield to animals becomes so much evidence of natural selection having slowly formed the animals to appropriate the nutrition which the plants had previously gathered—and gathered under the previous influence of natural selection acting on themselves entirely for their own sakes. Therefore I say it is painfully manifest that “the enchainment of all the various orders of creatures in a hierarchy of activities,” is not “in harmony with what we might expect to find in a world the outcome of a First Cause possessed of intelligence and [beneficent] will.” So far as any argument from such “enchainment” reaches, it makes entirely against the view which Mr. Mivart is advocating. In point of fact, there is a total absence of any such “ministration” by one “order of creatures” to the needs of any other order, as the beneficent design theory would necessarily expect; while such ministration as actually does obtain is exactly and universally the kind which the naturalistic theory requires.

Again, quite independently, and still more recently, Mr. Mivart alluded in Nature (vol. xli, p. 41) to the difficulty which the apparently exceptional case of gall-formation presents to the theory of natural selection. Therefore I supplied (vol. xli, p. 80) the suggestion given in the text, viz. that although it appears impossible that the sometimes remarkably elaborate and adaptive structures of galls can be due to natural selection acting directly on the plants themselves—seeing that the adaptation has reference to the needs of their parasites—it is quite possible that the phenomena may be due to natural selection acting indirectly on the plants, by always preserving those individual insects (and larvae) the character of whose secretions is such as will best induce the particular shapes of galls that are required. Several other correspondents took part in the discussion, and most of them accepted the above explanation. Mr. T. D. A. Cockerell, however, advanced another and very ingenious hypothesis, showing that there is certainly one conceivable way in which natural selection might have produced all the phenomena of gall-formation by acting directly on the plants themselves[65]. Subsequently Mr. Cockerell published another paper upon the subject, stating his views at greater length. The following is the substance of his theory as there presented:—

Doubtless there were internal plant-feeding larvae before there were galls: and, indeed, we have geological evidence that boring insects date very far back indeed. The primitive internal feeders, then, were miners in the roots, stems, twigs, or leaves, such as occur very commonly at the present day. These miners are excessively harmful to plant-life, and form a class of the most destructive insect-pests known to the farmer: they frequently cause the death of the whole or part of the plant attacked. Now, we may suppose that the secretions of certain of these insects caused a swelling to appear where the larvae lived, and on this excrescence the larvae fed. It is easy to see that the greater the excrescence, and the greater the tendency of the larvae to feed upon it, instead of destroying the vital tissues, the smaller is the amount of harm to the plant. Now the continued life and vitality of the plant is beneficial to the larvae, and the larger or more perfect the gall, the greater the amount of available food. Hence natural selection will have preserved and accumulated the gall-forming tendencies, as not only beneficial to the larvae, but as a means whereby the larvae can feed with least harm to the plant. So far from being developed for the exclusive benefit of the larvae, it is easy to see that, allowing a tendency to gall-formation, natural selection would have developed galls exclusively for the benefit of the plants, so that they might suffer a minimum of harm from the unavoidable attacks of insects.

But here it may be questioned—have we proof that internal feeders tend to form galls? In answer to this I would point out that gall-formation is a peculiar feature, and cannot be expected to arise in every group of internal feeders. But I think we can afford sufficient proof that wherever it has arisen it has been preserved; and further, that even the highly complex forms of galls are evolved from forms so simple that we hesitate to call them galls at all[66].

The paper then proceeds to give a number of individual cases. No doubt the principal objection to which Mr. Cockerell’s hypothesis is open is one that was pointed out by Herr Wetterhan, viz. “the much greater facility afforded to the indirect action through insects, by the enormously more rapid succession of generations with the latter than with many of their vegetable hosts—oaks above all[67].” This difficulty, however, Mr. Cockerell believes maybe surmounted by the consideration that a growing plant need not be regarded as a single individual, but rather as an assemblage of such[68].


Note C to Page [394].

The only remarks that Mr. Wallace has to offer on the pattern of colours, as distinguished from a mere brilliancy of colour, are added as an afterthought suggested to him by the late Mr. Alfred Tylor’s book on Colouration of Animals and Plants (1886). But, in the first place, it appears to me that Mr. Wallace has formed an altogether extravagant estimate of the value of this work. For the object of the work is to show, “that diversified colouration follows the chief lines of structure, and changes at points, such as the joints, where function changes.” Now, in publishing this generalization, Mr. Tylor—who was not a naturalist—took only a very limited view of the facts. When applied to the animal kingdom as a whole, the theory is worthless; and even within the limits of mammals, birds, and insects—which are the classes to which Mr. Tylor mainly applies it—there are vastly more facts to negative than to support it. This may be at once made apparent by the following brief quotation from Prof. Lloyd Morgan:—

It can hardly be maintained that the theory affords us any adequate explanation of the specific colour-tints of the humming-birds, or the pheasants, or the Papilionidae among butterflies. If, as Mr. Wallace argues, the immense tufts of golden plumage in the bird of paradise owe their origin to the fact that they are attached just above the point where the arteries and nerves for the supply of the pectoral muscles leave the interior of the body—and the physiological rationale is not altogether obvious,—are there no other birds in which similar arteries and nerves are found in a similar position? Why have these no similar tufts? And why, in the birds of paradise themselves, does it require four years ere these nervous and arterial influences take effect upon the plumage? Finally, one would inquire how the colour is determined and held constant in each species. The difficulty of the Tylor-Wallace view, even as a matter of origin, is especially great in those numerous cases in which the colour is determined by delicate lines, thin plates, or thin films of air or fluid. Mr. Poulton, who takes a similar line of argument in his Colours of Animals (p. 326), lays special stress on the production of white (pp. 201-202).

As regards the latter point, it may be noticed that not in any part of his writings, so far as I can find, does Mr. Wallace allude to the highly important fact of colours in animals being so largely due to these purely physical causes. Everywhere he argues as if colours were universally due to pigments; and in my opinion this unaccountable oversight is the gravest defect in Mr. Wallace’s treatment both of the facts and the philosophy of colouration in the animal kingdom. For instance, as regards the particular case of sexual colouration, the oversight has prevented him from perceiving that his theory of “brilliancy” as due to “a surplus of vital energy,” is not so much as logically possible in what must constitute at least one good half of the facts to which he applies it—unless he shows that there is some connection between vital energy and the development of striations, imprisonment of air-bubbles, &c. But any such connection—so essentially important for his theory—he does not even attempt to show. Lastly, and quite apart from these remarkable oversights, even if Mr. Tylor’s hypothesis were as reasonable and well-sustained as it is fanciful and inadequate, still it could not apply to sexual colouration: it could apply only to colouration as affected by physiological functions common to both sexes. Yet it is in order to furnish a “preferable substitute” for Mr. Darwin’s theory of sexual colouration, that Mr. Wallace adduces the hypothesis in question as one of “great weight"! In this matter, therefore, I entirely agree with Poulton and Lloyd Morgan.


INDEX